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PÙ�¥���
A Note on Using this Text

Thank you for reading this short preface. Allow us to share a few key points
about the text so that youmay beƩer understand what you will find beyond this
page.

This text is Part III of a three–text series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, derivaƟves, and the basics of
integraƟon, found in Chapters 1 through 6.1. The second text covers material
oŌen taught in “Calc 2:” integraƟon and its applicaƟons, along with an introduc-
Ɵon to sequences, series and Taylor Polynomials, found in Chapters 5 through
8. The third text covers topics common in “Calc 3” or “mulƟvariable calc:” para-
metric equaƟons, polar coordinates, vector–valued funcƟons, and funcƟons of
more than one variable, found in Chapters 9 through 13. All three are available
separately for free at www.vmi.edu/APEX. These three texts are intended to
work together and make one cohesive text, APEX Calculus, which can also be
downloaded from the website.

PrinƟng the enƟre text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for about
$10 at Amazon.com.

A result of this spliƫng is that someƟmes a concept is said to be explored in
an “earlier secƟon,” though that secƟon does not actually appear in this parƟc-
ular text. Also, the index makes reference to topics, and page numbers, that do
not appear in this text. This is done intenƟonally to show the reader what topics
are available for study. Downloading the .pdf of APEX Calculus will ensure that
you have all the content.

APEX – Affordable Print and Electronic teXts

APEX is a consorƟum of authors who collaborate to produce high–quality,
low–cost textbooks. The current textbook–wriƟng paradigm is facing a poten-
Ɵal revoluƟon as desktop publishing and electronic formats increase in popular-
ity. However, wriƟng a good textbook is no easy task, as the Ɵme requirements
alone are substanƟal. It takes countless hours of work to produce text, write

http://www.vmi.edu/APEX
http://amazon.com


examples and exercises, edit and publish. Through collaboraƟon, however, the
cost to any individual can be lessened, allowing us to create texts that we freely
distribute electronically and sell in printed form for an incredibly low cost. Hav-
ing said that, nothing is enƟrely free; someone always bears some cost. This
text “cost” the authors of this book their Ɵme, and that was not enough. APEX
Calculus would not exist had not the Virginia Military InsƟtute, through a gen-
erous Jackson–Hope grant, given one of the authors significant Ɵme away from
teaching so he could focus on this text.

Each text is available as a free .pdf, protected by a CreaƟve Commons At-
tribuƟon - Noncommercial 3.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the laƩer, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add secƟons that are “missing” or remove secƟons that your students won’t
need. The source files can be found at github.com/APEXCalculus.

You can learn more at www.vmi.edu/APEX.

https://github.com/APEXCalculus
http://www.vmi.edu/APEX
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9.1 Conic SecƟons

The ancient Greeks recognized that interesƟng shapes can be formed by inter-
secƟng a plane with a double napped cone (i.e., two idenƟcal cones placed Ɵp–
to–Ɵp as shown in the following figures). As these shapes are formed as secƟons
of conics, they have earned the official name “conic secƟons.”

The three “most interesƟng” conic secƟons are given in the top row of Figure
9.1. They are the parabola, the ellipse (which includes circles) and the hyper-
bola. In each of these cases, the plane does not intersect the Ɵps of the cones
(usually taken to be the origin).

Parabola Ellipse Circle Hyperbola

Point Line Crossed Lines

Figure 9.1: Nondegenerate Conic SecƟons

When the plane does contain the origin, three degenerate cones can be
formed as shown the boƩom row of Figure 9.1: a point, a line, and crossed
lines. We focus here on the nondegenerate cases.

While the above geometric constructs define the conics in an intuiƟve, visual
way, these constructs are not very helpful when trying to analyze the shapes
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Chapter 9 Curves in the Plane

algebraically or consider them as the graph of a funcƟon. It can be shown that
all conics can be defined by the general second–degree equaƟon

Ax2 + Bxy+ Cy2 + Dx+ Ey+ F = 0.

While this algebraic definiƟon has its uses, most find another geometric per-
specƟve of the conics more beneficial.

Each nondegenerate conic can be defined as the locus, or set, of points that
saƟsfy a certain distance property. These distance properƟes can be used to
generate an algebraic formula, allowing us to study each conic as the graph of a
funcƟon.

Parabolas

.

.

.
DefiniƟon 40 Parabola

A parabola is the locus of all points equidistant from a point (called a
focus) and a line (called the directrix) that does not contain the focus.

Figure 9.2 illustrates this definiƟon. The point halfway between the focus
and the directrix is the vertex. The line through the focus, perpendicular to the
directrix, is the axis of symmetry, as the porƟon of the parabola on one side of
this line is the mirror–image of the porƟon on the opposite side.

The definiƟon leads us to an algebraic formula for the parabola. Let P =
(x, y) be a point on a parabola whose focus is at F = (0, p) and whose directrix
is at y = −p. (We’ll assume for now that the focus lies on the y-axis; by placing
the focus p units above the x-axis and the directrix p units below this axis, the
vertex will be at (0, 0).)

We use the Distance Formula to find the distance d1 between F and P:

d1 =
√

(x− 0)2 + (y− p)2.

The distance d2 from P to the directrix is more straighƞorward:

d2 = y− (−p) = y+ p.

These two distances are equal. Seƫng d1 = d2, we can solve for y in terms of x:

d1 = d2√
x2 + (y− p)2 = y+ p

Notes:

470
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9.1 Conic SecƟons

Now square both sides.

x2 + (y− p)2 = (y+ p)2

x2 + y2 − 2yp+ p2 = y2 + 2yp+ p2

x2 = 4yp

y =
1
4p

x2.

The geometric definiƟon of the parabola has led us to the familiar quadraƟc
funcƟonwhose graph is a parabola with vertex at the origin. Whenwe allow the
vertex to not be at (0, 0), we get the following standard form of the parabola.

.

.

.
Key Idea 33 General EquaƟon of a Parabola

1. VerƟcal Axis of Symmetry: The equaƟon of the parabola with ver-
tex at (h, k) and directrix y = k− p in standard form is

y =
1
4p

(x− h)2 + k.

The focus is at (h, k+ p).

2. Horizontal Axis of Symmetry: The equaƟon of the parabola with
vertex at (h, k) and directrix x = h− p in standard form is

x =
1
4p

(y− k)2 + h.

The focus is at (h+ p, k).

Note: p is not necessarily a posiƟve number.

.. Example 273 Finding the equaƟon of a parabola
Give the equaƟon of the parabola with focus at (1, 2) and directrix at y = 3.

SÊ½çã®ÊÄ The vertex is located halfway between the focus and direc-
trix, so (h, k) = (1, 2.5). This gives p = −0.5. Using Key Idea 33 we have the
equaƟon of the parabola as

y =
1

4(−0.5)
(x− 1)2 + 2.5 = −1

2
(x− 1)2 + 2.5.

The parabola is sketched in Figure 9.3. ..

Notes:

471
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.. Example 274 Finding the focus and directrix of a parabola
Find the focus and directrix of the parabola x = 1

8y
2 − y + 1. The point (7, 12)

lies on the graph of this parabola; verify that it is equidistant from the focus and
directrix.

SÊ½çã®ÊÄ We need to put the equaƟon of the parabola in its general
form. This requires us to complete the square:

x =
1
8
y2 − y+ 1

=
1
8
(
y2 − 8y+ 8

)
=

1
8
(
y2 − 8y+ 16− 16+ 8

)
=

1
8
(
(y− 4)2 − 8

)
=

1
8
(y− 4)2 − 1.

Hence the vertex is located at (−1, 4). We have 1
8 = 1

4p , so p = 2. We conclude
that the focus is located at (1, 4) and the directrix is x = −3. The parabola is
graphed in Figure 9.4, along with its focus and directrix.

The point (7, 12) lies on the graph and is 7 − (−3) = 10 units from the
directrix. The distance from (7, 12) to the focus is:

√
(7− 1)2 + (12− 4)2 =

√
100 = 10.

Indeed, the point on the parabola is equidistant from the focus and directrix. ..

ReflecƟve Property

One of the fascinaƟng things about the nondegenerate conic secƟons is their
reflecƟve properƟes. Parabolas have the following reflecƟve property:

Any ray emanaƟng from the focus that intersects the parabola
reflects off along a line perpendicular to the directrix.

This is illustrated in Figure 9.5. The following theorem states this more rig-
orously.

Notes:

472
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.

.

.
Theorem 79 ReflecƟve Property of the Parabola

Let P be a point on a parabola. The tangent line to the parabola at P
makes equal angles with the following two lines:

1. The line containing P and the focus F, and

2. The line perpendicular to the directrix through P.

Because of this reflecƟve property, paraboloids (the 3D analogue of parabo-
las)make for useful flashlight reflectors as the light from the bulb, ideally located
at the focus, is reflected along parallel rays. Satellite dishes also have paraboloid
shapes. Signals coming from satellites effecƟvely approach the dish along par-
allel rays. The dish then focuses these rays at the focus, where the sensor is
located.

Ellipses

.

.

.
DefiniƟon 41 Ellipse

An ellipse is the locus of all points whose sumof distances from two fixed
points, each a focus of the ellipse, is constant.

An easy way to visualize this construcƟon of an ellipse is to pin both ends of
a string to a board. The pins become the foci. Holding a pencil Ɵght against the
string places the pencil on the ellipse; the sum of distances from the pencil to
the pins is constant: the length of the string. See Figure 9.6.

We can again find an algebraic equaƟon for an ellipse using this geometric
definiƟon. Let the foci be located along the x-axis, c units from the origin. Let
these foci be labeled as F1 = (−c, 0) and F2 = (c, 0). Let P = (x, y) be a point
on the ellipse. The sum of distances from F1 to P (d1) and from F2 to P (d2) is a
constant d. That is, d1 + d2 = d. Using the Distance Formula, we have√

(x+ c)2 + y2 +
√

(x− c)2 + y2 = d.

Using a fair amount of algebra can produce the following equaƟon of an ellipse
(note that the equaƟon is an implicitly defined funcƟon; it has to be, as an ellipse
fails the VerƟcal Line Test):

x2( d
2

)2 +
y2( d

2

)2 − c2
= 1.

Notes:
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Figure 9.7: Labeling the significant fea-
tures of an ellipse.
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Chapter 9 Curves in the Plane

This is not parƟcularly illuminaƟng, but by making the subsƟtuƟon a = d/2 and
b =

√
a2 − c2, we can rewrite the above equaƟon as

x2

a2
+

y2

b2
= 1.

This choice of a and b is not without reason; as shown in Figure 9.7, the values
of a and b have geometric meaning in the graph of the ellipse.

In general, the two foci of an ellipse lie on themajor axis of the ellipse, and
the midpoint of the segment joining the two foci is the center. The major axis
intersects the ellipse at two points, each of which is a vertex. The line segment
through the center and perpendicular to the major axis is the minor axis. The
“constant sum of distances” that defines the ellipse is the length of the major
axis, i.e., 2a.

Allowing for the shiŌing of the ellipse gives the following standard equaƟons.

.

.

.
Key Idea 34 Standard EquaƟon of the Ellipse

The equaƟon of an ellipse centered at (h, k)with major axis of length 2a
and minor axis of length 2b in standard form is:

1. Horizontal major axis:
(x− h)2

a2
+

(y− k)2

b2
= 1.

2. VerƟcal major axis:
(x− h)2

b2
+

(y− k)2

a2
= 1.

The foci lie along the major axis, c units from the center, where c2 =
a2 − b2.

.. Example 275 Finding the equaƟon of an ellipse
Find the general equaƟon of the ellipse graphed in Figure 9.8.

SÊ½çã®ÊÄ The center is located at (−3, 1). The distance from the cen-
ter to a vertex is 5 units, hence a = 5. The minor axis seems to have length 4,
so b = 2. Thus the equaƟon of the ellipse is

(x+ 3)2

4
+

(y− 1)2

25
= 1.

..

.. Example 276 ..Graphing an ellipse
Graph the ellipse defined by 4x2 + 9y2 − 8x− 36y = −4.

Notes:
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Figure 9.10: Understanding the eccentric-
ity of an ellipse.

9.1 Conic SecƟons

SÊ½çã®ÊÄ It is simple to graph an ellipse once it is in standard form. In
order to put the given equaƟon in standard form, we must complete the square
with both the x and y terms. We first rewrite the equaƟon by regrouping:

4x2 + 9y2 − 8x− 36y = −4 ⇒ (4x2 − 8x) + (9y2 − 36y) = −4.

Now we complete the squares.

(4x2 − 8x) + (9y2 − 36y) = −4

4(x2 − 2x) + 9(y2 − 4y) = −4

4(x2 − 2x+ 1− 1) + 9(y2 − 4y+ 4− 4) = −4

4
(
(x− 1)2 − 1

)
+ 9
(
(y− 2)2 − 4

)
= −4

4(x− 1)2 − 4+ 9(y− 2)2 − 36 = −4

4(x− 1)2 + 9(y− 2)2 = 36
(x− 1)2

9
+

(y− 2)2

4
= 1.

We see the center of the ellipse is at (1, 2). We have a = 3 and b = 2; the ma-
jor axis is horizontal, so the verƟces are located at (−2, 2) and (4, 2). We find
c =

√
9− 4 =

√
5 ≈ 2.24. The foci are located along the major axis, approxi-

mately 2.24 units from the center, at (1± 2.24, 2). This is all graphed in Figure
9.9 . ...

Eccentricity

When a = b, we have a circle. The general equaƟon becomes

(x− h)2

a2
+

(y− k)2

a2
= 1 ⇒ (x− h)2 + (y− k)2 = a2,

the familiar equaƟon of the circle centered at (h, k)with radius a. The circle has
“two” foci, but they lie on the same point, the center of the circle.

Consider Figure 9.10, where several ellipses are graphed with a = 1. In (a),
we have c = 0 and the ellipse is a circle. As c grows, the resulƟng ellipses look
less and less circular. A measure of this “noncircularness” is eccentricity.

.

.

.
DefiniƟon 42 Eccentricity of an Ellipse

The eccentricity e of an ellipse is e =
c
a
.

Notes:
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The eccentricity of a circle is 0; that is, a circle has no “noncircularness.” As
c approaches a, e approaches 1, giving rise to a very noncircular ellipse, as seen
in Figure 9.10 (d).

It was long assumed that planets had circular orbits. This is known to be
incorrect; the orbits are ellipƟcal. Earth has an eccentricity of 0.0167 – it has
a nearly circular orbit. Mercury’s orbit is the most eccentric, with e = 0.2056.
(Pluto’s eccentricity is greater, at e = 0.248, the greatest of all the currently
known dwarf planets.) The planet with the most circular orbit is Venus, with
e = 0.0068. The Earth’s moon has an eccentricity of e = 0.0549, also very cir-
cular.

ReflecƟve Property

The ellipse also possesses an interesƟng reflecƟve property. Any ray ema-
naƟng from one focus of an ellipse reflects off the ellipse along a line through
the other focus, as illustrated in Figure 9.11. This property is given formally in
the following theorem.

.

.

.
Theorem 80 ReflecƟve Property of an Ellipse

Let P be a point on a ellipse with foci F1 and F2. The tangent line to the
ellipse at Pmakes equal angles with the following two lines:

1. The line through F1 and P, and

2. The line through F2 and P.

This reflecƟve property is useful in opƟcs and is the basis of the phenomena
experienced in whispering halls.

Hyperbolas

The definiƟon of a hyperbola is very similar to the definiƟon of an ellipse; we
essenƟally just change the word “sum” to “difference.”

.

.

.
DefiniƟon 43 Hyperbola

A hyperbola is the locus of all points where the absolute value of differ-
ence of distances from two fixed points, each a focus of the hyperbola,
is constant.

Notes:
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9.1 Conic SecƟons

We do not have a convenient way of visualizing the construcƟon of a hyper-
bola as we did for the ellipse. The geometric definiƟon does allow us to find an
algebraic expression that describes it. It will be useful to define some terms first.

The two foci lie on the transverse axis of the hyperbola; the midpoint of
the line segment joining the foci is the center of the hyperbola. The transverse
axis intersects the hyperbola at two points, each a vertex of the hyperbola. The
line through the center and perpendicular to the transverse axis is the conju-
gate axis. This is illustrated in Figure 9.12. It is easy to show that the constant
difference of distances used in the definiƟon of the hyperbola is the distance
between the verƟces, i.e., 2a.

.

.

.
Key Idea 35 Standard EquaƟon of a Hyperbola

The equaƟon of a hyperbola centered at (h, k) in standard form is:

1. Horizontal Transverse Axis:
(x− h)2

a2
− (y− k)2

b2
= 1.

2. VerƟcal Transverse Axis:
(y− k)2

a2
− (x− h)2

b2
= 1.

The verƟces are located a units from the center and the foci are located
c units from the center, where c2 = a2 + b2.

Graphing Hyperbolas

Consider the hyperbola x2
9 −

y2
1 = 1. Solving for y, we find y = ±

√
x2/9− 1.

As x grows large, the “−1” part of the equaƟon for y becomes less significant and
y ≈ ±

√
x2/9 = ±x/3. That is, as x gets large, the graph of the hyperbola looks

verymuch like the lines y = ±x/3. These lines are asymptotes of the hyperbola,
as shown in Figure 9.13.

This is a valuable tool in sketching. Given the equaƟon of a hyperbola in
general form, draw a rectangle centered at (h, k)with sides of length 2a parallel
to the transverse axis and sides of length 2b parallel to the conjugate axis. (See
Figure 9.14 for an example with a horizontal transverse axis.) The diagonals of
the rectangle lie on the asymptotes.

These lines pass through (h, k). When the transverse axis is horizontal, the
slopes are±b/a; when the transverse axis is verƟcal, their slopes are±a/b. This
gives equaƟons:

Notes:
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Figure 9.15: Graphing the hyperbola in
Example 277.
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Figure 9.16: Graphing the hyperbola in
Example 278.
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Horizontal
Transverse Axis

VerƟcal
Transverse Axis

y = ±b
a
(x− h) + k y = ±a

b
(x− h) + k.

.. Example 277 Graphing a hyperbola

Sketch the hyperbola given by
(y− 2)2

25
− (x− 1)2

4
= 1.

SÊ½çã®ÊÄ The hyperbola is centered at (1, 2); a = 5 and b = 2. In
Figure 9.15 we draw the prescribed rectangle centered at (1, 2) along with the
asymptotes defined by its diagonals. The hyperbola has a verƟcal transverse
axis, so the verƟces are located at (1, 7) and (1,−3). This is enough to make a
good sketch.

We also find the locaƟon of the foci: as c2 = a2 + b2, we have c =
√
29 ≈

5.4. Thus the foci are located at (1, 2± 5.4) as shown in the figure. ..

.. Example 278 Graphing a hyperbola
Sketch the hyperbola given by 9x2 − y2 + 2y = 10.

SÊ½çã®ÊÄ Wemust complete the square to put the equaƟon in general
form. (We recognize this as a hyperbola since it is a general quadraƟc equaƟon
and the x2 and y2 terms have opposite signs.)

9x2 − y2 + 2y = 10

9x2 − (y2 − 2y) = 10

9x2 − (y2 − 2y+ 1− 1) = 10

9x2 −
(
(y− 1)2 − 1

)
= 10

9x2 − (y− 1)2 = 9

x2 − (y− 1)2

9
= 1

We see the hyperbola is centered at (0, 1), with a horizontal transverse axis,
where a = 1 and b = 3. The appropriate rectangle is sketched in Figure 9.16
along with the asymptotes of the hyperbola. The verƟces are located at (±1, 1).
We have c =

√
10 ≈ 3.2, so the foci are located at (±3.2, 1) as shown in the

figure. ..

Notes:
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Figure 9.17: Understanding the eccentric-
ity of a hyperbola.

9.1 Conic SecƟons

Eccentricity

.

.

.
DefiniƟon 44 Eccentricity of a Hyperbola

The eccentricity of a hyperbola is e =
c
a
.

Note that this is the definiƟon of eccentricity as used for the ellipse. When
c is close in value to a (i.e., e ≈ 1), the hyperbola is very narrow (looking al-
most like crossed lines). Figure 9.17 shows hyperbolas centered at the origin
with a = 1. The graph in (a) has c = 1.05, giving an eccentricity of e = 1.05,
which is close to 1. As c grows larger, the hyperbola widens and begins to look
like parallel lines, as shown in part (d) of the figure.

ReflecƟve Property

Hyperbolas share a similar reflecƟve property with ellipses. However, in the
case of a hyperbola, a ray emanaƟng from a focus that intersects the hyperbola
reflects along a line containing the other focus, but moving away from that fo-
cus. This is illustrated in Figure 9.19 (on the next page). Hyperbolic mirrors are
commonly used in telescopes because of this reflecƟve property. It is stated
formally in the following theorem.

.

.

.
Theorem 81 ReflecƟve Property of Hyperbolas

Let P be a point on a hyperbola with foci F1 and F2. The tangent line to
the hyperbola at Pmakes equal angles with the following two lines:

1. The line through F1 and P, and

2. The line through F2 and P.

LocaƟon DeterminaƟon

Determining the locaƟon of a known event has many pracƟcal uses (locaƟng
the epicenter of an earthquake, an airplane crash site, the posiƟon of the person
speaking in a large room, etc.).

To determine the locaƟon of an earthquake’s epicenter, seismologists use
trilateraƟon (not to be confused with triangulaƟon). A seismograph allows one

Notes:
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Figure 9.19: IllustraƟng the reflecƟve
property of a hyperbola.

Chapter 9 Curves in the Plane

to determine how far away the epicenter was; using three separate readings,
the locaƟon of the epicenter can be approximated.

A key to this method is knowing distances. What if this informaƟon is not
available? Consider three microphones at posiƟons A, B and C which all record
a noise (a person’s voice, an explosion, etc.) created at unknown locaƟon D.
The microphone does not “know” when the sound was created, only when the
sound was detected. How can the locaƟon be determined in such a situaƟon?

If each locaƟon has a clock set to the same Ɵme, hyperbolas can be used
to determine the locaƟon. Suppose the microphone at posiƟon A records the
sound at exactly 12:00, locaƟon B records the Ɵme exactly 1 second later, and
locaƟon C records the noise exactly 2 seconds aŌer that. We are interested in
the difference of Ɵmes. Since the speed of sound is approximately 340 m/s, we
can conclude quickly that the sound was created 340meters closer to posiƟon A
than posiƟon B. If A and B are a known distance apart (as shown in Figure 9.18
(a)), then we can determine a hyperbola on which Dmust lie.

The “difference of distances” is 340; this is also the distance between verƟces
of the hyperbola. So we know 2a = 340. PosiƟons A and B lie on the foci, so
2c = 1000. From this we can find b ≈ 470 and can sketch the hyperbola, given
in part (b) of the figure. We only care about the side closest to A. (Why?)

We can also find the hyperbola defined by posiƟons B and C. In this case,
2a = 680 as the sound traveled an extra 2 seconds to get to C. We sƟll have
2c = 1000, centering this hyperbola at (−500, 500). We find b ≈ 367. This
hyperbola is sketched in part (c) of the figure. The intersecƟon point of the two
graphs is the locaƟon of the sound, at approximately (188,−222.5).
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Figure 9.18: Using hyperbolas in locaƟon detecƟon.
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Exercises 9.1
Terms and Concepts
1. What is the difference between degenerate and nondegen-

erate conics?

2. Use your own words to explain what the eccentricity of an
ellipse measures.

3. What has the largest eccentricity: an ellipse or a hyper-
bola?

4. Explainwhy the following is true: “If the coefficient of the x2

term in the equaƟonof an ellipse in standard form is smaller
than the coefficient of the y2 term, then the ellipse has a
horizontal major axis.”

5. Explain how one can quickly look at the equaƟon of a hy-
perbola in standard form and determinewhether the trans-
verse axis is horizontal or verƟcal.

Problems
In Exercises 6 – 13, find the equaƟon of the parabola defined
by the given informaƟon. Sketch the parabola.

6. Focus: (3, 2); directrix: y = 1

7. Focus: (−1,−4); directrix: y = 2

8. Focus: (1, 5); directrix: x = 3

9. Focus: (1/4, 0); directrix: x = −1/4

10. Focus: (1, 1); vertex: (1, 2)

11. Focus: (−3, 0); vertex: (0, 0)

12. Vertex: (0, 0); directrix: y = −1/16

13. Vertex: (2, 3); directrix: x = 4

In Exercises 14 – 15, the equaƟon of a parabola and a point
on its graph are given. Find the focus and directrix of the
parabola, and verify that the given point is equidistant from
the focus and directrix.

14. y = 1
4 x

2, P = (2, 1)

15. x = 1
8 (y− 2)2 + 3, P = (11, 10)

In Exercises 16 – 17, sketch the ellipse defined by the given
equaƟon. Label the center, foci and verƟces.

16.
(x− 1)2

3
+

(y− 2)2

5
= 1

17.
1
25

x2 +
1
9
(y+ 3)2 = 1

In Exercises 18 – 19, find the equaƟon of the ellipse shown in
the graph. Give the locaƟon of the foci and the eccentricity
of the ellipse.

18.
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In Exercises 20 – 23, find the equaƟon of the ellipse defined
by the given informaƟon. Sketch the elllipse.

20. Foci: (±2, 0); verƟces: (±3, 0)

21. Foci: (−1, 3) and (5, 3); verƟces: (−3, 3) and (7, 3)

22. Foci: (2,±2); verƟces: (2,±7)

23. Focus: (−1, 5); vertex: (−1,−4); center: (−1, 1)

In Exercises 24 – 27, write the equaƟon of the given ellipse in
standard form.

24. x2 − 2x+ 2y2 − 8y = −7

25. 5x2 + 3y2 = 15

26. 3x2 + 2y2 − 12y+ 6 = 0

27. x2 + y2 − 4x− 4y+ 4 = 0

28. Consider the ellipse given by
(x− 1)2

4
+

(y− 3)2

12
= 1.

(a) Verify that the foci are located at (1, 3± 2
√
2).

(b) The points P1 = (2, 6) and P2 = (1+
√
2, 3+

√
6) ≈

(2.414, 5.449) lie on the ellipse. Verify that the sum
of distances from each point to the foci is the same.

In Exercises 29 – 32, find the equaƟonof the hyperbola shown
in the graph.
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In Exercises 33 – 34, sketch the hyperbola defined by the
given equaƟon. Label the center and foci.

33.
(x− 1)2

16
− (y+ 2)2

9
= 1

34. (y− 4)2 − (x+ 1)2

25
= 1

In Exercises 35 – 38, find the equaƟon of the hyperbola de-
fined by the given informaƟon. Sketch the hyperbola.

35. Foci: (±3, 0); verƟces: (±2, 0)

36. Foci: (0,±3); verƟces: (0,±2)

37. Foci: (−2, 3) and (8, 3); verƟces: (−1, 3) and (7, 3)

38. Foci: (3,−2) and (3, 8); verƟces: (3, 0) and (3, 6)

In Exercises 39 – 42, write the equaƟon of the hyperbola in
standard form.

39. 3x2 − 4y2 = 12

40. 3x2 − y2 + 2y = 10

41. x2 − 10y2 + 40y = 30

42. (4y− x)(4y+ x) = 4

43. Johannes Kepler discovered that the planets of our solar
system have ellipƟcal orbits with the Sun at one focus. The
Earth’s ellipƟcal orbit is used as a standard unit of distance;
the distance from the center of Earth’s ellipƟcal orbit to one
vertex is 1 Astronomical Unit, or A.U.
The following table gives informaƟon about the orbits of
three planets.

Distance from
center to vertex

eccentricity

Mercury 0.387 A.U. 0.2056
Earth 1 A.U. 0.0167
Mars 1.524 A.U. 0.0934

(a) In an ellipse, knowing c2 = a2 − b2 and e = c/a
allows us to find b in terms of a and e. Show b =
a
√
1− e2.

(b) For each planet, find equaƟons of their ellipƟcal orbit

of the form
x2

a2
+

y2

b2
= 1. (This places the center at

(0, 0), but the Sun is in a different locaƟon for each
planet.)

(c) ShiŌ the equaƟons so that the Sun lies at the origin.
Plot the three ellipƟcal orbits.

44. A loud sound is recorded at three staƟons that lie on a line
as shown in the figure below. StaƟon A recorded the sound
1 second aŌer StaƟon B, and StaƟon C recorded the sound
3 seconds aŌer B. Using the speed of sound as 340m/s,
determine the locaƟon of the sound’s originaƟon.

..
A
.
1000m

.
B

.
2000m

.
C
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9.2 Parametric EquaƟons

9.2 Parametric EquaƟons
We are familiar with sketching shapes, such as parabolas, by following this basic
procedure:

..Choose
x
.

Use a funcƟon
f to find y(
y = f(x)

). Plot point
(x, y)

The rectangular equaƟon y = f(x)workswell for some shapes like a parabola
with a verƟcal axis of symmetry, but in the previous secƟonwe encountered sev-
eral shapes that could not be sketched in this manner. (To plot an ellipse using
the above procedure, we need to plot the “top” and “boƩom” separately.)

In this secƟon we introduce a new sketching procedure:

..Choose
t
.

Use a funcƟon
f to find x(
x = f(t)

)
.

Use a funcƟon
g to find y(
y = g(t)

)
. Plot point

(x, y)

Here, x and y are found separately but then ploƩed together. This leads us
to a definiƟon.

.

.

.
DefiniƟon 45 Parametric EquaƟons and Curves

Let f and g be conƟnuous funcƟons on an interval I. The set of all points(
x, y
)
=
(
f(t), g(t)

)
in the Cartesian plane, as t varies over I, is the graph

of the parametric equaƟons x = f(t) and y = g(t), where t is the param-
eter. A curve is a graph along with the parametric equaƟons that define
it.

This is a formal definiƟon of the word curve. When a curve lies in a plane
(such as the Cartesian plane), it is oŌen referred to as a plane curve. Examples
will help us understand the concepts introduced in the definiƟon.

.. Example 279 ..Ploƫng parametric funcƟons

Plot the graph of the parametric equaƟons x = t2, y = t+ 1 for t in [−2, 2].

Notes:
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t x y
−2 4 −1
−1 1 0
0 0 1
1 1 2
2 4 3
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Figure 9.20: A table of values of the para-
metric equaƟons in Example 279 along
with a sketch of their graph.

t x y
0 1 2

π/4 1/2 1+
√
2/2

π/2 0 1
3π/4 1/2 1−

√
2/2

π 1 0
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Figure 9.21: A table of values of the para-
metric equaƟons in Example 280 along
with a sketch of their graph.

Chapter 9 Curves in the Plane

SÊ½çã®ÊÄ We plot the graphs of parametric equaƟons in much the
samemanner as we ploƩed graphs of funcƟons like y = f(x): wemake a table of
values, plot points, then connect these pointswith a “reasonable” looking curve.
Figure 9.20(a) shows such a table of values; note how we have 3 columns.

The points (x, y) from the table are ploƩed in Figure 9.20(b). The points have
been connected with a smooth curve. Each point has been labeled with its cor-
responding t-value. These values, along with the two arrows along the curve,
are used to indicate the orientaƟon of the graph. This informaƟon helps us de-
termine the direcƟon in which the graph is “moving.” ...

We oŌen use the leƩer t as the parameter as we oŌen regard t as represent-
ing Ɵme. Certainly there are many contexts in which the parameter is not Ɵme,
but it can be helpful to think in terms of Ɵme as one makes sense of parametric
plots and their orientaƟon (for instance, “At Ɵme t = 0 the posiƟon is (1, 2) and
at Ɵme t = 3 the posiƟon is (5, 1).”).

.. Example 280 Ploƫng parametric funcƟons

Sketch the graph of the parametric equaƟons x = cos2 t, y = cos t + 1 for t
in [0, π].

SÊ½çã®ÊÄ We again start by making a table of values in Figure 9.21(a),
then plot the points (x, y) on the Cartesian plane in Figure 9.21(b).

It is not difficult to show that the curves in Examples 279 and280 are porƟons
of the same parabola. While the parabola is the same, the curves are different.
In Example 279, if we let t vary over all real numbers, we’d obtain the enƟre
parabola. In this example, leƫng t vary over all real numbers would sƟll produce
the same graph; this porƟon of the parabola would be traced, and re–traced,
infinitely. The orientaƟon shown in Figure 9.21 shows the orientaƟon on [0, π],
but this orientaƟon is reversed on [π, 2π].

These examples begin to illustrate the powerful nature of parametric equa-
Ɵons. Their graphs are far more diverse than the graphs of funcƟons produced
by “y = f(x)” funcƟons. ..

Technology Note: Most graphing uƟliƟes can graph funcƟons given in paramet-
ric form. OŌen the word “parametric” is abbreviated as “PAR” or “PARAM” in
the opƟons. The user usually needs to determine the graphing window (i.e, the
minimum and maximum x- and y-values), along with the values of t that are to
be ploƩed. The user is oŌen prompted to give a tminimum, a tmaximum, and
a “t-step” or “∆t.” Graphing uƟliƟes effecƟvely plot parametric funcƟons just as
we’ve shown here: they plots lots of points. A smaller t-step plots more points,
making for a smoother graph (but may take longer). In Figure 9.20, the t-step is

Notes:
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Figure 9.22: IllustraƟng how to shiŌ
graphs in Example 281.
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Figure 9.23: A graph of the parametric
equaƟons from Example 282.

9.2 Parametric EquaƟons

1; in Figure 9.21, the t-step is π/4.

One nice feature of parametric equaƟons is that their graphs are easy to
shiŌ. While this is not too difficult in the “y = f(x)” context, the resulƟng func-
Ɵon can look rather messy. (Plus, to shiŌ to the right by two, we replace x with
x− 2, which is counter–intuiƟve.) The following example demonstrates this.

.. Example 281 ShiŌing the graph of parametric funcƟons
Sketch the graph of the parametric equaƟons x = t2 + t, y = t2 − t. Find new
parametric equaƟons that shiŌ this graph to the right 3 places and down 2.

SÊ½çã®ÊÄ The graph of the parametric equaƟons is given in Figure 9.22
(a). It is a parabola with a axis of symmetry along the line y = x; the vertex is at
(0, 0).

In order to shiŌ the graph to the right 3 units, we need to increase the x-
value by 3 for every point. The straighƞorward way to accomplish this is simply
to add 3 to the funcƟon defining x: x = t2 + t+ 3. To shiŌ the graph down by 2
units, we wish to decrease each y-value by 2, so we subtract 2 from the funcƟon
defining y: y = t2 − t− 2. Thus our parametric equaƟons for the shiŌed graph
are x = t2 + t+ 3, y = t2 − t− 2. This is graphed in Figure 9.22 (b). NoƟce how
the vertex is now at (3,−2). ..

Because the x- and y-values of a graph are determined independently, the
graphs of parametric funcƟons oŌen possess features not seen on “y = f(x)”
type graphs. The next example demonstrates how such graphs can arrive at the
same point more than once.

.. Example 282 ..Graphs that cross themselves
Plot the parametric funcƟons x = t3 − 5t2 + 3t + 11 and y = t2 − 2t + 3 and
determine the t-values where the graph crosses itself.

SÊ½çã®ÊÄ Using the methods developed in this secƟon, we again plot
points and graph the parametric equaƟons as shown in Figure 9.23. It appears
that the graph crosses itself at the point (2, 6), but we’ll need to analyƟcally
determine this.

We are looking for two different values, say, s and t, where x(s) = x(t) and
y(s) = y(t). That is, the x-values are the same precisely when the y-values are
the same. This gives us a system of 2 equaƟons with 2 unknowns:

s3 − 5s2 + 3s+ 11 = t3 − 5t2 + 3t+ 11
s2 − 2s+ 3 = t2 − 2t+ 3

Notes:
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Solving this system is not trivial but involves only algebra. Using the quadraƟc
formula, one can solve for t in the second equaƟon and find that t = 1 ±√

s2 − 2s+ 1. This can be subsƟtuted into the first equaƟon, revealing that the
graph crosses itself at t = −1 and t = 3. We confirm our result by compuƟng
x(−1) = x(3) = 2 and y(−1) = y(3) = 6. ...

ConverƟng between rectangular and parametric equaƟons

It is someƟmes useful to rewrite equaƟons in rectangular form (i.e., y = f(x))
into parametric form, and vice–versa. ConverƟng from rectangular to paramet-
ric can be very simple: given y = f(x), the parametric equaƟons x = t, y = f(t)
produce the same graph. As an example, given y = x2, the parametric equaƟons
x = t, y = t2 produce the familiar parabola. However, other parametrizaƟons
can be used. The following example demonstrates one possible alternaƟve.

.. Example 283 ConverƟng from rectangular to parametric
Consider y = x2. Find parametric equaƟons x = f(t), y = g(t) for the parabola
where t = dy

dx . That is, t = a corresponds to the point on the graph whose
tangent line has slope a.

SÊ½çã®ÊÄ We start by compuƟng dy
dx : y

′ = 2x. Thus we set t = 2x. We
can solve for x and find x = t/2. Knowing that y = x2, we have y = t2/4. Thus
parametric equaƟons for the parabola y = x2 are

x = t/2 y = t2/4.

To find the point where the tangent line has a slope of −2, we set t = −2. This
gives the point (−1, 1). We can verify that the slope of the line tangent to the
curve at this point indeed has a slope of−2. ..

We someƟmes chose the parameter to accurately model physical behavior.

.. Example 284 ..ConverƟng from rectangular to parametric
An object is fired from a height of 0Ō and lands 6 seconds later, 192Ō away. As-
suming ideal projecƟlemoƟon, the height, in feet, of the object can be described
by h(x) = −x2/64+ 3x, where x is the distance in feet from the iniƟal locaƟon.
(Thus h(0) = h(192) = 0Ō.) Find parametric equaƟons x = f(t), y = g(t)
for the path of the projecƟle where x is the horizontal distance the object has
traveled at Ɵme t (in seconds) and y is the height at Ɵme t.

SÊ½çã®ÊÄ Physics tells us that the horizontal moƟon of the projecƟle
is linear; that is, the horizontal speed of the projecƟle is constant. Since the
object travels 192Ō in 6s, we deduce that the object is moving horizontally at

Notes:
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Figure 9.25: Graphing parametric and
rectangular equaƟons for a graph in Ex-
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9.2 Parametric EquaƟons

a rate of 32Ō/s, giving the equaƟon x = 32t. As y = −x2/64 + 3x, we find
y = −16t2 + 96t. We can quickly verify that y′′ = −32Ō/s2, the acceleraƟon
due to gravity, and that the projecƟle reaches its maximum at t = 3, halfway
along its path.

These parametric equaƟonsmake certain determinaƟons about the object’s
locaƟon easy: 2 seconds into the flight the object is at the point

(
x(2), y(2)

)
=(

64, 128
)
. That is, it has traveled horizontally 64Ō and is at a height of 128Ō, as

shown in Figure 9.24. ...

It is someƟmes necessary to convert given parametric equaƟons into rect-
angular form. This can be decidedly more difficult, as some “simple” looking
parametric equaƟons can have very “complicated” rectangular equaƟons. This
conversion is oŌen referred to as “eliminaƟng the parameter,” as we are looking
for a relaƟonship between x and y that does not involve the parameter t.

.. Example 285 ..EliminaƟng the parameter
Find a rectangular equaƟon for the curve described by

x =
1

t2 + 1
and y =

t2

t2 + 1
.

SÊ½çã®ÊÄ There is not a setway to eliminate a parameter. Onemethod
is to solve for t in one equaƟon and then subsƟtute that value in the second. We
use that technique here, then show a second, simpler method.

StarƟng with x = 1/(t2 + 1), solve for t: t = ±
√

1/x− 1. SubsƟtute this
value for t in the equaƟon for y:

y =
t2

t2 + 1

=
1/x− 1

1/x− 1+ 1

=
1/x− 1
1/x

=

(
1
x
− 1
)
· x

= 1− x.

Thus y = 1 − x. One may have recognized this earlier by manipulaƟng the
equaƟon for y:

y =
t2

t2 + 1
= 1− 1

t2 + 1
= 1− x.

Notes:
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equaƟons x = 4 cos t+ 3, y = 2 sin t+ 1
in Example 286.

Chapter 9 Curves in the Plane

This is a shortcut that is very specific to this problem; someƟmes shortcuts exist
and are worth looking for.

We should be careful to limit the domain of the funcƟon y = 1 − x. The
parametric equaƟons limit x to values in (0, 1], thus to produce the same graph
we should limit the domain of y = 1− x to the same.

The graphs of these funcƟons is given in Figure 9.25. The porƟonof the graph
defined by the parametric equaƟons is given in a thick line; the graph defined
by y = 1− x with unrestricted domain is given in a thin line. ...

.. Example 286 EliminaƟng the parameter
Eliminate the parameter in x = 4 cos t+ 3, y = 2 sin t+ 1

SÊ½çã®ÊÄ We should not try to solve for t in this situaƟon as the re-
sulƟng algebra/trig would be messy. Rather, we solve for cos t and sin t in each
equaƟon, respecƟvely. This gives

cos t =
x− 3
4

and sin t =
y− 1
2

.

The Pythagorean Theorem gives cos2 t+ sin2 t = 1, so:

cos2 t+ sin2 t = 1(
x− 3
4

)2

+

(
y− 1
2

)2

= 1

(x− 3)2

16
+

(y− 1)2

4
= 1

This final equaƟon should look familiar – it is the equaƟon of an ellipse! Figure
9.26 plots the parametric equaƟons, demonstraƟng that the graph is indeed of
an ellipse with a horizontal major axis with center at (3, 1). ..

The Pythagorean Theorem can also be used to idenƟfy parametric equaƟons
for hyperbolas. We give the parametric equaƟons for ellipses and hyperbolas in
the following Key Ideas.

Notes:
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9.2 Parametric EquaƟons

.

.

.
Key Idea 36 Parametric EquaƟons for Ellipses

The parametric equaƟons

x = a cos t+ h, y = b sin t+ k

define an ellipse with horizontal axis of length 2a and verƟcal axis of
length 2b, centered at (h, k).

.

.

.
Key Idea 37 Parametric EquaƟons for Hyperbolas

The parametric equaƟons

x = a tan t+ h, y = ±b sec t+ k

define a hyperbola with verƟcal transverse axis centered at (h, k), and

x = ±a sec t+ h, y = b tan t+ k

defines a hyperbolawith horizontal transverse axis. Each has asymptotes
at y = ±b/a(x− h) + k.

Special Curves

Figure 9.27 gives a small gallery of “interesƟng” and “famous” curves along
with parametric equaƟons that produce them. Interested readers can begin
learning more about these curves through internet searches.

One might note a feature shared by two of these graphs: “sharp corners,”
or cusps. We have seen graphs with cusps before and determined that such
funcƟons are not differenƟable at these points. This leads us to a definiƟon.

.

.

.
DefiniƟon 46 Smooth

A curve C defined by x = f(t), y = g(t) is smooth on an interval I if f ′ and
g′ are conƟnuous on I and not simultaneously 0 (except possibly at the
endpoints of I). A curve is piecewise smooth on I if I can be parƟƟoned
into subintervals where C is smooth on each subinterval.

Notes:
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Chapter 9 Curves in the Plane

Consider the astroid, given by x = cos3 t, y = sin3 t. Taking derivaƟves, we
have:

x′ = −3 cos2 t sin t and y′ = 3 sin2 t cos t.

It is clear that each is 0 when t = 0, π/2, π, . . .. Thus the astroid is not smooth
at these points, corresponding to the cusps seen in the figure.

We demonstrate this once more.

.. Example 287 Determine where a curve is not smooth
Let a curve C be defined by the parametric equaƟons x = t3 − 12t + 17 and
y = t2 − 4t+ 8. Determine the points, if any, where it is not smooth.

SÊ½çã®ÊÄ We begin by taking derivaƟves.

x′ = 3t2 − 12, y′ = 2t− 4.

We set each equal to 0:

x′ = 0 ⇒ 3t2 − 12 = 0 ⇒ t = ±2
y′ = 0 ⇒ 2t− 4 = 0 ⇒ t = 2

We see at t = 2 both x′ and y′ are 0; thus C is not smooth at t = 2, correspond-
ing to the point (1, 4). The curve is graphed in Figure 9.28, illustraƟng the cusp
at (1, 4). ..

If a curve is not smooth at t = t0, it means that x′(t0) = y′(t0) = 0 as
defined. This, in turn, means that rate of change of x (and y) is 0; that is, at
that instant, neither x nor y is changing. If the parametric equaƟons describe
the path of some object, this means the object is at rest at t0. An object at rest
canmake a “sharp” change in direcƟon, whereas moving objects tend to change
direcƟon in a “smooth” fashion.

One should be careful to note that a “sharp corner” does not have to occur
when a curve is not smooth. For instance, one can verify that x = t3, y = t6
produce the familiar y = x2 parabola. However, in this parametrizaƟon, the
curve is not smooth. A parƟcle traveling along the parabola according to the
given parametric equaƟons comes to rest at t = 0, though no sharp point is
created.

Notes:
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Exercises 9.2
Terms and Concepts
1. T/F:When sketching the graph of parametric equaƟons, the

x and y values are found separately, then ploƩed together.

2. The direcƟon in which a graph is “moving” is called the
of the graph.

3. An equaƟon wriƩen as y = f(x) is wriƩen in form.

4. Create parametric equaƟons x = f(t), y = g(t) and sketch
their graph. Explain any interesƟng features of your graph
based on the funcƟons f and g.

Problems
In Exercises 5 – 8, sketch the graph of the given parametric
equaƟons by hand, making a table of points to plot. Be sure
to indicate the orientaƟon of the graph.

5. x = t2 + t, y = 1− t2, −3 ≤ t ≤ 3

6. x = 1, y = 5 sin t, −π/2 ≤ t ≤ π/2

7. x = t2, y = 2, −2 ≤ t ≤ 2

8. x = t3 − t+ 3, y = t2 + 1, −2 ≤ t ≤ 2

In Exercises 9 – 17, sketch the graph of the given paramet-
ric equaƟons; using a graphing uƟlity is advisable. Be sure to
indicate the orientaƟon of the graph.

9. x = t3 − 2t2, y = t2, −2 ≤ t ≤ 3

10. x = 1/t, y = sin t, 0 < t ≤ 10

11. x = 3 cos t, y = 5 sin t, 0 ≤ t ≤ 2π

12. x = 3 cos t+ 2, y = 5 sin t+ 3, 0 ≤ t ≤ 2π

13. x = cos t, y = cos(2t), 0 ≤ t ≤ π

14. x = cos t, y = sin(2t), 0 ≤ t ≤ 2π

15. x = 2 sec t, y = 3 tan t, −π/2 < t < π/2

16. x = cos t+ 1
4 cos(8t), y = sin t+ 1

4 sin(8t), 0 ≤ t ≤ 2π

17. x = cos t+ 1
4 sin(8t), y = sin t+ 1

4 cos(8t), 0 ≤ t ≤ 2π

In Exercises 18 – 19, four sets of parametric equaƟons are
given. Describe how their graphs are similar and different.
Be sure to discuss orientaƟon and ranges.

18. (a) x = t y = t2, −∞ < t < ∞
(b) x = sin t y = sin2 t, −∞ < t < ∞
(c) x = et y = e2t, −∞ < t < ∞
(d) x = −t y = t2, −∞ < t < ∞

19. (a) x = cos t y = sin t, 0 ≤ t ≤ 2π

(b) x = cos(t2) y = sin(t2), 0 ≤ t ≤ 2π

(c) x = cos(1/t) y = sin(1/t), 0 < t < 1

(d) x = cos(cos t) y = sin(cos t), 0 ≤ t ≤ 2π

In Exercises 20 – 29, eliminate the parameter in the given
parametric equaƟons.

20. x = 2t+ 5, y = −3t+ 1

21. x = sec t, y = tan t

22. x = 4 sin t+ 1, y = 3 cos t− 2

23. x = t2, y = t3

24. x =
1

t+ 1
, y =

3t+ 5
t+ 1

25. x = et, y = e3t − 3

26. x = ln t, y = t2 − 1

27. x = cot t, y = csc t

28. x = cosh t, y = sinh t

29. x = cos(2t), y = sin t

In Exercises 30 – 33, eliminate the parameter in the given
parametric equaƟons. Describe the curve defined by the
parametric equaƟons based on its rectangular form.

30. x = at+ x0, y = bt+ y0

31. x = r cos t, y = r sin t

32. x = a cos t+ h, y = b sin t+ k

33. x = a sec t+ h, y = b tan t+ k

In Exercises 34 – 37, find parametric equaƟons for the given

rectangular equaƟon using the parameter t =
dy
dx

. Verify that
at t = 1, the point on the graph has a tangent line with slope
of 1.

34. y = 3x2 − 11x+ 2

35. y = ex

36. y = sin x on [0, π]

37. y =
√
x on [0,∞)

In Exercises 38 – 41, find the values of t where the graph of
the parametric equaƟons crosses itself.

38. x = t3 − t+ 3, y = t2 − 3

39. x = t3 − 4t2 + t+ 7, y = t2 − t

40. x = cos t, y = sin(2t) on [0, 2π]

41. x = cos t cos(3t), y = sin t cos(3t) on [0, π]

In Exercises 42 – 45, find the value(s) of t where the curve
defined by the parametric equaƟons is not smooth.

42. x = t3 + t2 − t, y = t2 + 2t+ 3

43. x = t2 − 4t, y = t3 − 2t2 − 4t

44. x = cos t, y = 2 cos t

45. x = 2 cos t− cos(2t), y = 2 sin t− sin(2t)
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In Exercises 46 – 54, find parametric equaƟons that describe
the given situaƟon.

46. A projecƟle is fired from a height of 0Ō, landing 16Ō away
in 4s.

47. A projecƟle is fired from a height of 0Ō, landing 200Ō away
in 4s.

48. A projecƟle is fired from a height of 0Ō, landing 200Ō away
in 20s.

49. A circle of radius 2, centered at the origin, that is traced
clockwise once on [0, 2π].

50. A circle of radius 3, centered at (1, 1), that is traced once
counter–clockwise on [0, 1].

51. An ellipse centered at (1, 3) with verƟcal major axis of
length 6 and minor axis of length 2.

52. An ellipse with foci at (±1, 0) and verƟces at (±5, 0).

53. A hyperbola with foci at (5,−3) and (−1,−3), and with
verƟces at (1,−3) and (3,−3).

54. A hyperbola with verƟces at (0,±6) and asymptotes y =
±3x.
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9.3 Calculus and Parametric EquaƟons

9.3 Calculus and Parametric EquaƟons
The previous secƟon defined curves based on parametric equaƟons. In this sec-
Ɵon we’ll employ the techniques of calculus to study these curves.

We are sƟll interested in lines tangent to points on a curve. They describe
how the y-values are changing with respect to the x-values, they are useful in
making approximaƟons, and they indicate instantaneous direcƟon of travel.

The slope of the tangent line is sƟll dy
dx , and the Chain Rule allows us to cal-

culate this in the context of parametric equaƟons. If x = f(t) and y = g(t), the
Chain Rule states that

dy
dt

=
dy
dx

· dx
dt

.

Solving for dy
dx , we get

dy
dx

=
dy
dt

/dx
dt

=
g′(t)
f ′(t)

,

provided that f ′(t) ̸= 0. This is important so we label it a Key Idea.

.

.

.
Key Idea 38 Finding dy

dx with Parametric EquaƟons.

Let x = f(t) and y = g(t), where f and g are differenƟable on some open
interval I and f ′(t) ̸= 0 on I. Then

dy
dx

=
g′(t)
f ′(t)

.

We use this to define the tangent line.

.

.

.
DefiniƟon 47 Tangent and Normal Lines

Let a curve C be parametrized by x = f(t) and y = g(t), where f and g
are differenƟable funcƟons on some interval I containing t = t0. The
tangent line to C at t = t0 is the line through

(
f(t0), g(t0)

)
with slope

m = g′(t0)/f ′(t0), provided f ′(t0) ̸= 0.

The normal line to C at t = t0 is the line through
(
f(t0), g(t0)

)
with slope

m = −f ′(t0)/g′(t0), provided g′(t0) ̸= 0.

The definiƟon leaves two special cases to consider. When the tangent line is
horizontal, the normal line is undefined by the above definiƟon as g′(t0) = 0.

Notes:
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Figure 9.29: Graphing tangent and nor-
mal lines in Example 288.

Chapter 9 Curves in the Plane

Likewise, when the normal line is horizontal, the tangent line is undefined. It
seems reasonable that these lines be defined (one can draw a line tangent to
the “right side” of a circle, for instance), so we add the following to the above
definiƟon.

1. If the tangent line at t = t0 has a slope of 0, the normal line to C at t = t0
is the line x = f(t0).

2. If the normal line at t = t0 has a slope of 0, the tangent line to C at t = t0
is the line x = f(t0).

.. Example 288 ..Tangent and Normal Lines to Curves
Let x = 5t2−6t+4 and y = t2+6t−1, and let C be the curve defined by these
equaƟons.

1. Find the equaƟons of the tangent and normal lines to C at t = 3.

2. Find where C has verƟcal and horizontal tangent lines.

SÊ½çã®ÊÄ

1. We start by compuƟng f ′(t) = 10t− 6 and g′(t) = 2t+ 6. Thus

dy
dx

=
2t+ 6
10t− 6

.

Make note of something that might seem unusual: dy
dx is a funcƟon of t,

not x. Just as points on the curve are found in terms of t, so are the slopes
of the tangent lines.
The point onC at t = 3 is (31, 26). The slope of the tangent line ism = 1/2
and the slope of the normal line ism = −2. Thus,

• the equaƟon of the tangent line is y =
1
2
(x− 31) + 26, and

• the equaƟon of the normal line is y = −2(x− 31) + 26.

This is illustrated in Figure 9.29.

2. To find where C has a horizontal tangent line, we set dy
dx = 0 and solve

for t. In this case, this amounts to seƫng g′(t) = 0 and solving for t (and
making sure that f ′(t) ̸= 0).

g′(t) = 0 ⇒ 2t+ 6 = 0 ⇒ t = −3.

The point on C corresponding to t = −3 is (67,−10); the tangent line at
that point is horizontal (hence with equaƟon y = −10).

Notes:
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Figure 9.30: IllustraƟng how a circle’s nor-
mal lines pass through its center.

9.3 Calculus and Parametric EquaƟons

TofindwhereChas a verƟcal tangent line, wefindwhere it has a horizontal
normal line, and set − f ′(t)

g′(t) = 0. This amounts to seƫng f ′(t) = 0 and
solving for t (and making sure that g′(t) ̸= 0).

f ′(t) = 0 ⇒ 10t− 6 = 0 ⇒ t = 0.6.

The point on C corresponding to t = 0.6 is (2.2, 2.96). The tangent line at
that point is x = 2.2.
The points where the tangent lines are verƟcal and horizontal are indi-
cated on the graph in Figure 9.29....

.. Example 289 Tangent and Normal Lines to a Circle

1. Find where the circle, defined by x = cos t and y = sin t on [0, 2π], has
verƟcal and horizontal tangent lines.

2. Find the equaƟon of the normal line at t = t0.

SÊ½çã®ÊÄ

1. We compute the derivaƟve following Key Idea 38:

dy
dx

=
g′(t)
f ′(t)

= −cos t
sin t

.

The derivaƟve is 0 when cos t = 0; that is, when t = π/2, 3π/2. These
are the points (0, 1) and (0,−1) on the circle.
The normal line is horizontal (and hence, the tangent line is verƟcal) when
sin t = 0; that is, when t = 0, π, 2π, corresponding to the points (−1, 0)
and (0, 1) on the circle. These results should make intuiƟve sense.

2. The slope of the normal line at t = t0 ism =
sin t0
cos t0

= tan t0. This normal

line goes through the point (cos t0, sin t0), giving the line

y =
sin t0
cos t0

(x− cos t0) + sin t0

= (tan t0)x,

as long as cos t0 ̸= 0. It is an important fact to recognize that the nor-
mal lines to a circle pass through its center, as illustrated in Figure 9.30.
Stated in another way, any line that passes through the center of a circle
intersects the circle at right angles...

Notes:
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Chapter 9 Curves in the Plane

.. Example 290 Tangent lines when dy
dx is not defined

Find the equaƟon of the tangent line to the astroid x = cos3 t, y = sin3 t at
t = 0, shown in Figure 9.31.

SÊ½çã®ÊÄ We start by finding x′(t) and y′(t):

x′(t) = −3 sin t cos2 t, y′(t) = 3 cos t sin2 t.

Note that both of these are 0 at t = 0; the curve is not smooth at t = 0 forming
a cusp on the graph. EvaluaƟng dy

dx at this point returns the indeterminate form
of “0/0”.

We can, however, examine the slopes of tangent lines near t = 0, and take
the limit as t → 0.

lim
t→0

y′(t)
x′(t)

= lim
t→0

3 cos t sin2 t
−3 sin t cos2 t

(We can cancel as t ̸= 0.)

= lim
t→0

− sin t
cos t

= 0.

Wehave accomplished something significant. When the derivaƟve dy
dx returns an

indeterminate form at t = t0, we can define its value by seƫng it to be lim
t→t0

dy
dx

,

if that limit exists. This allows us to find slopes of tangent lines at cusps, which
can be very beneficial.

We found the slope of the tangent line at t = 0 to be 0; therefore the tan-
gent line is y = 0, the x-axis. ..

Concavity

We conƟnue to analyze curves in the plane by considering their concavity;
that is, we are interested in d2y

dx2 , “the second derivaƟve of y with respect to x.”
To find this, we need to find the derivaƟve of dy

dx with respect to x; that is,

d2y
dx2

=
d
dx

[
dy
dx

]
,

but recall that dy
dx is a funcƟon of t, not x, making this computaƟon not straight-

forward.
To make the upcoming notaƟon a bit simpler, let h(t) = dy

dx . We want
d
dx [h(t)]; that is, we want

dh
dx . We again appeal to the Chain Rule. Note:

dh
dt

=
dh
dx

· dx
dt

⇒ dh
dx

=
dh
dt

/
dx
dt

.

Notes:
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Figure 9.32: Graphing the parametric
equaƟons in Example 291 to demonstrate
concavity.

9.3 Calculus and Parametric EquaƟons

In words, to find d2y
dx2 , we first take the derivaƟve of

dy
dx with respect to t, then

divide by x′(t). We restate this as a Key Idea.

.

.

.
Key Idea 39 Finding d2y

dx2 with Parametric EquaƟons

Let x = f(t) and y = g(t) be twice differenƟable funcƟons on an open
interval I. Then

d2y
dx2

=
d
dt

[
dy
dx

]/
dx
dt

=
d
dt

[
dy
dx

]/
f ′(t).

Examples will help us understand this Key Idea.

.. Example 291 ..Concavity of Plane Curves
Let x = 5t2 − 6t + 4 and y = t2 + 6t − 1 as in Example 288. Determine the
t-intervals on which the graph is concave up/down.

SÊ½çã®ÊÄ Concavity is determined by the second derivaƟve of y with
respect to x, d2y

dx2 , so we compute that here following Key Idea 39.

In Example 288, we found
dy
dx

=
2t+ 6
10t− 6

and f ′(t) = 10t− 6. So:

d2y
dx2

=
d
dt

[
2t+ 6
10t− 6

]/
(10t− 6)

= − 18
(5t− 3)2

/
(10t− 6)

= − 9
(5t− 3)3

The graph of the parametric funcƟons is concave up when d2y
dx2 > 0 and con-

cave down when d2y
dx2 < 0. We determine the intervals when the second deriva-

Ɵve is greater/less than 0 by first finding when it is 0 or undefined.

As the numerator of − 9
(5t− 3)3

is never 0, d2y
dx2 ̸= 0 for all t. It is undefined

when 5t − 3 = 0; that is, when t = 3/5. Following the work established in
SecƟon 3.4, we look at values of t greater/less than 3/5 on a number line:

Notes:
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Chapter 9 Curves in the Plane

..

3/5

.

d2y
dx2

> 0

c. up
.

d2y
dx2

< 0

c. down

Reviewing Example 288, we see that when t = 3/5 = 0.6, the graph of the
parametric equaƟons has a verƟcal tangent line. This point is also a point of in-
flecƟon for the graph, illustrated in Figure 9.32. ...

.. Example 292 Concavity of Plane Curves
Find the points of inflecƟon of the graph of the parametric equaƟons x =

√
t,

y = sin t, for 0 ≤ t ≤ 16.

SÊ½çã®ÊÄ We need to compute dy
dx and

d2y
dx2 .

dy
dx

=
y′(t)
x′(t)

=
cos t

1/(2
√
t)

= 2
√
t cos t.

d2y
dx2

=
d
dt

[ dy
dx

]
x′(t)

=
cos t/

√
t− 2

√
t sin t

1/(2
√
t)

= 2 cos t− 4t sin t.

The points of inflecƟon are found by seƫng d2y
dx2 = 0. This is not trivial, as equa-

Ɵons that mix polynomials and trigonometric funcƟons generally do not have
“nice” soluƟons.

In Figure 9.33we see a plot of the secondderivaƟve. It shows that it has zeros
at approximately t = 0.5, 3.5, 6.5, 9.5, 12.5 and 16. These approximaƟons are
not very good, made only by looking at the graph. Newton’s Method provides
more accurate approximaƟons. Accurate to 2 decimal places, we have:

t = 0.65, 3.29, 6.36, 9.48, 12.61 and 15.74.

The corresponding points have been ploƩed on the graph of the parametric
equaƟons in Figure 9.34. Note how most occur near the x-axis, but not exactly
on the axis. ..

Arc Length

We conƟnue our study of the features of the graphs of parametric equaƟons
by compuƟng their arc length.

Recall in SecƟon 7.4 we found the arc length of the graph of a funcƟon, from
x = a to x = b, to be

L =
∫ b

a

√
1+

(
dy
dx

)2

dx.

Notes:
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9.3 Calculus and Parametric EquaƟons

We can use this equaƟon and convert it to the parametric equaƟon context.
Leƫng x = f(t) and y = g(t), we know that dy

dx = g′(t)/f ′(t). It will also be
useful to calculate the differenƟal of x:

dx = f ′(t)dt ⇒ dt =
1

f ′(t)
· dx.

StarƟng with the arc length formula above, consider:

L =
∫ b

a

√
1+

(
dy
dx

)2

dx

=

∫ b

a

√
1+

g′(t)2

f ′(t)2
dx.

Factor out the f ′(t)2:

=

∫ b

a

√
f ′(t)2 + g′(t)2 · 1

f ′(t)
dx︸ ︷︷ ︸

=dt

=

∫ t2

t1

√
f ′(t)2 + g′(t)2 dt.

Note the new bounds (no longer “x” bounds, but “t” bounds). They are found
by finding t1 and t2 such that a = f(t1) and b = f(t2). This formula is important,
so we restate it as a theorem.

.

.

.
Theorem 82 Arc Length of Parametric Curves

Let x = f(t) and y = g(t) be parametric equaƟons with f ′ and g′ con-
Ɵnuous on some open interval I containing t1 and t2 on which the graph
traces itself only once. The arc length of the graph, from t = t1 to t = t2,
is

L =
∫ t2

t1

√
f ′(t)2 + g′(t)2 dt.

As before, these integrals are oŌen not easy to compute. We start with a
simple example, then give another where we approximate the soluƟon.

Notes:
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Chapter 9 Curves in the Plane

.. Example 293 Arc Length of a Circle
Find the arc length of the circle parametrized by x = 3 cos t, y = 3 sin t on
[0, 3π/2].

SÊ½çã®ÊÄ By direct applicaƟon of Theorem 82, we have

L =
∫ 3π/2

0

√
(−3 sin t)2 + (3 cos t)2 dt.

Apply the Pythagorean Theorem.

=

∫ 3π/2

0
3 dt

= 3t
∣∣∣3π/2
0

= 9π/2.

This should make sense; we know from geometry that the circumference of
a circle with radius 3 is 6π; since we are finding the arc length of 3/4 of a circle,
the arc length is 3/4 · 6π = 9π/2. ..

.. Example 294 Arc Length of a Parametric Curve
The graph of the parametric equaƟons x = t(t2 − 1), y = t2 − 1 crosses itself as
shown in Figure 9.35, forming a “teardrop.” Find the arc length of the teardrop.

SÊ½çã®ÊÄ We can see by the parametrizaƟons of x and y that when
t = ±1, x = 0 and y = 0. This means we’ll integrate from t = −1 to t = 1.
Applying Theorem 82, we have

L =
∫ 1

−1

√
(3t2 − 1)2 + (2t)2 dt

=

∫ 1

−1

√
9t4 − 2t2 + 1 dt.

Unfortunately, the integrand does not have an anƟderivaƟve expressible by el-
ementary funcƟons. We turn to numerical integraƟon to approximate its value.
Using 4 subintervals, Simpson’s Rule approximates the value of the integral as
2.65051. Using a computer, more subintervals are easy to employ, and n = 20
gives a value of 2.71559. Increasing n shows that this value is stable and a good
approximaƟon of the actual value. ..

Notes:
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Figure 9.36: RotaƟng a teardrop shape
about the x-axis in Example 295.

9.3 Calculus and Parametric EquaƟons

Surface Area of a Solid of RevoluƟon

Related to the formula for finding arc length is the formula for finding surface
area. We can adapt the formula found in Key Idea 28 from SecƟon 7.4 in a similar
way as done to produce the formula for arc length done before.

.

.

.
Key Idea 40 Surface Area of a Solid of RevoluƟon

Consider the graph of the parametric equaƟons x = f(t) and y = g(t), where f ′ and g′ are
conƟnuous on an open interval I containing t1 and t2 on which the graph does not cross itself.

1. The surface area of the solid formed by revolving the graph about the x-axis is (where
g(t) ≥ 0 on [t1, t2]):

Surface Area = 2π
∫ t2

t1
g(t)

√
f ′(t)2 + g′(t)2 dt.

2. The surface area of the solid formed by revolving the graph about the y-axis is (where
f(t) ≥ 0 on [t1, t2]):

Surface Area = 2π
∫ t2

t1
f(t)
√

f ′(t)2 + g′(t)2 dt.

.. Example 295 Surface Area of a Solid of RevoluƟon
Consider the teardrop shape formed by the parametric equaƟons x = t(t2 − 1),
y = t2 − 1 as seen in Example 294. Find the surface area if this shape is rotated
about the x-axis, as shown in Figure 9.36.

SÊ½çã®ÊÄ The teardrop shape is formed between t = −1 and t = 1.
Using Key Idea 40, we see we need for g(t) ≥ 0 on [−1, 1], and this is not the
case. To fix this, we simplify replace g(t)with−g(t), which flips the whole graph
about the x-axis (and does not change the surface area of the resulƟng solid).
The surface area is:

Area S = 2π
∫ 1

−1
(1− t2)

√
(3t2 − 1)2 + (2t)2 dt

= 2π
∫ 1

−1
(1− t2)

√
9t4 − 2t2 + 1 dt.

Once again we arrive at an integral that we cannot compute in terms of ele-
mentary funcƟons. Using Simpson’s Rule with n = 20, we find the area to be
S = 9.44. Using larger values of n shows this is accurate to 2 places aŌer the
decimal. ..

Notes:

501



Exercises 9.3
Terms and Concepts
1. T/F: Given parametric equaƟons x = f(t) and y = g(t),

dy
dx = f ′(t)/g′(t), as long as g′(t) ̸= 0.

2. Given parametric equaƟons x = f(t) and y = g(t),
the derivaƟve dy

dx as given in Key Idea 38 is a funcƟon of
?

3. T/F: Given parametric equaƟons x = f(t) and y = g(t), to
find d2y

dx2 , one simply computes d
dt

(
dy
dx

)
.

4. T/F: If dy
dx = 0 at t = t0, then the normal line to the curve at

t = t0 is a verƟcal line.

Problems
In Exercises 5 – 12, parametric equaƟons for a curve are given.

(a) Find
dy
dx

.

(b) Find the equaƟons of the tangent and normal line(s)
at the point(s) given.

(c) Sketch the graph of the parametric funcƟons along
with the found tangent and normal lines.

5. x = t, y = t2; t = 1

6. x =
√
t, y = 5t+ 2; t = 4

7. x = t2 − t, y = t2 + t; t = 1

8. x = t2 − 1, y = t3 − t; t = 0 and t = 1

9. x = sec t, y = tan t on (−π/2, π/2); t = π/4

10. x = cos t, y = sin(2t) on [0, 2π]; t = π/4

11. x = cos t sin(2t), y = sin t sin(2t) on [0, 2π]; t = 3π/4

12. x = et/10 cos t, y = et/10 sin t; t = π/2

In Exercises 13 – 20, find t-values where the curve defined by
the given parametric equaƟons has a horizontal tangent line.
Note: these are the same equaƟons as in Exercises 5 – 12.

13. x = t, y = t2

14. x =
√
t, y = 5t+ 2

15. x = t2 − t, y = t2 + t

16. x = t2 − 1, y = t3 − t

17. x = sec t, y = tan t on (−π/2, π/2)

18. x = cos t, y = sin(2t) on [0, 2π]

19. x = cos t sin(2t), y = sin t sin(2t) on [0, 2π]

20. x = et/10 cos t, y = et/10 sin t

In Exercises 21 – 24, find t = t0 where the graph of the given

parametric equaƟons is not smooth, then find lim
t→t0

dy
dx

.

21. x =
1

t2 + 1
, y = t3

22. x = −t3 + 7t2 − 16t+ 13, y = t3 − 5t2 + 8t− 2

23. x = t3 − 3t2 + 3t− 1, y = t2 − 2t+ 1

24. x = cos2 t, y = 1− sin2 t

In Exercises 25 – 32, parametric equaƟons for a curve are
given. Find d2y

dx2 , then determine the intervals on which the
graph of the curve is concave up/down. Note: these are the
same equaƟons as in Exercises 5 – 12.

25. x = t, y = t2

26. x =
√
t, y = 5t+ 2

27. x = t2 − t, y = t2 + t
28. x = t2 − 1, y = t3 − t
29. x = sec t, y = tan t on (−π/2, π/2)
30. x = cos t, y = sin(2t) on [0, 2π]
31. x = cos t sin(2t), y = sin t sin(2t) on [−π/2, π/2]
32. x = et/10 cos t, y = et/10 sin t
In Exercises 33 – 36, find the arc length of the graph of the
parametric equaƟons on the given interval(s).

33. x = −3 sin(2t), y = 3 cos(2t) on [0, π]
34. x = et/10 cos t, y = et/10 sin t on [0, 2π] and [2π, 4π]
35. x = 5t+ 2, y = 1− 3t on [−1, 1]
36. x = 2t3/2, y = 3t on [0, 1]
In Exercises 37 – 40, numerically approximate the given arc
length.

37. Approximate the arc length of one petal of the rose curve
x = cos t cos(2t), y = sin t cos(2t) using Simpson’s Rule
and n = 4.

38. Approximate the arc length of the “bow Ɵe curve” x =
cos t, y = sin(2t) using Simpson’s Rule and n = 6.

39. Approximate the arc length of the parabola x = t2 − t,
y = t2 + t on [−1, 1] using Simpson’s Rule and n = 4.

40. A common approximate of the circumference of an ellipse

given by x = a cos t, y = b sin t is C ≈ 2π

√
a2 + b2

2
.

Use this formula to approximate the circumference of x =
5 cos t, y = 3 sin t and compare this to the approxima-
Ɵon given by Simpson’s Rule and n = 6.

In Exercises 41 – 44, a solid of revoluƟon is described. Find or
approximate its surface area as specified.

41. Find the surface area of the sphere formed by rotaƟng the
circle x = 2 cos t, y = 2 sin t about:

(a) the x-axis and
(b) the y-axis.

42. Find the surface area of the torus (or “donut”) formed by
rotaƟng the circle x = cos t + 2, y = sin t about the y-
axis.

43. Approximate the surface area of the solid formed by rotat-
ing the “upper right half” of the bow Ɵe curve x = cos t,
y = sin(2t) on [0, π/2] about the x-axis, using Simpson’s
Rule and n = 4.

44. Approximate the surface area of the solid formed by ro-
taƟng the one petal of the rose curve x = cos t cos(2t),
y = sin t cos(2t) on [0, π/4] about the x-axis, using Simp-
son’s Rule and n = 4.
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9.4 IntroducƟon to Polar Coordinates

9.4 IntroducƟon to Polar Coordinates
We are generally introduced to the idea of graphing curves by relaƟng x-values
to y-values through a funcƟon f. That is, we set y = f(x), and plot lots of point
pairs (x, y) to get a good noƟon of how the curve looks. This method is useful
but has limitaƟons, not least of which is that curves that “fail the verƟcal line
test” cannot be graphed without using mulƟple funcƟons.

The previous two secƟons introduced and studied a new way of ploƫng
points in the x, y-plane. Using parametric equaƟons, x and y values are com-
puted independently and then ploƩed together. This method allows us to graph
an extraordinary range of curves. This secƟon introduces yet anotherway to plot
points in the plane: using polar coordinates.

Polar Coordinates

Start with a point O in the plane called the pole (we will always idenƟfy this
point with the origin). From the pole, draw a ray, called the iniƟal ray (we will
always draw this ray horizontally, idenƟfying it with the posiƟve x-axis). A point
P in the plane is determined by the distance r that P is from O, and the an-
gle θ formed between the iniƟal ray and the segment OP (measured counter-
clockwise). We record the distance and angle as an ordered pair (r, θ). To avoid
confusion with rectangular coordinates, we will denote polar coordinates with
the leƩer P, as in P(r, θ). This is illustrated in Figure 9.37

PracƟce will make this process more clear.

.. Example 296 Ploƫng Polar Coordinates
Plot the following polar coordinates:

A = P(1, π/4) B = P(1.5, π) C = P(2,−π/3) D = P(−1, π/4)

SÊ½çã®ÊÄ To aid in the drawing, a polar grid is provided at the boƩom
of this page. To place the point A, go out 1 unit along the iniƟal ray (puƫng
you on the inner circle shown on the grid), then rotate counter-clockwise π/4
radians (or 45◦). Alternately, one can consider the rotaƟon first: think about the
ray from O that forms an angle of π/4 with the iniƟal ray, then move out 1 unit
along this ray (again placing you on the inner circle of the grid).

To plot B, go out 1.5 units along the iniƟal ray and rotate π radians (180◦).
To plot C, go out 2 units along the iniƟal ray then rotate clockwise π/3 radi-

ans, as the angle given is negaƟve.
To plot D, move along the iniƟal ray “−1” units – in other words, “back up” 1

unit, then rotate counter-clockwise by π/4. The results are given in Figure 9.38. ..

Notes:

503



..
x

.

y

.

r

. θ.
O
.

P

Figure 9.39: ConverƟng between rectan-
gular and polar coordinates.

Chapter 9 Curves in the Plane

Consider the following two points: A = P(1, π) and B = P(−1, 0). To locate
A, go out 1 unit on the iniƟal ray then rotate π radians; to locate B, go out −1
units on the iniƟal ray and don’t rotate. One should see that A and B are located
at the same point in the plane. We can also consider C = P(1, 3π), or D =
P(1,−π); all four of these points share the same locaƟon.

This ability to idenƟfy a point in the plane with mulƟple polar coordinates is
both a “blessing” and a “curse.” We will see that it is beneficial as we can plot
beauƟful funcƟons that intersect themselves (much like we sawwith parametric
funcƟons). The unfortunate part of this is that it can be difficult to determine
when this happens. We’ll explore this more later in this secƟon.

Polar to Rectangular Conversion

It is useful to recognize both the rectangular (or, Cartesian) coordinates of a
point in the plane and its polar coordinates. Figure 9.39 shows a point P in the
plane with rectangular coordinates (x, y) and polar coordinates P(r, θ). Using
trigonometry, we can make the idenƟƟes given in the following Key Idea.

.

.

.
Key Idea 41 ConverƟng Between Rectangular and Polar Coordi-
nates

Given the polar point P(r, θ), the rectangular coordinates are determined
by

x = r cos θ y = r sin θ.

Given the rectangular coordinates (x, y), the polar coordinates are de-
termined by

r2 = x2 + y2 tan θ =
y
x
.

.. Example 297 ..ConverƟng Between Polar and Rectangular Coordinates

1. Convert the polar coordinates P(2, 2π/3) and P(−1, 5π/4) to rectangular
coordinates.

2. Convert the rectangular coordinates (1, 2) and (−1, 1) to polar coordi-
nates.

SÊ½çã®ÊÄ

Notes:
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9.4 IntroducƟon to Polar Coordinates

1. (a) We start with P(2, 2π/3). Using Key Idea 41, we have

x = 2 cos(2π/3) = −1 y = 2 sin(2π/3) =
√
3.

So the rectangular coordinates are (−1,
√
3) ≈ (−1, 1.732).

(b) The polar point P(−1, 5π/4) is converted to rectangular with:

x = −1 cos(5π/4) =
√
2/2 y = −1 sin(5π/4) =

√
2/2.

So the rectangular coordinates are (
√
2/2,

√
2/2) ≈ (0.707, 0.707).

These points are ploƩed in Figure 9.40 (a). The rectangular coordinate
system is drawn lightly under the polar coordinate system so that the re-
laƟonship between the two can be seen.

2. (a) To convert the rectangular point (1, 2) to polar coordinates, we use
the Key Idea to form the following two equaƟons:

12 + 22 = r2 tan θ =
2
1
.

The first equaƟon tells us that r =
√
5. Using the inverse tangent

funcƟon, we find

tan θ = 2 ⇒ θ = tan−1 2 ≈ 1.11 ≈ 63.43◦.

Thus polar coordinates of (1, 2) are P(
√
5, 1.11).

(b) To convert (−1, 1) to polar coordinates, we form the equaƟons

(−1)2 + 12 = r2 tan θ =
1
−1

.

Thus r =
√
2. We need to be careful in compuƟng θ: using the

inverse tangent funcƟon, we have

tan θ = −1 ⇒ θ = tan−1(−1) = −π/4 = −45◦.

This is not the angle we desire. The range of tan−1 x is (−π/2, π/2);
that is, it returns angles that lie in the 1st and 4th quadrants. To
find locaƟons in the 2nd and 3rd quadrants, add π to the result of
tan−1 x. So π + (−π/4) puts the angle at 3π/4. Thus the polar
point is P(

√
2, 3π/4).

An alternate method is to use the angle θ given by arctangent, but
change the sign of r. Thus we could also refer to (−1, 1) as
P(−

√
2,−π/4).

These points are ploƩed in Figure 9.40 (b). The polar system is drawn
lightly under the rectangular grid with rays to demonstrate the angles
used....

Notes:
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Figure 9.42: Graphing a polar funcƟon in
Example 299 by ploƫng points.
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Figure 9.43: Using technology to graph a
polar funcƟon.

9.4 IntroducƟon to Polar Coordinates

We sketch these funcƟons much like we sketch rectangular and parametric
funcƟons: we plot lots of points and “connect the dots”with curves. We demon-
strate this in the following example.

.. Example 299 Sketching Polar FuncƟons
Sketch the polar funcƟon r = 1+ cos θ on [0, 2π] by ploƫng points.

SÊ½çã®ÊÄ AcommonquesƟonwhen sketching curves by ploƫngpoints
is “Which points should I plot?” With rectangular equaƟons, we oŌen choose
“easy” values – integers, then addedmore if needed. When ploƫng polar equa-
Ɵons, start with the “common” angles – mulƟples of π/6 and π/4. Figure 9.42
gives a table of just a few values of θ in [0, π].

Consider the point P(0, 2) determined by the first line of the table. The angle
is 0 radians – we do not rotate from the iniƟal ray – then we go out 2 units from
the pole. When θ = π/6, r = 1.866 (actually, it is 1+

√
3/2); so rotate by π/6

radians and go out 1.866 units.
The graph shownusesmorepoints, connectedwith straight lines. (The points

on the graph that correspond to points in the table are signifiedwith larger dots.)
Such a sketch is likely good enough to give one an idea of what the graph looks
like. ..

Technology Note: Ploƫng funcƟons in this way can be tedious, just as it was
with rectangular funcƟons. To obtain very accurate graphs, technology is a great
aid. Most graphing calculators can plot polar funcƟons; in the menu, set the
ploƫng mode to something like polar or POL, depending on one’s calculator.
As with ploƫng parametric funcƟons, the viewing “window” no longer deter-
mines the x-values that are ploƩed, so addiƟonal informaƟon needs to be pro-
vided. OŌen with the “window” seƫngs are the seƫngs for the beginning and
ending θ values (oŌen called θmin and θmax) as well as the θstep – that is, how far
apart the θ values are spaced. The smaller the θstep value, the more accurate
the graph (which also increases ploƫng Ɵme). Using technology, we graphed
the polar funcƟon r = 1+ cos θ from Example 299 in Figure 9.43.

.. Example 300 ..Sketching Polar FuncƟons
Sketch the polar funcƟon r = cos(2θ) on [0, 2π] by ploƫng points.

SÊ½çã®ÊÄ We start by making a table of cos(2θ) evaluated at common
angles θ, as shown in Figure 9.44. These points are then ploƩed in Figure 9.45
(a). This parƟcular graph “moves” around quite a bit and one can easily forget
which points should be connected to each other. To help us with this, we num-
bered each point in the table and on the graph.

Notes:
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Figure 9.45: Polar plots from Example
300.

Chapter 9 Curves in the Plane

Pt. θ cos(2θ)
1 0 1.
2 π/6 0.5
3 π/4 0.
4 π/3 −0.5
5 π/2 −1.
6 2π/3 −0.5
7 3π/4 0.
8 5π/6 0.5
9 π 1.

Pt. θ cos(2θ)
10 7π/6 0.5
11 5π/4 0.
12 4π/3 −0.5
13 3π/2 −1.
14 5π/3 −0.5
15 7π/4 0.
16 11π/6 0.5
17 2π 1.

Figure 9.44: Tables of points for ploƫng a polar curve.

Using more points (and the aid of technology) a smoother plot can be made as
shown in Figure 9.45 (b). This plot is an example of a rose curve. ...

It is someƟmes desirable to refer to a graph via a polar equaƟon, and other
Ɵmes by a rectangular equaƟon. Therefore it is necessary to be able to convert
between polar and rectangular funcƟons, which we pracƟce in the following ex-
ample. We will make frequent use of the idenƟƟes found in Key Idea 41.

.. Example 301 ..ConverƟng between rectangular and polar equaƟons.

Convert from rectangular to polar.

1. y = x2

2. xy = 1

Convert from polar to rectangular.

3. r =
2

sin θ − cos θ

4. r = 2 cos θ

SÊ½çã®ÊÄ

1. Replace y with r sin θ and replace x with r cos θ, giving:

y = x2

r sin θ = r2 cos2 θ
sin θ
cos2 θ

= r

We have found that r = sin θ/ cos2 θ = tan θ sec θ. The domain of this
polar funcƟon is [−π/2, π/2]; plot a few points to see how the familiar
parabola is traced out by the polar equaƟon.

Notes:
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Figure 9.46: Graphing xy = 1 from Exam-
ple 301.

9.4 IntroducƟon to Polar Coordinates

2. We again replace x and y using the standard idenƟƟes and work to solve
for r:

xy = 1
r cos θ · r sin θ = 1

r2 =
1

cos θ sin θ

r =
1√

cos θ sin θ

This funcƟon is valid only when the product of cos θ sin θ is posiƟve. This
occurs in the first and third quadrants, meaning the domain of this polar
funcƟon is (0, π/2) ∪ (π, 3π/2).
We can rewrite the original rectangular equaƟon xy = 1 as y = 1/x.
This is graphed in Figure 9.46; note how it only exists in the first and third
quadrants.

3. There is no set way to convert from polar to rectangular; in general, we
look to form the products r cos θ and r sin θ, and then replace these with
x and y, respecƟvely. We start in this problem by mulƟplying both sides
by sin θ − cos θ:

r =
2

sin θ − cos θ
r(sin θ − cos θ) = 2
r sin θ − r cos θ = 2. Now replace with y and x:

y− x = 2
y = x+ 2.

The original polar equaƟon, r = 2/(sin θ − cos θ) does not easily reveal
that its graph is simply a line. However, our conversion shows that it is.
The upcoming gallery of polar curves gives the general equaƟons of lines
in polar form.
..

4. By mulƟplying both sides by r, we obtain both an r2 term and an r cos θ
term, which we replace with x2 + y2 and x, respecƟvely.

r = 2 cos θ

r2 = 2r cos θ

x2 + y2 = 2x.

Notes:
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Circles Spiral

Centered on x-axis: Centered on y-axis: Centered on origin: Archimedean spiral
r = a cos θ r = a sin θ r = a r = θ

..︷ ︸︸ ︷.
a

..

a


..︷ ︸︸ ︷.

a
.

Limaçons
Symmetric about x-axis: r = a± b cos θ; Symmetric about y-axis: r = a± b sin θ; a, b > 0

With inner loop: Cardiod: Dimpled: Convex:
a
b
< 1

a
b
= 1 1 <

a
b
< 2

a
b
> 2

. . . .

Rose Curves
Symmetric about x-axis: r = a cos(nθ); Symmetric about y-axis: r = a sin(nθ)
Curve contains 2n petals when n is even and n petals when n is odd.

r = a cos(2θ) r = a sin(2θ) r = a cos(3θ) r = a sin(3θ)

. . . .

Special Curves

Rose curves Lemniscate: Eight Curve:

r = a sin(θ/5) r = a sin(2θ/5) r2 = a2 cos(2θ) r2 = a2 sec4 θ cos(2θ)

. . . .
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Figure 9.47: Graphs to help determine
the points of intersecƟon of the polar
funcƟons given in Example 302.

Chapter 9 Curves in the Plane

Earlier we discussed how each point in the plane does not have a unique
representaƟon in polar form. This can be a “good” thing, as it allows for the
beauƟful and interesƟng curves seen in the preceding gallery. However, it can
also be a “bad” thing, as it can be difficult to determine where two curves inter-
sect.

.. Example 302 ..Finding points of intersecƟon with polar curves
Determinewhere the graphs of the polar equaƟons r = 1+3 cos θ and r = cos θ
intersect.

SÊ½çã®ÊÄ As technology is generally readily available, it is generally a
good idea to start with a graph. We have graphed the two funcƟons in Figure
9.47 (a); to beƩer discern the intersecƟon points, part (b) of the figure zooms
in around the origin. We start by seƫng the two funcƟons equal to each other
and solving for θ:

1+ 3 cos θ = cos θ
2 cos θ = −1

cos θ = −1
2

θ =
2π
3
,
4π
3
.

(There are, of course, infinite soluƟons to the equaƟon cos θ = −1/2; as the
limaçon is traced out once on [0, 2π], we restrict our soluƟons to this interval.)

We need to analyze this soluƟon. When θ = 2π/3 we obtain the point of
intersecƟon that lies in the 4th quadrant. When θ = 4π/3, we get the point of
intersecƟon that lies in the 2nd quadrant. There is more to say about this second
intersecƟon point, however. The circle defined by r = cos θ is traced out once on
[0, π], meaning that this point of intersecƟon occurs while tracing out the circle
a second Ɵme. It seems strange to pass by the point once and then recognize
it as a point of intersecƟon only when arriving there a “second Ɵme.” The first
Ɵme the circle arrives at this point is when θ = π/3. It is key to understand that
these two points are the same: (cos π/3, π/3) and (cos 4π/3, 4π/3).

To summarize what we have done so far, we have found two points of in-
tersecƟon: when θ = 2π/3 and when θ = 4π/3. When referencing the circle
r = cos θ, the laƩer point is beƩer referenced as when θ = π/3.

There is yet another point of intersecƟon: the pole (or, the origin). We did
not recognize this intersecƟon point using our work above as each graph arrives
at the pole at a different θ value.

A graph intersects the pole when r = 0. Considering the circle r = cos θ,
r = 0 when θ = π/2 (and odd mulƟples thereof, as the circle is repeatedly

Notes:
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9.4 IntroducƟon to Polar Coordinates

traced). The limaçon intersects the pole when 1+3 cos θ = 0; this occurs when
cos θ = −1/3, or for θ = cos−1(−1/3). This is a nonstandard angle, approxi-
mately θ = 1.9106 = 109.47◦. The limaçon intersects the pole twice in [0, 2π];
the other angle at which the limaçon is at the pole is the reflecƟon of the first
angle across the x-axis. That is, θ = 4.3726 = 250.53◦. ...

If all one is concernedwith is the (x, y) coordinates at which the graphs inter-
sect, much of the above work is extraneous. We know they intersect at (0, 0);
we might not care at what θ value. Likewise, using θ = 2π/3 and θ = 4π/3
can give us the needed rectangular coordinates. However, in the next secƟon
we apply calculus concepts to polar funcƟons. When compuƟng the area of a
region bounded by polar curves, understanding the nuances of the points of
intersecƟon becomes important.

Notes:
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Exercises 9.4
Terms and Concepts
1. In your own words, describe how to plot the polar point

P(r, θ).

2. T/F: When ploƫng a point with polar coordinate P(r, θ), r
must be posiƟve.

3. T/F: Every point in the Cartesian plane can be represented
by a polar coordinate.

4. T/F: Every point in the Cartesian plane can be represented
uniquely by a polar coordinate.

Problems
5. Plot the points with the given polar coordinates.

(a) A = P(2, 0)

(b) B = P(1, π)

(c) C = P(−2, π/2)

(d) D = P(1, π/4)

6. Plot the points with the given polar coordinates.

(a) A = P(2, 3π)

(b) B = P(1,−π)

(c) C = P(1, 2)

(d) D = P(1/2, 5π/6)

7. For each of the given points give two sets of polar coordi-
nates that idenƟfy it, where 0 ≤ θ ≤ 2π.

..
O
.

1
.

2
.

3
.

A

.

B

.

C

.

D

8. For each of the given points give two sets of polar coordi-
nates that idenƟfy it, where−π ≤ θ ≤ π.

..
O
.

1
.

2
.

3
.

A

.

B

.

C

.
D

9. Convert each of the following polar coordinates to rectan-
gular, and each of the following rectangular coordinates to
polar.

(a) A = P(2, π/4)

(b) B = P(2,−π/4)

(c) C = (2,−1)

(d) D = (−2, 1)

10. Convert each of the following polar coordinates to rectan-
gular, and each of the following rectangular coordinates to
polar.

(a) A = P(3, π)

(b) B = P(1, 2π/3)

(c) C = (0, 4)

(d) D = (1,−
√
3)

In Exercises 11 – 29, graph the polar funcƟon on the given
interval.

11. r = 2, 0 ≤ θ ≤ π/2

12. θ = π/6, −1 ≤ r ≤ 2

13. r = 1− cos θ, [0, 2π]

14. r = 2+ sin θ, [0, 2π]

15. r = 2− sin θ, [0, 2π]

16. r = 1− 2 sin θ, [0, 2π]

17. r = 1+ 2 sin θ, [0, 2π]

18. r = cos(2θ), [0, 2π]

19. r = sin(3θ), [0, π]

20. r = cos(θ/3), [0, 3π]

21. r = cos(2θ/3), [0, 6π]

22. r = θ/2, [0, 4π]

23. r = 3 sin(θ), [0, π]

24. r = cos θ sin θ, [0, 2π]

25. r = θ2 − (π/2)2, [−π, π]

26. r =
3

5 sin θ − cos θ
, [0, 2π]

27. r =
−2

3 cos θ − 2 sin θ
, [0, 2π]

28. r = 3 sec θ, (−π/2, π/2)

29. r = 3 csc θ, (0, π)

In Exercises 30 – 38, convert the polar equaƟon to a rectan-
gular equaƟon.

30. r = 2 cos θ

31. r = −4 sin θ

32. r = cos θ + sin θ

33. r =
7

5 sin θ − 2 cos θ

34. r =
3

cos θ

35. r =
4

sin θ
36. r = tan θ

37. r = 2

38. θ = π/6
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In Exercises 39 – 46, convert the rectangular equaƟon to a
polar equaƟon.

39. y = x

40. y = 4x+ 7

41. x = 5

42. y = 5

43. x = y2

44. x2y = 1

45. x2 + y2 = 7

46. (x+ 1)2 + y2 = 1

In Exercises 47 – 54, find the points of intersecƟon of the po-
lar graphs.

47. r = sin(2θ) and r = cos θ on [0, π]

48. r = cos(2θ) and r = cos θ on [0, π]

49. r = 2 cos θ and r = 2 sin θ on [0, π]

50. r = sin θ and r =
√
3+ 3 sin θ on [0, 2π]

51. r = sin(3θ) and r = cos(3θ) on [0, π]

52. r = 3 cos θ and r = 1+ cos θ on [−π, π]

53. r = 1 and r = 2 sin(2θ) on [0, 2π]

54. r = 1− cos θ and r = 1+ sin θ on [0, 2π]

55. Pick a integer value for n, where n ̸= 2, 3, and use technol-
ogy to plot r = sin

(m
n
θ
)
for three different integer values

of m. Sketch these and determine a minimal interval on
which the enƟre graph is shown.

56. Create your own polar funcƟon, r = f(θ) and sketch it. De-
scribe why the graph looks as it does.
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Chapter 9 Curves in the Plane

9.5 Calculus and Polar FuncƟons

The previous secƟon defined polar coordinates, leading to polar funcƟons. We
invesƟgated ploƫng these funcƟons and solving a fundamental quesƟon about
their graphs, namely, where do two polar graphs intersect?

We now turn our aƩenƟon to answering other quesƟons, whose soluƟons
require the use of calculus. A basis for much of what is done in this secƟon is
the ability to turn a polar funcƟon r = f(θ) into a set of parametric equaƟons.
Using the idenƟƟes x = r cos θ and y = r sin θ, we can create the parametric
equaƟons x = f(θ) cos θ, y = f(θ) sin θ and apply the concepts of SecƟon 9.3.

Polar FuncƟons and
dy
dx

We are interested in the lines tangent a given graph, regardless of whether
that graph is produced by rectangular, parametric, or polar equaƟons. In each
of these contexts, the slope of the tangent line is dy

dx . Given r = f(θ), we are
generally not concerned with r ′ = f ′(θ); that describes how fast r changes with
respect to θ. Instead, we will use x = f(θ) cos θ, y = f(θ) sin θ to compute dy

dx .
Using Key Idea 38 we have

dy
dx

=
dy
dθ

/dx
dθ

.

Each of the two derivaƟves on the right hand side of the equality requires the
use of the Product Rule. We state the important result as a Key Idea.

.

.

.
Key Idea 42 Finding dy

dx with Polar FuncƟons

Let r = f(θ) be a polar funcƟon. With x = f(θ) cos θ and y = f(θ) sin θ,

dy
dx

=
f ′(θ) sin θ + f(θ) cos θ
f ′(θ) cos θ − f(θ) sin θ

.

.. Example 303 ..Finding dy
dx with polar funcƟons.

Consider the limaçon r = 1+ 2 sin θ on [0, 2π].

1. Find the equaƟons of the tangent and normal lines to the graph at θ =
π/4.

2. Find where the graph has verƟcal and horizontal tangent lines.

Notes:
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Figure 9.48: The limaçon in Example 303
with its tangent line at θ = π/4 and
points of verƟcal and horizontal tangency.

9.5 Calculus and Polar FuncƟons

SÊ½çã®ÊÄ

1. We start by compuƟng dy
dx . With f ′(θ) = 2 cos θ, we have

dy
dx

=
2 cos θ sin θ + cos θ(1+ 2 sin θ)

2 cosθ − sin θ(1+ 2 sin θ)

=
cos θ(4 sin θ + 1)

2(cos2 θ − sin2 θ)− sin θ
.

When θ = π/4, dy
dx = −2

√
2 − 1 (this requires a bit of simplificaƟon).

In rectangular coordinates, the point on the graph at θ = π/4 is (1 +√
2/2, 1 +

√
2/2). Thus the rectangular equaƟon of the line tangent to

the limaçon at θ = π/4 is

y = (−2
√
2− 1)

(
x− (1+

√
2/2)

)
+ 1+

√
2/2 ≈ −3.83x+ 8.24.

The limaçon and the tangent line are graphed in Figure 9.48.
The normal line has the opposite–reciprocal slope as the tangent line, so
its equaƟon is

y ≈ 1
3.83

x+ 1.26.

..

2. To find the horizontal lines of tangency, we find where dy
dx = 0; thus we

find where the numerator of our equaƟon for dy
dx is 0.

cos θ(4 sin θ + 1) = 0 ⇒ cos θ = 0 or 4 sin θ + 1 = 0.

On [0, 2π], cos θ = 0 when θ = π/2, 3π/2.
Seƫng 4 sin θ + 1 = 0 gives θ = sin−1(−1/4) ≈ −0.2527 = −14.48◦.
We want the results in [0, 2π]; we also recognize there are two soluƟons,
one in the 3rd quadrant and one in the 4th. Using reference angles, we
have our two soluƟons as θ = 3.39 and 6.03 radians. The four points we
obtained where the limaçon has a horizontal tangent line are given in Fig-
ure 9.48 with black–filled dots.

To find the verƟcal lines of tangency, we set the denominator of dy
dx = 0.

2(cos2 θ − sin2 θ)− sin θ = 0.

Convert the cos2 θ term to 1− sin2 θ:

2(1− sin2 θ − sin2 θ)− sin θ = 0

4 sin2 θ + sin θ − 1 = 0.

Notes:
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Figure 9.49: Graphing the tangent lines at
the pole in Example 304.

Chapter 9 Curves in the Plane

Recognize this as a quadraƟc in the variable sin θ. Using the quadraƟc
formula, we have

sin θ =
−1±

√
33

8
.

We solve sin θ = −1+
√
33

8 and sin θ = −1−
√
33

8 :

sin θ =
−1+

√
33

8
sin θ =

−1−
√
33

8

θ = sin−1
(
−1+

√
33

8

)
θ = sin−1

(
−1−

√
33

8

)
θ = 0.6399 θ = −1.0030

In each of the soluƟons above, we only get one of the possible two so-
luƟons as sin−1 x only returns soluƟons in [−π/2, π/2], the 4th and 1st
quadrants. Again using reference angles, we have:

sin θ =
−1+

√
33

8
⇒ θ = 0.6399, 3.7815 radians

and

sin θ =
−1−

√
33

8
⇒ θ = 4.1446, 5.2802 radians.

These points are also shown in Figure 9.48 with white–filled dots.
...

When the graph of the polar funcƟon r = f(θ) intersects the pole, it means
that f(α) = 0 for some angle α. Thus the formula for dy

dx in such instances is very
simple, reducing simply to

dy
dx

= tanα.

This equaƟon makes an interesƟng point. It tells us the slope of the tangent
line at the pole is tanα; some of our previous work (see, for instance, Example
298) shows us that the line through the pole with slope tanα has polar equaƟon
θ = α. Thus when a polar graph touches the pole at θ = α, the equaƟon of the
tangent line at the pole is θ = α.

.. Example 304 ..Finding tangent lines at the pole.
Let r = 1 + 2 sin θ, a limaçon. Find the equaƟons of the lines tangent to the
graph at the pole.

Notes:
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Figure 9.54: Graphing the region
bounded by the funcƟons in Example
308.

Chapter 9 Curves in the Plane

two funcƟons. Seƫng them equal to each other, we find:

1+ cos θ = 3 cos θ
cos θ = 1/2

θ = ±π/3

Thus we integrate 1
2

(
(3 cos θ)2 − (1+ cos θ)2

)
on [−π/3, π/3].

Area =
1
2

∫ π/3

−π/3

(
(3 cos θ)2 − (1+ cos θ)2

)
dθ

=
1
2

∫ π/3

−π/3

(
8 cos2 θ − 2 cos θ − 1

)
dθ

=
(
2 sin(2θ)− 2 sin θ + 3θ

)∣∣∣∣∣
π/3

−π/3

= 2π.

Amazingly enough, the area between these curves has a “nice” value. ...

.. Example 308 ..Area defined by polar curves
Find the area bounded between the polar curves r = 1 and r = 2 cos(2θ), as
shown in Figure 9.54 (a).

SÊ½çã®ÊÄ We need to find the point of intersecƟon between the two
curves. Seƫng the two funcƟons equal to each other, we have

2 cos(2θ) = 1 ⇒ cos(2θ) =
1
2

⇒ 2θ = π/3 ⇒ θ = π/6.

In part (b) of the figure, we zoom in on the region and note that it is not really
bounded between two polar curves, but rather by two polar curves, along with
θ = 0. The dashed line breaks the region into its component parts. Below
the dashed line, the region is defined by r = 1, θ = 0 and θ = π/6. (Note:
the dashed line lies on the line θ = π/6.) Above the dashed line the region is
bounded by r = 2 cos(2θ) and θ = π/6. Since we have two separate regions,
we find the area using two separate integrals.

Call the area below the dashed line A1 and the area above the dashed line
A2. They are determined by the following integrals:

A1 =
1
2

∫ π/6

0
(1)2 dθ A2 =

1
2

∫ π/4

π/6

(
2 cos(2θ)

)2 dθ.

Notes:
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(The upper bound of the integral compuƟng A2 is π/4 as r = 2 cos(2θ) is at the
pole when θ = π/4.)

We omit the integraƟon details and let the reader verify that A1 = π/12 and
A2 = π/12−

√
3/8; the total area is A = π/6−

√
3/8. ...

Arc Length

As we have already considered the arc length of curves defined by rectangu-
lar and parametric equaƟons, we now consider it in the context of polar equa-
Ɵons. Recall that the arc length L of the graph defined by the parametric equa-
Ɵons x = f(t), y = g(t) on [a, b] is

L =
∫ b

a

√
f ′(t)2 + g′(t)2 dt =

∫ b

a

√
x′(t)2 + y′(t)2 dt. (9.1)

Now consider the polar funcƟon r = f(θ). We again use the idenƟƟes x =
f(θ) cos θ and y = f(θ) sin θ to create parametric equaƟons based on the polar
funcƟon. We compute x′(θ) and y′(θ) as done before when compuƟng dy

dx , then
apply EquaƟon (9.1).

The expression x′(θ)2 + y′(θ)2 can be simplified a great deal; we leave this
as an exercise and state that

x′(θ)2 + y′(θ)2 = f ′(θ)2 + f(θ)2.

This leads us to the arc length formula.

.

.

.
Key Idea 44 Arc Length of Polar Curves

Let r = f(θ) be a polar funcƟon with f ′ conƟnuous on an open interval
I containing [α, β], on which the graph traces itself only once. The arc
length L of the graph on [α, β] is

L =
∫ β

α

√
f ′(θ)2 + f(θ)2 dθ =

∫ β

α

√
(r ′)2 + r2 dθ.

.. Example 309 ..Arc length of a limaçon
Find the arc length of the limaçon r = 1+ 2 sin t.

SÊ½çã®ÊÄ With r = 1 + 2 sin t, we have r ′ = 2 cos t. The limaçon is
traced out once on [0, 2π], giving us our bounds of integraƟon. Applying Key

Notes:
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Chapter 9 Curves in the Plane

Idea 44, we have

L =
∫ 2π

0

√
(2 cos θ)2 + (1+ 2 sin θ)2 dθ

=

∫ 2π

0

√
4 cos2 θ + 4 sin2 θ + 4 sin θ + 1 dθ

=

∫ 2π

0

√
4 sin θ + 5 dθ

≈ 13.3649.

The final integral cannot be solved in terms of elementary funcƟons, so we re-
sorted to a numerical approximaƟon. (Simpson’s Rule, with n = 4, approximates
the value with 13.0608. Using n = 22 gives the value above, which is accurate
to 4 places aŌer the decimal.) ...

Surface Area

The formula for arc length leads us to a formula for surface area. The follow-
ing Key Idea is based on Key Idea 40.

.

.

.
Key Idea 45 Surface Area of a Solid of RevoluƟon

Consider the graph of the polar equaƟon r = f(θ), where f ′ is conƟnuous
on an open interval containing [α, β] on which the graph does not cross
itself.

1. The surface area of the solid formed by revolving the graph about
the iniƟal ray (θ = 0) is:

Surface Area = 2π
∫ β

α

f(θ) sin θ
√

f ′(θ)2 + f(θ)2 dθ.

2. The surface area of the solid formed by revolving the graph about
the line θ = π/2 is:

Surface Area = 2π
∫ β

α

f(θ) cos θ
√

f ′(θ)2 + f(θ)2 dθ.

Notes:
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Figure 9.56: Finding the surface area of a
rose–curve petal that is revolved around
its central axis.

9.5 Calculus and Polar FuncƟons

.. Example 310 Surface area determined by a polar curve
Find the surface area formedby revolving onepetal of the rose curve r = cos(2θ)
about its central axis (see Figure 9.56).

SÊ½çã®ÊÄ We choose, as implied by the figure, to revolve the porƟon
of the curve that lies on [0, π/4] about the iniƟal ray. Using Key Idea 45 and the
fact that f ′(θ) = −2 sin(2θ), we have

Surface Area = 2π
∫ π/4

0
cos(2θ) sin(θ)

√(
− 2 sin(2θ)

)2
+
(
cos(2θ)

)2 dθ
≈ 1.36707.

The integral is another that cannot be evaluated in terms of elementary func-
Ɵons. Simpson’s Rule, with n = 4, approximates the value at 1.36751...

Notes:
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Exercises 9.5
Terms and Concepts
1. Given polar equaƟon r = f(θ), how can one create para-

metric equaƟons of the same curve?

2. With rectangular coordinates, it is natural to approximate
area with ; with polar coordinates, it is natural to
approximate area with .

Problems

In Exercises 3 – 10, find:

(a)
dy
dx

(b) the equaƟon of the tangent and normal lines to the
curve at the indicated θ–value.

3. r = 1; θ = π/4

4. r = cos θ; θ = π/4

5. r = 1+ sin θ; θ = π/6

6. r = 1− 3 cos θ; θ = 3π/4

7. r = θ; θ = π/2

8. r = cos(3θ); θ = π/6

9. r = sin(4θ); θ = π/3

10. r =
1

sin θ − cos θ
; θ = π

In Exercises 11 – 14, find the values of θ in the given inter-
val where the graph of the polar funcƟon has horizontal and
verƟcal tangent lines.

11. r = 3; [0, 2π]

12. r = 2 sin θ; [0, π]

13. r = cos(2θ); [0, 2π]

14. r = 1+ cos θ; [0, 2π]

In Exercises 15 – 16, find the equaƟon of the lines tangent to
the graph at the pole.

15. r = sin θ; [0, π]

16. r = sin(3θ); [0, π]

In Exercises 17 – 27, find the area of the described region.

17. Enclosed by the circle: r = 4 sin θ

18. Enclosed by the circle r = 5

19. Enclosed by one petal of r = sin(3θ)

20. Enclosed by the cardiod r = 1− sin θ

21. Enclosed by the inner loop of the limaçon r = 1+ 2 cos t

22. Enclosed by the outer loop of the limaçon r = 1 + 2 cos t
(including area enclosed by the inner loop)

23. Enclosed between the inner and outer loop of the limaçon
r = 1+ 2 cos t

24. Enclosed by r = 2 cos θ and r = 2 sin θ, as shown:
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25. Enclosed by r = cos(3θ) and r = sin(3θ), as shown:
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26. Enclosed by r = cos θ and r = sin(2θ), as shown:
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.
x

.

y
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27. Enclosed by r = 3 cos θ and r = 1− cos θ, as shown:

.....

1

.

2

.
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.

−1

.

1

.

x

.

y

In Exercises 28 – 32, answer the quesƟons involving arc
length.

28. Let x(θ) = f(θ) cos θ and y(θ) = f(θ) sin θ. Show, as sug-
gested by the text, that

x ′(θ)2 + y ′(θ)2 = f ′(θ)2 + f(θ)2.

29. Use the arc length formula to compute the arc length of the
circle r = 2.

30. Use the arc length formula to compute the arc length of the
circle r = 4 sin θ.

31. Approximate the arc length of one petal of the rose curve
r = sin(3θ) with Simpson’s Rule and n = 4.

32. Approximate the arc length of the cardiod r = 1 + cos θ
with Simpson’s Rule and n = 6.

In Exercises 33 – 37, answer the quesƟons involving surface
area.

33. Use Key Idea 45 to find the surface area of the sphere
formed by revolving the circle r = 2 about the iniƟal ray.

34. Use Key Idea 45 to find the surface area of the sphere
formed by revolving the circle r = 2 cos θ about the iniƟal
ray.

35. Find the surface area of the solid formed by revolving the
cardiod r = 1+ cos θ about the iniƟal ray.

36. Find the surface area of the solid formed by revolving the
circle r = 2 cos θ about the line θ = π/2.

37. Find the surface area of the solid formed by revolving the
line r = 3 sec θ, −π/4 ≤ θ ≤ π/4, about the line
θ = π/2.
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Figure 10.1: Ploƫng the point P =
(2, 1, 3) in space.

10: V��ãÊÙÝ

10.1 IntroducƟon to Cartesian Coordinates in Space
Up to this point in this text we have consideredmathemaƟcs in a 2–dimensional
world. We have ploƩed graphs on the x-y plane using rectangular and polar
coordinates and found the area of regions in the plane. We have considered
properƟes of solid objects, such as volume and surface area, but only by first
defining a curve in the plane and then rotaƟng it out of the plane.

While there is wonderful mathemaƟcs to explore in “2D,” we live in a “3D”
world and eventually we will want to apply mathemaƟcs involving this third di-
mension. In this secƟon we introduce Cartesian coordinates in space and ex-
plore basic surfaces. This will lay a foundaƟon for much of what we do in the
remainder of the text.

EachpointP in space canbe representedwith anordered triple, P = (a, b, c),
where a, b and c represent the relaƟve posiƟon of P to the x-, y- and z-axes, re-
specƟvely. Each axis is perpendicular to the other two.

Visualizing points in space on paper can be problemaƟc, as we are trying
to represent a 3-dimensional concept on a 2–dimensional medium. We cannot
draw three line represenƟng the three axes inwhich each line is perpendicular to
the other two. Despite this issue, standard convenƟons exist for ploƫng shapes
in space that we will discuss that are more than adequate.

One convenƟon is that the axes must conform to the right hand rule. This
rule states that when the index finger of the right hand is extended in the direc-
Ɵon of the posiƟve x-axis, and the middle finger (bent “inward” so it is perpen-
dicular to the palm) points along the posiƟve y axis, then the extended thumb
will point in the direcƟon of the posiƟve z-axis. (It may take some thought to
verify this, but this system is inherently different from the one created by using
the “leŌ hand rule.”)

As long as the coordinate axes are posiƟoned so that they follow this rule,
it does not maƩer how the axes are drawn on paper. There are two popular
methods that we briefly discuss.

In Figure 10.1 we see the point P = (2, 1, 3) ploƩed on a set of axes. The
basic convenƟon here is that the x-y plane is drawn in its standard way, with the
z-axis down to the leŌ. The perspecƟve is that the paper represents the x-y plane
and the posiƟve z axis is coming up, off the page. This method is preferred by
many engineers. Because it can behard to tell where a single point lies in relaƟon
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to all the axes, dashed lines have been added to let one see how far along each
axis the point lies.

One can also consider the x-y plane as being a horizontal plane in, say, a
room, where the posiƟve z-axis is poinƟng up. When one steps back and looks
at this room, onemight draw the axes as shown in Figure 10.2. The same point P
is drawn, again with dashed lines. This point of view is preferred by most math-
emaƟcians, and is the convenƟon adopted by this text.

Measuring Distances

It is of criƟcal importance to knowhow tomeasure distances between points
in space. The formula for doing so is based on measuring distance in the plane,
and is known (in both contexts) as the Euclidean measure of distance.

.

.

.
DefiniƟon 48 Distance In Space

Let P = (x1, y1, z1) and Q = (x2, y2, z2) be points in space. The distance
D between P and Q is

D =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

We refer to the line segment that connects points P and Q in space as PQ,
and refer to the length of this segment as ||PQ||. The above distance formula
allows us to compute the length of this segment.

.. Example 311 Length of a line segment
Let P = (1, 4,−1) and let Q = (2, 1, 1). Draw the line segment PQ and find its
length.

SÊ½çã®ÊÄ The points P andQ are ploƩed in Figure 10.3; no special con-
sideraƟon need bemade to draw the line segment connecƟng these two points;
simply connect them with a straight line. One cannot actually measure this line
on the page and deduce anything meaningful; its true length must be measured
analyƟcally. Applying DefiniƟon 48, we have

||PQ|| =
√
(2− 1)2 + (1− 4)2 + (1− (−1))2 =

√
14 ≈ 3.74.

..

Spheres

Just as a circle is the set of all points in the plane equidistant from a given

Notes:
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Figure 10.4: The coordinate planes.

10.1 IntroducƟon to Cartesian Coordinates in Space

point (its center), a sphere is the set of all points in space that are equidistant
from a given point. DefiniƟon 48 allows us to write an equaƟon of the sphere.

We start with a point C = (a, b, c)which is to be the center of a sphere with
radius r. If a point P = (x, y, z) lies on the sphere, then P is r units from C; that
is,

||PC|| =
√
(x− a)2 + (y− b)2 + (z− c)2 = r.

Squaring both sides, we get the standard equaƟon of a sphere in space with
center at C = (a, b, c) with radius r, as given in the following Key Idea.

.

.

.
Key Idea 46 Standard EquaƟon of a Sphere in Space

The standard equaƟon of the sphere with radius r, centered at C =
(a, b, c), is

(x− a)2 + (y− b)2 + (z− c)2 = r2.

.. Example 312 EquaƟon of a sphere
Find the center and radius of the sphere defined by x2+2x+y2−4y+z2−6z = 2.

SÊ½çã®ÊÄ To determine the center and radius, we must put the equa-
Ɵon in standard form. This requires us to complete the square (three Ɵmes).

x2 + 2x+ y2 − 4y+ z2 − 6z = 2

(x2 + 2x+ 1) + (y2 − 4y+ 4) + (z2 − 6z+ 9)− 14 = 2

(x+ 1)2 + (y− 2)2 + (z− 3)2 = 16

The sphere is centered at (−1, 2, 3) and has a radius of 4. ..

The equaƟon of a sphere is an example of an implicit funcƟon defining a sur-
face in space. In the case of a sphere, the variables x, y and z are all used. We
now consider situaƟons where surfaces are defined where one or two of these
variables are absent.

IntroducƟon to Planes in Space

The coordinate axes naturally define three planes (shown in Figure 10.4), the
coordinate planes: the x-y plane, the y-z plane and the x-z plane. The x-y plane
is characterized as the set of all points in space where the z-value is 0. This,
in fact, gives us an equaƟon that describes this plane: z = 0. Likewise, the x-z
plane is all points where the y-value is 0, characterized by y = 0.

Notes:
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Figure 10.7: Sketching x2 + y2 = 1.
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The equaƟon x = 2 describes all points in space where the x-value is 2. This
is a plane, parallel to the y-z coordinate plane, shown in Figure 10.5.

.. Example 313 Regions defined by planes
Sketch the region defined by the inequaliƟes−1 ≤ y ≤ 2.

SÊ½çã®ÊÄ The region is all points between the planes y = −1 and
y = 2. These planes are sketched in Figure 10.6, which are parallel to the x-z
plane. Thus the region extends infinitely in the x and z direcƟons, and is bounded
by planes in the y direcƟon. ..

Cylinders

The equaƟon x = 1 obviously lacks the y and z variables, meaning it defines
points where the y and z coordinates can take on any value. Now consider the
equaƟon x2 + y2 = 1 in space. In the plane, this equaƟon describes a circle
of radius 1, centered at the origin. In space, the z coordinate is not specified,
meaning it can take on any value. In Figure 10.7 (a), we show part of the graph
of the equaƟon x2+y2 = 1 by sketching 3 circles: the boƩomone has a constant
z-value of−1.5, themiddle one has a z-value of 0 and the top circle has a z-value
of 1. By ploƫng all possible z-values, we get the surface shown in Figure 10.7
(b).

This surface looks like a “tube,” or a “cylinder”; mathemaƟcians call this sur-
face a cylinder for an enƟrely different reason.

.

.

.
DefiniƟon 49 Cylinder

Let C be a curve in a plane and let L be a line not parallel to C. A cylinder
is the set of all lines parallel to L that pass through C. The curve C is the
directrix of the cylinder, and the lines are the rulings.

In this text, we consider curves C that lie in planes parallel to one of the
coordinate planes, and lines L that are perpendicular to these planes, forming
right cylinders. Thus the directrix can be defined using equaƟons involving 2
variables, and the rulings will be parallel to the axis of the 3rd variable.

In the example preceding the definiƟon, the curve x2 + y2 = 1 in the x-y
plane is the directrix and the rulings are lines parallel to the z-axis. (Any circle
shown in Figure 10.7 can be considered a directrix; we simply choose the one
where z = 0.) Sample rulings can also be viewed in part (b) of the figure. More
examples will help us understand this definiƟon.

Notes:
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.. Example 314 Graphing cylinders
Graph the cylinder following cylinders.

1. z = y2

2. x = sin z

SÊ½çã®ÊÄ

1. We can view the equaƟon z = y2 as a parabola in the y-z plane, as illus-
trated in Figure 10.8 (a). As x does not appear in the equaƟon, the rulings
are lines through this parabola parallel to the x-axis, shown in (b). These
rulings give a general idea as to what the surface looks like, drawn in (c).
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Figure 10.8: Sketching the cylinder defined by z = y2.

2. We can view the equaƟon x = sin z as a sine curve that exists in the x-z
plane, as shown in Figure 10.9 (a). The rules are parallel to the y axis as
the variable y does not appear in the equaƟon x = sin z; some of these
are shown in part (b). The surface is shown in part (c) of the figure.
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Figure 10.9: Sketching the cylinder defined by x = sin z...
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Figure 10.10: Introducing surfaces of rev-
oluƟon.
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Figure 10.11: Revolving y = sin z about
the z-axis in Example 315.
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Surfaces of RevoluƟon

One of the applicaƟons of integraƟon we learned previously was to find the
volume of solids of revoluƟon – solids formed by revolving a curve about a hori-
zontal or verƟcal axis. We now consider how to find the equaƟon of the surface
of such a solid.

Consider the surface formed by revolving y =
√
x about the x-axis. Cross–

secƟons of this surface parallel to the y-z plane are circles, as shown in Figure
10.10a. Each circle has equaƟon of the form y2 + z2 = r2 for some radius r. The
radius is a funcƟon of x; in fact, it is r(x) =

√
x. Thus the equaƟon of the surface

shown in Figure 10.10b is y2 + z2 = (
√
x)2.

We generalize the above principles to give the equaƟons of surfaces formed
by revolving curves about the coordinate axes.

.

.

.
Key Idea 47 Surfaces of RevoluƟon, Part 1

Let r be a radius funcƟon.

1. The equaƟon of the surface formed by revolving y = r(x) or z =
r(x) about the x-axis is y2 + z2 = r(x)2.

2. The equaƟon of the surface formed by revolving x = r(y) or z =
r(y) about the y-axis is x2 + z2 = r(y)2.

3. The equaƟon of the surface formed by revolving x = r(z) or y =
r(z) about the z-axis is x2 + y2 = r(z)2.

.. Example 315 Finding equaƟon of a surface of revoluƟon
Let y = sin z on [0, π]. Find the equaƟon of the surface of revoluƟon formed by
revolving y = sin z about the z-axis.

SÊ½çã®ÊÄ Using Key Idea 47, we find the surface has equaƟon x2+y2 =
sin2 z. The curve is sketched in Figure 10.11a and the surface is drawn in Figure
10.11b.

Note how the surface (and hence the resulƟng equaƟon) is the same if we
began with the curve x = sin z, which is also drawn in Figure 10.11a. ..

This parƟcular method of creaƟng surfaces of revoluƟon is limited. For in-
stance, in Example 210 of SecƟon 7.3 we found the volume of the solid formed
by revolving y = sin x about the y-axis. Our current method of forming surfaces
can only rotate y = sin x about the x-axis. Trying to rewrite y = sin x as a func-
Ɵon of y is not trivial, as simply wriƟng x = sin−1 y only gives part of the region

Notes:
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Figure 10.12: Revolving z = sin x about
the z-axis in Example 316.

10.1 IntroducƟon to Cartesian Coordinates in Space

we desire.
What we desire is a way of wriƟng the surface of revoluƟon formed by ro-

taƟng y = f(x) about the y-axis. We start by first recognizing this surface is the
same as revolving z = f(x) about the z-axis. This will give us a more natural way
of viewing the surface.

A value of x is a measurement of distance from the z-axis. At the distance r,
we plot a z-height of f(r). When rotaƟng f(x) about the z-axis, wewant all points
a distance of r from the z-axis in the x-y plane to have a z-height of f(r). All such
points saƟsfy the equaƟon r2 = x2 + y2; hence r =

√
x2 + y2. Replacing r with√

x2 + y2 in f(r) gives z = f(
√

x2 + y2). This is the equaƟon of the surface.

.

.

.
Key Idea 48 Surfaces of RevoluƟon, Part 2

Let z = f(x), x ≥ 0, be a curve in the x-z plane. The surface formed by
revolving this curve about the z-axis has equaƟon z = f

(√
x2 + y2

)
.

.. Example 316 Finding equaƟon of surface of revoluƟon
Find the equaƟon of the surface found by revolving z = sin x about the z-axis.

SÊ½çã®ÊÄ Using Key Idea 48, the surface has equaƟon z = sin
(√

x2 + y2
)
.

The curve and surface are graphed in Figure 10.12. ..

Quadric Surfaces

Spheres, planes and cylinders are important surfaces to understand. We
now consider one last type of surface, a quadric surface. The definiƟon may
look inƟmidaƟng, but we will show how to analyze these surfaces in an illumi-
naƟng way.

.

.

.
DefiniƟon 50 Quadric Surface

A quadric surface is the graph of the general second–degree equaƟon in
three variables:

Ax2 + By2 + Cz2 + Dxy+ Exz+ Fyz+ Gx+ Hy+ Iz+ J = 0.

When the coefficients D, E or F are not zero, the basic shapes of the quadric
surfaces are rotated in space. We will focus on quadric surfaces where these co-
effiecients are 0; we will not consider rotaƟons. There are six basic quadric sur-

Notes:
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Figure 10.13: The ellipƟc paraboloid z =
x2/4+ y2.

Chapter 10 Vectors

faces: the ellipƟc paraboloid, ellipƟc cone, ellipsoid, hyperboloid of one sheet,
hyperboloid of two sheets, and the hyperbolic paraboloid.

We study each shape by considering traces, that is, intersecƟons of each
surface with a plane parallel to a coordinate plane. For instance, consider the
ellipƟc paraboloid z = x2/4 + y2, shown in Figure 10.13. If we intersect this
shape with the plane z = d (i.e., replace z with d), we have the equaƟon:

d =
x2

4
+ y2.

Divide both sides by d:

1 =
x2

4d
+

y2

d
.

This describes an ellipse – so cross secƟons parallel to the x-y coordinate plane
are ellipses. This ellipse is drawn in the figure.

Now consider cross secƟons parallel to the x-z plane. For instance, leƫng
y = 0 gives the equaƟon z = x2/4, clearly a parabola. IntersecƟng with the
plane x = 0 gives a cross secƟon defined by z = y2, another parabola. These
parabolas are also sketched in the figure.

Thuswe seewhere the ellipƟc paraboloid gets its name: some cross secƟons
are ellipses, and others are parabolas.

Such an analysis can be made with each of the quadric surfaces. We give a
sample equaƟon of each, provide a sketch with representaƟve traces, and de-
scribe these traces.

Notes:
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EllipƟc Paraboloid, z =
x2

a2
+

y2

b2

...

..

x

.

y

.

z
Plane Trace
x = d Parabola
y = d Parabola
z = d Ellipse

...

..

In plane
y = 0

..

In plane
x = 0

..
In plane
z = d

..

x

.

y

.

z

One variable in the equaƟon of the ellipƟc paraboloid will be raised to the first power; above,
this is the z variable. The paraboloid will “open” in the direcƟon of this variable’s axis. Thus
x = y2/a2 + z2/b2 is an ellipƟc paraboloid that opens along the x-axis.

MulƟplying the right hand side by (−1) defines an ellipƟc paraboloid that “opens” in the opposite
direcƟon.

EllipƟc Cone, z2 =
x2

a2
+

y2

b2

...

..x . y.

z Plane Trace
x = 0 Crossed Lines
y = 0 Crossed Lines

x = d Hyperbola
y = d Hyperbola
z = d Ellipse

...

......x . y.

z

.

in plane
z = d

.

in plane
y = 0

...

...x . y.

z

.

in plane
y = d

One can rewrite the equaƟon as z2 − x2/a2 − y2/b2 = 0. The one variable with a posiƟve
coefficient corresponds to the axis that the cones “open” along.
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Ellipsoid,
x2

a2
+

y2

b2
+

z2

c2
= 1

...

..x . y.

z Plane Trace
x = d Ellipse
y = d Ellipse
z = d Ellipse

...

.....x . y.

z

.

in plane
y = 0

.

in plane
x = 0

.

in plane
z = 0

If a = b = c ̸= 0, the ellipsoid is a sphere with radius a; compare to Key Idea 46.

Hyperboloid of One Sheet,
x2

a2
+

y2

b2
− z2

c2
= 1

...

..x . y.

z Plane Trace
x = d Hyperbola
y = d Hyperbola
z = d Ellipse

...

.....x . y.

z

.

in plane
y = 0

.

in plane
x = 0

.

in plane
z = 0

The one variable with a negaƟve coefficient corresponds to the axis that the hyperboloid “opens”
along.
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Hyperboloid of Two Sheets,
z2

c2
− x2

a2
− y2

b2
= 1

...

..x . y.

z
Plane Trace
x = d Hyperbola
y = d Hyperbola
z = d Ellipse

...

.....x . y.

z

.

in plane
y = 0

.

in plane
x = 0

.

in plane
z = d

The one variable with a posiƟve coefficient corresponds to the axis that the hyperboloid “opens”
along. In the case illustrated, when |d| < |c|, there is no trace.

Hyperbolic Paraboloid, z =
x2

a2
− y2

b2

...

..
x

.
y

.

z Plane Trace
x = d Parabola
y = d Parabola
z = d Hyperbola

...

....
x

.
y

.

z

.

in plane
y = 0

.

in plane
x = 0

...

......
x

.
y

.

z

.

in plane
z = d

(d > 0)

.

in plane
z = d

(d < 0)

The parabolic traces will open along the axis of the one variable that is raised to the first power.
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Figure 10.14: Sketching an ellipƟc
paraboloid.
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Figure 10.15: Sketching an ellipsoid.

Chapter 10 Vectors

.. Example 317 ..Sketching quadric surfaces
Sketch the quadric surface defined by the given equaƟon.

1. y =
x2

4
+

z2

16
2. x2 +

y2

9
+

z2

4
= 1. 3. z = y2 − x2.

SÊ½çã®ÊÄ

1. y =
x2

4
+

z2

16
:

Wefirst idenƟfy thequadric by paƩern–matchingwith the equaƟons given
previously. Only two surfaces have equaƟons where one variable is raised
to the first power, the ellipƟc paraboloid and the hyperbolic paraboloid.
In the laƩer case, the other variables have different signs, so we conclude
that this describes a hyperbolic paraboloid. As the variable with the first
power is y, we note the parboloid opens along the y-axis.

To make a decent sketch by hand, we need only draw a few traces. In this
case, the traces x = 0 and z = 0 form parabolas that outline the shape.

x = 0: The trace is the parabola y = z2/16

z = 0: The trace is the parabola y = x2/4.

Graphing each trace in the respecƟve plane creates a sketch as shown in
Figure 10.14 (a). This is enough to give an idea of what the paraboloid
looks like. The surface is filled in in (b).

2. x2 +
y2

9
+

z2

4
= 1 :

This is an ellipsoid. We can get a good idea of its shape by drawing the
traces in the coordinate planes.

x = 0: The trace is the ellipse
y2

9
+

z2

4
= 1. The major axis is along the

y–axis with length 6 (as b = 3, the length of the axis is 6); the minor axis
is along the z-axis with length 4.

y = 0: The trace is the ellipse x2 +
z2

4
= 1. The major axis is along the

z-axis, and the minor axis has length 2 along the x-axis.

z = 0: The trace is the ellipse x2 +
y2

9
= 1, with major axis along the

y-axis.

Graphing each trace in the respecƟve plane creates a sketch as shown in
Figure 10.15 (a). Filling in the surface gives Figure 10.15 (b).

3. z = y2 − x2:

Notes:
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Figure 10.16: Sketching a hyperbolic
paraboloid.
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Figure 10.17: A possible equaƟon of this
quadric surface is found in Example 318.

10.1 IntroducƟon to Cartesian Coordinates in Space

This defines a hyperbolic paraboloid, very similar to the one shown in the
gallery of quadric secƟons. Consider the traces in the y−z and x−z planes:
x = 0: The trace is z = y2, a parabola opening up in the y− z plane.
y = 0: The trace is z = −x2, a parabola opening down in the x− z plane.
Sketching these two parabolas gives a sketch like that in Figure 10.16 (a),
and filling in the surface gives a sketch like (b)....

.. Example 318 IdenƟfying quadric surfaces
Consider the quadric surface shown in Figure 10.17. Which of the following
equaƟons best fits this surface?

(a) x2 − y2 − z2

9
= 0 (c) z2 − x2 − y2 = 1

(b) x2 − y2 − z2 = 1 (d) 4x2 − y2 − z2

9
= 1

SÊ½çã®ÊÄ The image clearly displays a hyperboloid of two sheets. The
gallery informs us that the equaƟon will have a form similar to z2

c2 −
x2
a2 −

y2
b2 = 1.

We can immediately eliminate opƟon (a), as the constant in that equaƟon is
not 1.

The hyperboloid “opens” along the x-axis, meaning xmust be the only vari-
able with a posiƟve coefficient, eliminaƟng (c).

The hyperboloid is wider in the z-direcƟon than in the y-direcƟon, so we
need an equaƟon where c > b. This eliminates (b), leaving us with (d). We
should verify that the equaƟon given in (d), 4x2 − y2 − z2

9 = 1, fits.
We already established that this equaƟon describes a hyperboloid of two

sheets that opens in the x-direcƟon and is wider in the z-direcƟon than in the
y. Now note the coefficient of the x-term. RewriƟng 4x2 in standard form, we

have: 4x2 =
x2

(1/2)2
. Thus when y = 0 and z = 0, x must be 1/2; i.e., each

hyperboloid “starts” at x = 1/2. This matches our figure.

We conclude that 4x2 − y2 − z2

9
= 1 best fits the graph. ..

This secƟon has introduced points in space and shown how equaƟons can
describe surfaces. The next secƟons explore vectors, an importantmathemaƟcal
object that we’ll use to explore curves in space.

Notes:
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Exercises 10.1
Terms and Concepts
1. Axes drawn in space must conform to the

rule.

2. In the plane, the equaƟon x = 2 defines a ; in
space, x = 2 defines a .

3. In the plane, the equaƟon y = x2 defines a ; in
space, y = x2 defines a .

4. Which quadric surface looks like a Pringles® chip?

5. Consider the hyperbola x2 − y2 = 1 in the plane. If this
hyperbola is rotated about the x-axis, what quadric surface
is formed?

6. Consider the hyperbola x2 − y2 = 1 in the plane. If this
hyperbola is rotated about the y-axis, what quadric surface
is formed?

Problems
7. The points A = (1, 4, 2), B = (2, 6, 3) and C = (4, 3, 1)

form a triangle in space. Find the distances between each
pair of points and determine if the triangle is a right trian-
gle.

8. The points A = (1, 1, 3), B = (3, 2, 7), C = (2, 0, 8) and
D = (0,−1, 4) form a quadrilateral ABCD in space. Is this
a parallelogram?

9. Find the center and radius of the sphere defined by
x2 − 8x+ y2 + 2y+ z2 + 8 = 0.

10. Find the center and radius of the sphere defined by
x2 + y2 + z2 + 4x− 2y− 4z+ 4 = 0.

In Exercises 11 – 14, describe and sketch the regions in space
defined by the inequaliƟes.

11. x2 + y2 + z2 < 1

12. 0 ≤ x ≤ 3

13. x ≥ 0, y ≥ 0, z ≥ 0

14. y ≥ 3

In Exercises 15 – 18, sketch the cylinder in space.

15. z = x3

16. y = cos z

17.
x2

4
+

y2

9
= 1

18. y =
1
x

In Exercises 19 – 22, give the equaƟon of the surface of revo-
luƟon described.

19. Revolve z =
1

1+ y2
about the y-axis.

20. Revolve y = x2 about the x-axis.

21. Revolve z = x2 about the z-axis.

22. Revolve z = 1/x about the z-axis.

In Exercises 23 – 26, a quadric surface is sketched. Determine
which of the given equaƟons best fits the graph.

23.

...

..1 .

−3

.
3

.
−3

.

3

.x .
y

.

z

(a) x = y2 +
z2

9
(b) x = y2 +

z2

3

24.

...

..

−1

. 1.
−1

.
1

.
−1

.

1

.x.
y

.

z

(a) x2 − y2 − z2 = 0 (b) x2 − y2 + z2 = 0

25.

...

..
1

.
−1

. 3.−2 .

2

.x . y.

z

(a) x2 +
y2

3
+

z2

2
= 1 (b) x2 +

y2

9
+

z2

4
= 1

26.

...

..

−2

.2 .

−2

. 2.

−2

.

2

.x .
y

.

z

(a) y2 − x2 − z2 = 1 (b) y2 + x2 − z2 = 1

In Exercises 27 – 32, sketch the quadric surface.
27. z− y2 + x2 = 0

28. z2 = x2 +
y2

4
29. x = −y2 − z2

30. 16x2 − 16y2 − 16z2 = 1

31.
x2

9
− y2 +

z2

25
= 1

32. 4x2 + 2y2 + z2 = 4
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Figure 10.19: IllustraƟng how equal vec-
tors have the same displacement.

10.2 An IntroducƟon to Vectors

10.2 An IntroducƟon to Vectors

Many quanƟƟes we think about daily can be described by a single number: tem-
perature, speed, cost, weight and height. There are also many other concepts
we encounter daily that cannot be describedwith just one number. For instance,
a weather forecaster oŌen describes wind with its speed and its direcƟon (“. . .
with winds from the southeast gusƟng up to 30 mph . . .”). When applying a
force, we are concerned with both the magnitude and direcƟon of that force.
In both of these examples, direcƟon is important. Because of this, we study
vectors, mathemaƟcal objects that convey both magnitude and direcƟon infor-
maƟon.

One “bare–bones” definiƟon of a vector is based on what we wrote above:
“a vector is a mathemaƟcal object with magnitude and direcƟon parameters.”
This definiƟon leaves much to be desired, as it gives no indicaƟon as to how
such an object is to be used. Several other definiƟons exist; we choose here a
definiƟon rooted in a geometric visualizaƟon of vectors. It is very simplisƟc but
readily permits further invesƟgaƟon.

.

.

.
DefiniƟon 51 Vector

A vector is a directed line segment.

Given points P and Q (either in the plane or in space), we denote with
#  ‰PQ the vector from P to Q. The point P is said to be the iniƟal point of
the vector, and the point Q is the terminal point.

The magnitude, or norm of #  ‰PQ is the length of the line segment PQ:
|| #  ‰PQ || = || PQ ||.

Two vectors are equal if they have the same magnitude and direcƟon.

Figure 10.18 showsmulƟple instances of the same vector. Each directed line
segment has the same direcƟon and length (magnitude), hence each is the same
vector.

We use R2 (pronounced “r two”) to represent all the vectors in the plane,
and use R3 (pronounced “r three”) to represent all the vectors in space.

Consider the vectors #  ‰PQ and #‰RS as shown in Figure 10.19. The vectors look to
be equal; that is, they seem to have the same length and direcƟon. Indeed, they
are. Both vectors move 2 units to the right and 1 unit up from the iniƟal point
to reach the terminal point. One can analyze this movement to measure the

Notes:
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magnitude of the vector, and the movement itself gives direcƟon informaƟon
(one could also measure the slope of the line passing through P and Q or R and
S). Since they have the same length and direcƟon, these two vectors are equal.

This demonstrates that inherently all we care about is displacement; that is,
how far in the x, y and possibly z direcƟons the terminal point is from the iniƟal
point. Both the vectos #  ‰PQ and #‰RS in Figure 10.19 have an x-displacement of 2
and a y-displacement of 1. This suggests a standard way of describing vectors
in the plane. A vector whose x-displacement is a and whose y-displacement is
b will have terminal point (a, b) when the iniƟal point is the origin, (0, 0). This
leads us to a definiƟon of a standard and concise way of referring to vectors.

.

.

.
DefiniƟon 52 Component Form of a Vector

1. The component form of a vector v⃗ in R2, whose terminal point is
(a, b) when its iniƟal point is (0, 0), is ⟨a, b⟩ .

2. The component form of a vector v⃗ in R3, whose terminal point is
(a, b, c) when its iniƟal point is (0, 0, 0), is ⟨a, b, c⟩ .

The numbers a, b (and c, respecƟvely) are the components of v⃗.

It follows from the definiƟon that the component form of the vector #  ‰PQ,
where P = (x1, y1) and Q = (x2, y2) is

#  ‰PQ = ⟨x2 − x1, y2 − y1⟩ ;

in space, where P = (x1, y1, z1) and Q = (x2, y2, z2), the component form of #  ‰PQ
is

#  ‰PQ = ⟨x2 − x1, y2 − y1, z2 − z1⟩ .

We pracƟce using this notaƟon in the following example.

.. Example 319 ..Using component form notaƟon for vectors

1. Sketch the vector v⃗ = ⟨2,−1⟩ starƟng at P = (3, 2) and find its magni-
tude.

2. Find the component formof the vector w⃗whose iniƟal point isR = (−3,−2)
and whose terminal point is S = (−1, 2).

3. Sketch the vector u⃗ = ⟨2,−1, 3⟩ starƟng at the point Q = (1, 1, 1) and
find its magnitude.

Notes:
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Figure 10.20: Graphing vectors in Exam-
ple 319.

10.2 An IntroducƟon to Vectors

SÊ½çã®ÊÄ

1. Using P as the iniƟal point, wemove 2 units in the posiƟve x-direcƟon and
−1 units in the posiƟve y-direcƟon to arrive at the terminal point P ′ =
(5, 1), as drawn in Figure 10.20 (a).

The magnitude of v⃗ is determined directly from the component form:

|| v⃗ || =
√

22 + (−1)2 =
√
5.

2. Using the note following DefiniƟon 52, we have

#‰RS = ⟨−1− (−3), 2− (−2)⟩ = ⟨2, 4⟩ .

One can readily see from Figure 10.20 (a) that the x- and y-displacement
of #‰RS is 2 and 4, respecƟvely, as the component form suggests.

3. Using Q as the iniƟal point, we move 2 units in the posiƟve x-direcƟon,
−1 unit in the posiƟve y-direcƟon, and 3 units in the posiƟve z-direcƟon
to arrive at the terminal point Q′ = (3, 0, 4), illustrated in Figure 10.20
(b).

The magnitude of u⃗ is:

|| u⃗ || =
√

22 + 02 + 32 =
√
13.

...

Now thatwehave defined vectors, and have created a nice notaƟonbywhich
to describe them, we start considering how vectors interact with each other.
That is, we define an algebra on vectors.

Notes:
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Figure 10.21: Graphing the sumof vectors
in Example 320.
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.

.

.
DefiniƟon 53 Vector Algebra

1. Let u⃗ = ⟨u1, u2⟩ and v⃗ = ⟨v1, v2⟩ be vectors in R2, and let c be a
scalar.

(a) The addiƟon, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨u1 + v1, u2 + v2⟩ .

(b) The scalar product of c and v⃗ is the vector

c⃗v = c ⟨v1, v2⟩ = ⟨cv1, cv2⟩ .

2. Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ be vectors in R3, and let c
be a scalar.

(a) The addiƟon, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨u1 + v1, u2 + v2, u3 + v3⟩ .

(b) The scalar product of c and v⃗ is the vector

c⃗v = c ⟨v1, v2⟩ = ⟨cv1, cv2, cv3⟩ .

In short, we say addiƟon and scalarmulƟplicaƟon are computed “component–
wise.”

.. Example 320 Adding vectors
Sketch the vectors u⃗ = ⟨1, 3⟩, v⃗ = ⟨2, 1⟩ and u⃗ + v⃗ all with iniƟal point at the
origin.

SÊ½çã®ÊÄ We first compute u⃗+ v⃗.

u⃗+ v⃗ = ⟨1, 3⟩+ ⟨2, 1⟩
= ⟨3, 4⟩ .

These are all sketched in Figure 10.21. ..

As vectors convey magnitude and direcƟon informaƟon, the sum of vectors
also convey length and magnitude informaƟon. Adding u⃗ + v⃗ suggests the fol-
lowing idea:

Notes:
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Figure 10.22: IllustraƟng how to add vec-
tors using the Head to Tail Rule and Paral-
lelogram Law.
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.

2

.
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.

2

.

x

.

y

Figure 10.23: IllustraƟng how to subtract
vectors graphically.

10.2 An IntroducƟon to Vectors

“StarƟng at an iniƟal point, go out u⃗, then go out v⃗.”

This idea is sketched in Figure 10.22, where the iniƟal point of v⃗ is the termi-
nal point of u⃗. This is known as the “Head to Tail Rule” of adding vectors. Vector
addiƟon is very important. For instance, if the vectors u⃗ and v⃗ represent forces
acƟng on a body, the sum u⃗ + v⃗ gives the resulƟng force. Because of various
physical applicaƟons of vector addiƟon, the sum u⃗+ v⃗ is oŌen referred to as the
resultant vector, or just the “resultant.”

AnalyƟcally, it is easy to see that u⃗ + v⃗ = v⃗ + u⃗. Figure 10.22 also gives a
graphical representaƟon of this, using gray vectors. Note that the vectors u⃗ and
v⃗, when arranged as in the figure, form a parallelogram. Because of this, the
Head to Tail Rule is also known as the Parallelogram Law: the vector u⃗ + v⃗ is
defined by forming the parallelogram defined by the vectors u⃗ and v⃗; the iniƟal
point of u⃗ + v⃗ is the common iniƟal point of parallelogram, and the terminal
point of the sum is the common terminal point of the parallelogram.

While not illustrated here, the Head to Tail Rule and Parallelogram Law hold
for vectors in R3 as well.

It follows from the properƟes of the real numbers and DefiniƟon 53 that

u⃗− v⃗ = u⃗+ (−1)⃗v.

The Parallelogram Law gives us a good way to visualize this subtracƟon. We
demonstrate this in the following example.

.. Example 321 Vector SubtracƟon
Let u⃗ = ⟨3, 1⟩ and v⃗ = ⟨1, 2⟩ . Compute and sketch u⃗− v⃗.

SÊ½çã®ÊÄ The computaƟon of u⃗ − v⃗ is straighƞorward, and we show
all steps below. Usually the formal step of mulƟplying by (−1) is omiƩed and
we “just subtract.”

u⃗− v⃗ = u⃗+ (−1)⃗v
= ⟨3, 1⟩+ ⟨−1,−2⟩
= ⟨2,−1⟩ .

Figure 10.23 illustrates, using the Head to Tail Rule, how the subtracƟon can be
viewed as the sum u⃗ + (−v⃗). The figure also illustrates how u⃗ − v⃗ can be ob-
tained by looking only at the terminal points of u⃗ and v⃗ (when their iniƟal points
are the same). ..

.. Example 322 ..Scaling vectors

1. Sketch the vectors v⃗ = ⟨2, 1⟩ and 2⃗v with iniƟal point at the origin.

Notes:
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Figure 10.24: Graphing vectors v⃗ and 2⃗v
in Example 322.

Chapter 10 Vectors

2. Compute the magnitudes of v⃗ and 2⃗v.

SÊ½çã®ÊÄ

1. We compute 2⃗v:

2⃗v = 2 ⟨2, 1⟩
= ⟨4, 2⟩ .

These are sketched in Figure 10.24. Make note that 2⃗v does not start at
the terminal point of v⃗; rather, its iniƟal point is also the origin.

2. The figure suggests that 2⃗v is twice as long as v⃗. We compute their mag-
nitudes to confirm this.

|| v⃗ || =
√

22 + 12

=
√
5.

|| 2⃗v || =
√

42 + 22

=
√
20

=
√
4 · 5 = 2

√
5.

As we suspected, 2⃗v is twice as long as v⃗.
...

The zero vector is the vector whose iniƟal point is also its terminal point. It
is denoted by 0⃗. Its component form, inR2, is ⟨0, 0⟩; inR3, it is ⟨0, 0, 0⟩. Usually
the context makes is clear whether 0⃗ is referring to a vector in the plane or in
space.

Our examples have illustrated key principles in vector algebra: how to add
and subtract vectors and how to mulƟply vectors by a scalar. The following the-
orem states formally the properƟes of these operaƟons.

Notes:
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10.2 An IntroducƟon to Vectors

.

.

.
Theorem 84 ProperƟes of Vector OperaƟons

The following are true for all scalars c and d, and for all vectors u⃗, v⃗ and
w⃗, where u⃗, v⃗ and w⃗ are all in R2 or where u⃗, v⃗ and w⃗ are all in R3:

1. u⃗+ v⃗ = v⃗+ u⃗ CommutaƟve Property

2. (⃗u+ v⃗) + w⃗ = u⃗+ (⃗v+ w⃗) AssociaƟve Property

3. v⃗+ 0⃗ = v⃗ AddiƟve IdenƟty

4. (cd)⃗v = c(d⃗v)

5. c(⃗u+ v⃗) = c⃗u+ c⃗v DistribuƟve Property

6. (c+ d)⃗v = c⃗v+ d⃗v DistribuƟve Property

7. 0 · v⃗ = 0⃗

8. || c⃗v || = |c| · || v⃗ ||

9. || u⃗ || = 0 if, and only if, u⃗ = 0⃗.

As stated before, each vector v⃗ conveys magnitude and direcƟon informa-
Ɵon. We have a method of extracƟng the magnitude, which we write as || v⃗ ||.
Unit vectors are a way of extracƟng just the direcƟon informaƟon from a vector.

.

.

.
DefiniƟon 54 Unit Vector

A unit vector is a vector v⃗ with a magnitude of 1; that is,

|| v⃗ || = 1.

Consider this scenario: you are given a vector v⃗ and are told to create a vector
of length 10 in the direcƟon of v⃗. How does one do that? If we knew that u⃗ was
the unit vector in the direcƟon of v⃗, the answer would be easy: 10u⃗. So how do
we find u⃗ ?

Property 8 of Theorem 84 holds the key. If we divide v⃗ by its magnitude, it
becomes a vector of length 1. Consider:∣∣∣∣∣∣∣∣ 1

|| v⃗ ||
v⃗
∣∣∣∣∣∣∣∣ = 1

|| v⃗ ||
|| v⃗ || (we can pull out

1
|| v⃗ || as it is a scalar)

= 1.

Notes:
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Figure 10.25: Graphing vectors in Exam-
ple 323. All vectors shown have their ini-
Ɵal point at the origin.

Chapter 10 Vectors

So the vector of length 10 in the direcƟon of v⃗ is 10 · 1
|| v⃗ ||

· v⃗. An example will

make this more clear.

.. Example 323 Using Unit Vectors
Let v⃗ = ⟨3, 1⟩ and let w⃗ = ⟨1, 2, 2⟩.

1. Find the unit vector in the direcƟon of v⃗.

2. Find the unit vector in the direcƟon of w⃗.

3. Find the vector in the direcƟon of v⃗ with magnitude 5.

SÊ½çã®ÊÄ

1. We find || v⃗ || =
√
10. So the unit vector u⃗ in the direcƟon of v⃗ is

u⃗ =
1√
10

v⃗ =
⟨

3√
10

,
1√
10

⟩
.

2. We find || w⃗ || = 3, so the unit vector z⃗ in the direcƟon of w⃗ is

u⃗ =
1
3
w⃗ =

⟨
1
3
,
2
3
,
2
3

⟩
.

3. To create a vector with magnitude 5 in the direcƟon of v⃗, we mulƟply the
unit vector u⃗ by 5. Thus 5u⃗ =

⟨
15/

√
10, 5/

√
10
⟩
is the vector we seek.

This is sketched in Figure 10.25.
..

The basic formaƟon of the unit vector u⃗ in the direcƟon of a vector v⃗ leads
to a interesƟng equaƟon. It is:

v⃗ = || v⃗ || 1
|| v⃗ ||

v⃗.

We rewrite the equaƟon with parentheses to make a point:

v⃗ = || v⃗ ||︸︷︷︸
magnitude

·
(

1
|| v⃗ ||

v⃗
)

︸ ︷︷ ︸
direcƟon

.

This equaƟon illustrates the fact that a vector has both magnitude and di-
recƟon, where we view a unit vector as supplying only direcƟon informaƟon.
IdenƟfying unit vectors with direcƟon allows us to define parallel vectors.

Notes:
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Note: 0⃗ is direcƟonless; because || 0⃗ || =
0, there is no unit vector in the “direcƟon”
of 0⃗.
Some texts define two vectors as being
parallel if one is a scalar mulƟple of the
other. By this definiƟon, 0⃗ is parallel to
all vectors as 0⃗ = 0⃗v for all v⃗.
We prefer the given definiƟon of parallel
as it is grounded in the fact that unit vec-
tors provide direcƟon informaƟon. One
may adopt the convenƟon that 0⃗ is paral-
lel to all vectors if they desire. (See also
the marginal note on page 573.)

..

50lb

.

45◦

.

30◦

Figure 10.26: A diagram of a weight hang-
ing from 2 chains in Example 324.

10.2 An IntroducƟon to Vectors

.

.

.
DefiniƟon 55 Parallel Vectors

1. Unit vectors u⃗1 and u⃗2 are parallel if u⃗1 = ±u⃗2.

2. Nonzero vectors v⃗1 and v⃗2 are parallel if their respecƟve unit vec-
tors are parallel.

It is equivalent to say that vectors v⃗1 and v⃗2 are parallel if there is a scalar
c ̸= 0 such that v⃗1 = c⃗v2 (see marginal note).

If one graphed all unit vectors in R2 with the iniƟal point at the origin, then
the terminal points would all lie on the unit circle. Based on what we know from
trigonometry, we can then say that the component form of all unit vectors inR2

is ⟨cos θ, sin θ⟩ for some angle θ.
A similar construcƟon inR3 shows that the terminal points all lie on the unit

sphere. These vectors also have a parƟcular component form, but its derivaƟon
is not as straighƞorward as the one for unit vectors in R2. Important concepts
about unit vectors are given in the following Key Idea.

.

.

.
Key Idea 49 Unit Vectors

1. The unit vector in the direcƟon of v⃗ is

u⃗ =
1

|| v⃗ ||
v⃗.

2. A vector u⃗ in R2 is a unit vector if, and only if, its component form
is ⟨cos θ, sin θ⟩ for some angle θ.

3. A vector u⃗ in R3 is a unit vector if, and only if, its component form
is ⟨sin θ cosφ, sin θ sinφ, cos θ⟩ for some angles θ and φ.

These formulas can come in handy in a variety of situaƟons, especially the
formula for unit vectors in the plane.

.. Example 324 ..Finding Component Forces
Consider a weight of 50lb hanging from two chains, as shown in Figure 10.26.
One chain makes an angle of 30◦ with the verƟcal, and the other an angle of
45◦. Find the force applied to each chain.

SÊ½çã®ÊÄ Knowing that gravity is pulling the 50lbweight straight down,

Notes:
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F⃗1
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F⃗2
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F⃗

. 120◦.
45◦

Figure 10.27: A diagram of the force vec-
tors from Example 324.

Chapter 10 Vectors

we can create a vector F⃗ to represent this force.

F⃗ = 50 ⟨0,−1⟩ = ⟨0,−50⟩ .

We can view each chain as “pulling” theweight up, prevenƟng it from falling.
We can represent the force from each chain with a vector. Let F⃗1 represent the
force from the chain making an angle of 30◦ with the verƟcal, and let F⃗2 repre-
sent the force form the other chain. Convert all angles to be measured from the
horizontal (as shown in Figure 10.27), and apply Key Idea 49. As we do not yet
know the magnitudes of these vectors, (that is the problem at hand), we usem1
andm2 to represent them.

F⃗1 = m1 ⟨cos 120◦, sin 120◦⟩

F⃗2 = m2 ⟨cos 45◦, sin 45◦⟩

As the weight is not moving, we know the sum of the forces is 0⃗. This gives:

F⃗+ F⃗1 + F⃗2 = 0⃗

⟨0,−50⟩+m1 ⟨cos 120◦, sin 120◦⟩+m2 ⟨cos 45◦, sin 45◦⟩ = 0⃗

The sum of the entries in the first component is 0, and the sum of the entries
in the second component is also 0. This leads us to the following two equaƟons:

m1 cos 120◦ +m2 cos 45◦ = 0
m1 sin 120◦ +m2 sin 45◦ = 50

This is a simple 2-equaƟon, 2-unkown system of linear equaƟons. We leave it to
the reader to verify that the soluƟon is

m1 = 50(
√
3− 1) ≈ 36.6; m2 =

50
√
2

1+
√
3
≈ 25.88.

It might seem odd that the sum of the forces applied to the chains is more
than 50lb. We leave it to a physics class to discuss the full details, but offer this
short explanaƟon. Our equaƟons were established so that the verƟcal compo-
nents of each force sums to 50lb, thus supporƟng the weight. Since the chains
are at an angle, they also pull against each other, creaƟng an “addiƟonal” hori-
zontal force while holding the weight in place. ...

Unit vectors were very important in the previous calculaƟon; they allowed
us to define a vector in the proper direcƟon but with an unknown magnitude.
Our computaƟons were then computed component–wise. Because such calcu-
laƟons are oŌen necessary, the standard unit vectors can be useful.

Notes:
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Chapter 10 Vectors

SÊ½çã®ÊÄ The force of the wind is represented by the vector F⃗w = 5⃗i.
The force of gravity on the weight is represented by F⃗g = −25⃗j. The direcƟon
and magnitude of the vector represenƟng the force on the chain are both un-
known. We represent this force with

F⃗c = m ⟨cosφ, sinφ⟩ = m cosφ i⃗+m sinφ j⃗

for some magnitude m and some angle with the horizontal φ. (Note: θ is the
angle the chain makes with the verƟcal; φ is the angle with the horizontal.)

As the weight is at equilibrium, the sum of the forces is 0⃗:

F⃗c + F⃗w + F⃗g = 0⃗

m cosφ i⃗+m sinφ j⃗+ 5⃗i− 25⃗j = 0⃗

Thus the sum of the i⃗ and j⃗ components are 0, leading us to the following
system of equaƟons:

5+m cosφ = 0
−25+m sinφ = 0

(10.1)

This is enough to determine F⃗c already, as we know m cosφ = −5 and
m sinφ = 25. Thus Fc = ⟨−5, 25⟩ . We can use this to find the magnitude
m:

m =
√

(−5)2 + 252 = 5
√
26.

We can then use either equality from EquaƟon (10.1) to solve for φ. We choose
the first equality as using arccosine will return an angle in the 2nd quadrant:

5+ 5
√
26 cosφ = 0 ⇒ φ = cos−1

(
−5

5
√
26

)
≈ 1.7682 ≈ 101.31◦.

SubtracƟng 90◦ from this angle gives us an angle of 11.31◦ with the verƟcal.
We can now use trigonometry to find out how high the weight is liŌed.

The diagram shows that a right triangle is formed with the 2Ō chain as the hy-
potenuse with an interior angle of 11.31◦. The length of the adjacent side (in
the diagram, the dashed verƟcal line) is 2 cos 11.31◦ ≈ 1.96Ō. Thus the weight
is liŌed by about 0.04Ō, almost 1/2in. ...

The algebra we have applied to vectors is already demonstraƟng itself to be
very useful. There are two more fundamental operaƟons we can perform with
vectors, the dot product and the cross product. The next two secƟons explore
each in turn.

Notes:
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Exercises 10.2
Terms and Concepts
1. Name two different things that cannot be described with

just one number, but rather need 2 or more numbers to
fully describe them.

2. What is the difference between (1, 2) and ⟨1, 2⟩?

3. What is a unit vector?

4. What does it mean for two vectors to be parallel?

5. What effect does mulƟplying a vector by−2 have?

Problems

In Exercises 6 – 9, points P and Q are given. Write the vector
# ‰PQ in component form and using the standard unit vectors.

6. P = (2,−1), Q = (3, 5)

7. P = (3, 2), Q = (7,−2)

8. P = (0, 3,−1), Q = (6, 2, 5)

9. P = (2, 1, 2), Q = (4, 3, 2)

10. Let u⃗ = ⟨1,−2⟩ and v⃗ = ⟨1, 1⟩.

(a) Find u⃗+ v⃗, u⃗− v⃗, 2⃗u− 3⃗v.

(b) Sketch the above vectors on the same axes, along
with u⃗ and v⃗.

(c) Find x⃗ where u⃗+ x⃗ = 2⃗v− x⃗.

11. Let u⃗ = ⟨1, 1,−1⟩ and v⃗ = ⟨2, 1, 2⟩.

(a) Find u⃗+ v⃗, u⃗− v⃗, πu⃗−
√
2⃗v.

(b) Sketch the above vectors on the same axes, along
with u⃗ and v⃗.

(c) Find x⃗ where u⃗+ x⃗ = v⃗+ 2⃗x.

In Exercises 12 – 15, sketch u⃗, v⃗, u⃗+ v⃗ and u⃗− v⃗ on the same
axes.

12.

.....

u⃗

. v⃗.

x

.

y

13.

.....

u⃗

.

v⃗

.

x

.

y

14.

...

..
u⃗

.v⃗ .

x

.

y

.

z

15.

...

..
u⃗

.

v⃗

.

x

.

y

.

z
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10.3 The Dot Product

10.3 The Dot Product
The previous secƟon introduced vectors and described how to add them to-
gether and how to mulƟply them by scalars. This secƟon introduces a mulƟ-
plicaƟon on vectors called the dot product.

.

.

.
DefiniƟon 57 Dot Product

1. Let u⃗ = ⟨u1, u2⟩ and v⃗ = ⟨v1, v2⟩ in R2. The dot product of u⃗ and
v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2.

2. Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ in R3. The dot product of
u⃗ and v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2 + u3v3.

Note how this product of vectors returns a scalar, not another vector. We
pracƟce evaluaƟng a dot product in the following example, then we will discuss
why this product is useful.

.. Example 327 EvaluaƟng dot products

1. Let u⃗ = ⟨1, 2⟩, v⃗ = ⟨3,−1⟩ in R2. Find u⃗ · v⃗.

2. Let x⃗ = ⟨2,−2, 5⟩ and y⃗ = ⟨−1, 0, 3⟩ in R3. Find x⃗ · y⃗.

SÊ½çã®ÊÄ

1. Using DefiniƟon 57, we have

u⃗ · v⃗ = 1(3) + 2(−1) = 1.

2. Using the definiƟon, we have

x⃗ · y⃗ = 2(−1)− 2(0) + 5(3) = 13.
..

Notes:
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Figure 10.29: IllustraƟng the angle
formed by two vectors with the same
iniƟal point.

Chapter 10 Vectors

The dot product, as shown by the preceding example, is very simple to eval-
uate. It is only the sum of products. While the definiƟon gives no hint as to why
we would care about this operaƟon, there is an amazing connecƟon between
the dot product and angles formed by the vectors. Before staƟng this connec-
Ɵon, we give a theorem staƟng some of the properƟes of the dot product.

.

.

.
Theorem 85 ProperƟes of the Dot Product

Let u⃗, v⃗ and w⃗ be vectors in R2 or R3 and let c be a scalar.

1. u⃗ · v⃗ = v⃗ · u⃗ CommutaƟve Property

2. u⃗ · (⃗v+ w⃗) = u⃗ · v⃗+ u⃗ · w⃗ DistribuƟve Property

3. c(⃗u · v⃗) = (c⃗u) · v⃗ = u⃗ · (c⃗v)

4. 0⃗ · v⃗ = 0

5. v⃗ · v⃗ = || v⃗ ||2

The last statement of the theorem makes a handy connecƟon between the
magnitude of a vector and the dot product with itself. Our definiƟon and theo-
rem give properƟes of the dot product, but we are sƟll likely wondering “What
does the dot productmean?” It is helpful to understand that the dot product of
a vector with itself is connected to its magnitude.

The next theorem extends this understanding by connecƟng the dot product
tomagnitudes and angles. Given vectors u⃗ and v⃗ in the plane, an angle θ is clearly
formedwhen u⃗ and v⃗ are drawnwith the same iniƟal point as illustrated in Figure
10.29 (a). (We always take θ to be the angle in [0, π] as two angles are actually
created.)

The same is also true of 2 vectors in space: given u⃗ and v⃗ inR3 with the same
iniƟal point, there is a plane that contains both u⃗ and v⃗. (When u⃗ and v⃗ are co-
linear, there are infinite planes that contain both vectors.) In that plane, we can
again find an angle θ between them (and again, 0 ≤ θ ≤ π). This is illustrated
in Figure 10.29 (b).

The following theorem connects this angle θ to the dot product of u⃗ and v⃗.
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Figure 10.32: Vectors used in Example
329.

Chapter 10 Vectors

We now apply Theorem 86 to find the angles.

α = cos−1
(

u⃗ · v⃗
(
√
10)(2

√
10)

)
= cos−1(0) =

π

2
= 90◦.

β = cos−1
(

v⃗ · w⃗
(2
√
10)(5)

)
= cos−1

(
26

10
√
10

)
≈ 0.6055 ≈ 34.7◦.

θ = cos−1
(

u⃗ · w⃗
(
√
10)(5)

)
= cos−1

(
−9

5
√
10

)
≈ 2.1763 ≈ 124.7◦

...

We see from our computaƟon that α+ β = θ, as indicated by Figure 10.31.
While we knew this should be the case, it is nice to see that this non-intuiƟve
formula indeed returns the results we expected.

We do a similar example next in the context of vectors in space.

.. Example 329 ..Using the dot product to find angles
Let u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨−1, 3,−2⟩ and w⃗ = ⟨−5, 1, 4⟩, as illustrated in Figure
10.32. Find the angle between each pair of vectors.

SÊ½çã®ÊÄ

1. Between u⃗ and v⃗:

θ = cos−1
(

u⃗ · v⃗
|| u⃗ |||| v⃗ ||

)
= cos−1

(
0√

3
√
14

)
=

π

2
.
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Note: The term perpendicular originally
referred to lines. As mathemaƟcs pro-
gressed, the concept of “being at right
angles to” was applied to other objects,
such as vectors and planes, and the term
orthogonal was introduced. It is espe-
cially used when discussing objects that
are hard, or impossible, to visualize: two
vectors in 5-dimensional space are or-
thogonal if their dot product is 0. It is not
wrong to say they are perpendicular, but
common convenƟon gives preference to
the word orthogonal.

10.3 The Dot Product

2. Between u⃗ and w⃗:

θ = cos−1
(

u⃗ · w⃗
|| u⃗ |||| w⃗ ||

)
= cos−1

(
0√

3
√
42

)
=

π

2
.

3. Between v⃗ and w⃗:

θ = cos−1
(

v⃗ · w⃗
|| v⃗ |||| w⃗ ||

)
= cos−1

(
0√

14
√
42

)
=

π

2
.

While our work shows that each angle is π/2, i.e., 90◦, none of these angles
looks to be a right angle in Figure 10.32. Such is the case when drawing three–
dimensional objects on the page. ...

All three angles between these vectors was π/2, or 90◦. We know from
geometry and everyday life that 90◦ angles are “nice” for a variety of reasons,
so it should seem significant that these angles are all π/2. NoƟce the common
feature in each calculaƟon (and also the calculaƟon of α in Example 328): the
dot products of each pair of angles was 0. We use this as a basis for a definiƟon
of the term orthogonal, which is essenƟally synonymous to perpendicular.

.
.

.
DefiniƟon 58 Orthogonal

Vectors u⃗ and v⃗ are orthogonal if their dot product is 0.

.. Example 330 ..Finding orthogonal vectors
Let u⃗ = ⟨3, 5⟩ and v⃗ = ⟨1, 2, 3⟩.

1. Find two vectors in R2 that are orthogonal to u⃗.

2. Find two non–parallel vectors in R3 that are orthogonal to v⃗.

SÊ½çã®ÊÄ
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Figure 10.33: Developing the construc-
Ɵon of the orthogonal projecƟon.

Chapter 10 Vectors

1. Recall that a line perpendicular to a line with slope m have slope −1/m,
the “opposite reciprocal slope.” We can think of the slope of u⃗ as 5/3, its
“rise over run.” A vector orthogonal to u⃗ will have slope−3/5. There are
many such choices, though all parallel:

⟨−5, 3⟩ or ⟨5,−3⟩ or ⟨−10, 6⟩ or ⟨15,−9⟩ , etc.

2. There are infinite direcƟons in space orthogonal to any given direcƟon,
so there are an infinite number of non–parallel vectors orthogonal to v⃗.
Since there are so many, we have great leeway in finding some.

One way is to arbitrarily pick values for the first two components, leaving
the third unknown. For instance, let v⃗1 = ⟨2, 7, z⟩. If v⃗1 is to be orthogonal
to v⃗, then v⃗1 · v⃗ = 0, so

2+ 14+ 3z = 0 ⇒ z =
−16
3

.

So v⃗1 = ⟨2, 7,−16/3⟩ is orthogonal to v⃗. We can apply a similar technique
by leaving the first or second component unknown.

Another method of finding a vector orthogonal to v⃗ mirrors what we did
in part 1. Let v⃗2 = ⟨−2, 1, 0⟩. Here we switched the first two components
of v⃗, changing the sign of one of them (similar to the “opposite reciprocal”
concept before). Leƫng the third component be 0 effecƟvely ignores the
third component of v⃗, and it is easy to see that

v⃗2 · v⃗ = ⟨−2, 1, 0⟩ · ⟨1, 2, 3⟩ = 0.

Clearly v⃗1 and v⃗2 are not parallel....

An important construcƟon is illustrated in Figure 10.33, where vectors u⃗ and
v⃗ are sketched. In part (a), a doƩed line is drawn from the Ɵp of u⃗ to the line
containing v⃗, where the doƩed line is orthogonal to v⃗. In part (b), the doƩed
line is replaced with the vector z⃗ and w⃗ is formed, parallel to v⃗. It is clear by the
diagram that u⃗ = w⃗ + z⃗. What is important about this construcƟon is this: u⃗ is
decomposed as the sum of two vectors, one of which is parallel to v⃗ and one that
is perpendicular to v⃗. It is hard to overstate the importance of this construcƟon
(as we’ll see in upcoming examples).

The vectors w⃗, z⃗ and u⃗ as shown in Figure 10.33 (b) form a right triangle,
where the angle between v⃗ and u⃗ is labeled θ. We can find w⃗ in terms of v⃗ and
u⃗.

Using trigonometry, we can state that

|| w⃗ || = || u⃗ || cos θ. (10.2)

Notes:
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10.3 The Dot Product

We also know that w⃗ is parallel to to v⃗ ; that is, the direcƟon of w⃗ is the
direcƟon of v⃗, described by the unit vector 1

|| v⃗ || v⃗. The vector w⃗ is the vector in
the direcƟon 1

|| v⃗ || v⃗ with magnitude || u⃗ || cos θ:

w⃗ =
(
|| u⃗ || cos θ

) 1
|| v⃗ ||

v⃗.

Replace cos θ using Theorem 86:

=

(
|| u⃗ || u⃗ · v⃗

|| u⃗ |||| v⃗ ||

)
1

|| v⃗ ||
v⃗

=
u⃗ · v⃗
|| v⃗ ||2

v⃗.

Now apply Theorem 85.

=
u⃗ · v⃗
v⃗ · v⃗

v⃗.

Since this construcƟon is so important, it is given a special name.

.

.

.
DefiniƟon 59 Orthogonal ProjecƟon

Let u⃗ and v⃗ be given. The orthogonal projecƟon of u⃗ onto v⃗, denoted
proj v⃗ u⃗, is

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗.

.. Example 331 ..CompuƟng the orthogonal projecƟon

1. Let u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 1⟩. Find proj v⃗ u⃗, and sketch all three vectors
with iniƟal points at the origin.

2. Let w⃗ = ⟨2, 1, 3⟩ and x⃗ = ⟨1, 1, 1⟩. Find proj x⃗ w⃗, and sketch all three
vectors with iniƟal points at the origin.
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Figure 10.34: Graphing the vectors used
in Example 331.
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.

u⃗

.
proj v⃗ u⃗.

z⃗

Figure 10.35: IllustraƟng the orthogonal
projecƟon.

Chapter 10 Vectors

1. Applying DefiniƟon 59, we have

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗

=
−5
10

⟨3, 1⟩

=

⟨
−3
2
,−1

2

⟩
.

Vectors u⃗, v⃗ and proj v⃗ u⃗ are sketched in Figure 10.34 (a). Note how the
projecƟon is parallel to v⃗; that is, it lies on the same line through the origin
as v⃗, although it points in the opposite direcƟon. That is because the angle
between u⃗ and v⃗ is obtuse (i.e., greater than 90◦).

2. Apply the definiƟon:

proj x⃗ w⃗ =
w⃗ · x⃗
x⃗ · x⃗

x⃗

=
6
3
⟨1, 1, 1⟩

= ⟨2, 2, 2⟩ .

These vectors are sketched in Figure 10.34 (b), and again in part (c) from
a different perspecƟve. Because of the nature of graphing these vectors,
the sketch in part (b) makes it difficult to recognize that the drawn projec-
Ɵon has the geometric properƟes it should. The graph shown in part (c)
illustrates these properƟes beƩer.

...

Consider Figure 10.35 where the concept of the orthogonal projecƟon is
again illustrated. It is clear that

u⃗ = proj v⃗ u⃗+ z⃗. (10.3)

As we know what u⃗ and proj v⃗ u⃗ are, we can solve for z⃗ and state that

z⃗ = u⃗− proj v⃗ u⃗.

This leads us to rewrite EquaƟon (10.3) in a seemingly silly way:

u⃗ = proj v⃗ u⃗+ (⃗u− proj v⃗ u⃗).

This is not nonsense, as pointed out in the following Key Idea. (NotaƟon note:
the expression “∥ y⃗ ” means “is parallel to y⃗.” We can use this notaƟon to state

Notes:
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10.3 The Dot Product

“⃗x ∥ y⃗ ” which means “⃗x is parallel to y⃗.” The expression “⊥ y⃗ ” means “is or-
thogonal to y⃗,” and is used similarly.)

.

.

.
Key Idea 50 Orthogonal DecomposiƟon of Vectors

Let u⃗ and v⃗ be given. Then u⃗ can be wriƩen as the sum of two vectors,
one of which is parallel to v⃗, and one of which is orthogonal to v⃗:

u⃗ = proj v⃗ u⃗︸ ︷︷ ︸
∥ v⃗

+ (⃗u− proj v⃗ u⃗︸ ︷︷ ︸
⊥ v⃗

).

We illustrate the use of this equality in the following example.

.. Example 332 ..Orthogonal decomposiƟon of vectors

1. Let u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 1⟩ as in Example 331. Decompose u⃗ as the
sum of a vector parallel to v⃗ and a vector orthogonal to v⃗.

2. Let w⃗ = ⟨2, 1, 3⟩ and x⃗ = ⟨1, 1, 1⟩ as in Example 331. Decompose w⃗ as
the sum of a vector parallel to x⃗ and a vector orthogonal to x⃗.

SÊ½çã®ÊÄ

1. In Example 331, we found that proj v⃗ u⃗ = ⟨−1.5,−0.5⟩. Let

z⃗ = u⃗− proj v⃗ u⃗ = ⟨−2, 1⟩ − ⟨−1.5,−0.5⟩ = ⟨−0.5, 1.5⟩ .

Is z⃗ orthogonal to v⃗? (I.e, is z⃗ ⊥ v⃗ ?) We check for orthogonality with the
dot product:

z⃗ · v⃗ = ⟨−0.5, 1.5⟩ · ⟨3, 1⟩ = 0.

Since the dot product is 0, we know z⃗ ⊥ v⃗. Thus:

u⃗ = proj v⃗ u⃗ + (⃗u− proj v⃗ u⃗)
⟨−2, 1⟩ = ⟨−1.5,−0.5⟩︸ ︷︷ ︸

∥ v⃗

+ ⟨−0.5, 1.5⟩︸ ︷︷ ︸
⊥ v⃗

.

2. We found in Example 331 that proj x⃗ w⃗ = ⟨2, 2, 2⟩. Applying the Key Idea,
we have:

z⃗ = w⃗− proj x⃗ w⃗ = ⟨2, 1, 3⟩ − ⟨2, 2, 2⟩ = ⟨0,−1, 1⟩ .

Notes:
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Figure 10.36: Sketching the ramp and box
in Example 333. Note: The vectors are not
drawn to scale.

Chapter 10 Vectors

We check to see if z⃗ ⊥ x⃗:

z⃗ · x⃗ = ⟨0,−1, 1⟩ · ⟨1, 1, 1⟩ = 0.

Since the dot product is 0, we know the two vectors are orthogonal. We
now write w⃗ as the sum of two vectors, one parallel and one orthogonal
to x⃗:

w⃗ = proj x⃗ w⃗ + (w⃗− proj x⃗ w⃗)
⟨2, 1, 3⟩ = ⟨2, 2, 2⟩︸ ︷︷ ︸

∥ x⃗

+ ⟨0,−1, 1⟩︸ ︷︷ ︸
⊥ x⃗...

We give an example of where this decomposiƟon is useful.

.. Example 333 ..Orthogonally decomposing a force vector
Consider Figure 10.36 (a), showing a box weighing 50lb on a ramp that rises 5Ō
over a span of 20Ō. Find the components of force, and their magnitudes, acƟng
on the box (as sketched in part (b) of the figure):

1. in the direcƟon of the ramp, and

2. orthogonal to the ramp.

SÊ½çã®ÊÄ As the ramp rises 5Ō over a horizontal distance of 20Ō, we can
represent the direcƟon of the ramp with the vector r⃗ = ⟨20, 5⟩. Gravity pulls
down with a force of 50lb, which we represent with g⃗ = ⟨0,−50⟩.

1. To find the force of gravity in the direcƟonof the ramp,we compute proj r⃗ g⃗:

proj r⃗ g⃗ =
g⃗ · r⃗
r⃗ · r⃗

r⃗

=
−250
425

⟨20, 5⟩

=

⟨
−200

17
,−50

17

⟩
≈ ⟨−11.76,−2.94⟩ .

The magnitude of proj r⃗ g⃗ is || proj r⃗ g⃗ || = 50/
√
17 ≈ 12.13lb. Though

the box weighs 50lb, a force of about 12lb is enough to keep the box from
sliding down the ramp.

2. To find the component z⃗ of gravity orthogonal to the ramp, we use Key
Idea 50.

z⃗ = g⃗− proj r⃗ g⃗

=

⟨
200
17

,−800
17

⟩
≈ ⟨11.76,−47.06⟩ .

Notes:
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.

proj d⃗ F⃗

Figure 10.37: Finding work when the
force and direcƟon of travel are given as
vectors.

10.3 The Dot Product

Themagnitude of this force is || z⃗ || ≈ 48.51lb. In physics and engineering,
knowing this force is importantwhen compuƟng things like staƟc fricƟonal
force. (For instance, we could easily compute if the staƟc fricƟonal force
alone was enough to keep the box from sliding down the ramp.)

...

ApplicaƟon to Work

In physics, the applicaƟon of a force F to move an object in a straight line a
distance d produces work; the amount of workW isW = Fd, (where F is in the
direcƟon of travel). The orthogonal projecƟon allows us to compute work when
the force is not in the direcƟon of travel.

Consider Figure 10.37, where a force F⃗ is being applied to an object moving
in the direcƟon of d⃗. (The distance the object travels is the magnitude of d⃗.) The
work done is the amount of force in the direcƟon of d⃗, || proj d⃗ F⃗ ||, Ɵmes || d⃗ ||:

|| proj d⃗ F⃗ || · || d⃗ || =

∣∣∣∣∣
∣∣∣∣∣ F⃗ · d⃗d⃗ · d⃗

d⃗

∣∣∣∣∣
∣∣∣∣∣ · || d⃗ ||

=

∣∣∣∣∣ F⃗ · d⃗
|| d⃗ ||2

∣∣∣∣∣ · || d⃗ || · || d⃗ ||
=

∣∣∣⃗F · d⃗∣∣∣
|| d⃗ ||2

|| d⃗ ||2

=
∣∣∣⃗F · d⃗∣∣∣ .

The expression F⃗ · d⃗ will be posiƟve if the angle between F⃗ and d⃗ is acute;
when the angle is obtuse (hence F⃗ · d⃗ is negaƟve), the force is causing moƟon
in the opposite direcƟon of d⃗, resulƟng in “negaƟve work.” We want to capture
this sign, so we drop the absolute value and find thatW = F⃗ · d⃗.

.

.

.
DefiniƟon 60 Work

Let F⃗ be a constant force thatmoves an object in a straight line frompoint
P to point Q. Let d⃗ =

#  ‰PQ. The workW done by F⃗ along d⃗ isW = F⃗ · d⃗.

.. Example 334 ..CompuƟng work
Aman slides a box along a ramp that rises 3Ō over a distance of 15Ō by applying
50lb of force as shown in Figure 10.38. Compute the work done.
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F⃗
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30◦

Figure 10.38: CompuƟng work when slid-
ing a box up a ramp in Example 334.

Chapter 10 Vectors

SÊ½çã®ÊÄ The figure indicates that the force applied makes a 30◦ an-
gle with the horizontal, so F⃗ = 50 ⟨cos 30◦, sin 30◦⟩ ≈ ⟨43.3, 25⟩ . The ramp is
represented by d⃗ = ⟨15, 3⟩. The work done is simply

F⃗ · d⃗ = 50 ⟨cos 30◦, sin 30◦⟩ · ⟨15, 3⟩ ≈ 724.5Ō–lb.

Note how we did not actually compute the distance the object traveled, nor
the magnitude of the force in the direcƟon of travel; this is all inherently com-
puted by the dot product! ...

The dot product is a powerful way of evaluaƟng computaƟons that depend
onangleswithout actually using angles. Thenext secƟonexplores another “prod-
uct” on vectors, the cross product. Once again, angles play an important role,
though in a much different way.
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Exercises 10.3
Terms and Concepts
1. The dot product of two vectors is a , not a vector.

2. How are the concepts of the dot product and vector mag-
nitude related?

3. How can one quickly tell if the angle between two vectors
is acute or obtuse?

4. Give a synonym for “orthogonal.”

Problems
In Exercises 5 – 11, find the dot product of the given vectors.

5. u⃗ = ⟨2,−4⟩, v⃗ = ⟨3, 7⟩

6. u⃗ = ⟨5, 3⟩, v⃗ = ⟨6, 1⟩

7. u⃗ = ⟨1,−1, 2⟩, v⃗ = ⟨2, 5, 3⟩

8. u⃗ = ⟨3, 5,−1⟩, v⃗ = ⟨4,−1, 7⟩

9. u⃗ = ⟨1, 1⟩, v⃗ = ⟨1, 2, 3⟩

10. u⃗ = ⟨1, 2, 3⟩, v⃗ = ⟨0, 0, 0⟩

11. Create your own vectors u⃗, v⃗ and w⃗ in R2 and show that
u⃗ · (⃗v+ w⃗) = u⃗ · v⃗+ u⃗ · w⃗.

12. Create your own vectors u⃗ and v⃗ inR3 and scalar c and show
that c(⃗u · v⃗) = u⃗ · (c⃗v).

In Exercises 13 – 16, find the measure of the angle between
the two vectors in both radians and degrees.

13. u⃗ = ⟨1, 1⟩, v⃗ = ⟨1, 2⟩

14. u⃗ = ⟨−2, 1⟩, v⃗ = ⟨3, 5⟩

15. u⃗ = ⟨8, 1,−4⟩, v⃗ = ⟨2, 2, 0⟩

16. u⃗ = ⟨1, 7, 2⟩, v⃗ = ⟨4,−2, 5⟩

In Exercises 17 – 20, a vector v⃗ is given. Give two vectors that
are orthogonal to v⃗.

17. v⃗ = ⟨4, 7⟩

18. v⃗ = ⟨−3, 5⟩

19. v⃗ = ⟨1, 1, 1⟩

20. v⃗ = ⟨1,−2, 3⟩

In Exercises 21 – 26, vectors u⃗ and v⃗ are given. Find proj v⃗ u⃗,
the orthogonal projecƟon of u⃗ onto v⃗, and sketch all three
vectors on the same axes.

21. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−1, 3⟩

22. u⃗ = ⟨5, 5⟩, v⃗ = ⟨1, 3⟩

23. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨1, 1⟩

24. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨2, 3⟩

25. u⃗ = ⟨1, 5, 1⟩, v⃗ = ⟨1, 2, 3⟩

26. u⃗ = ⟨3,−1, 2⟩, v⃗ = ⟨2, 2, 1⟩

In Exercises 27 – 32, vectors u⃗ and v⃗ are given. Write u⃗ as the
sum of two vectors, one of which is parallel to v⃗ and one of
which is perpendicular to v⃗. Note: these are the same pairs
of vectors as found in Exercises 21 – 26.

27. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−1, 3⟩

28. u⃗ = ⟨5, 5⟩, v⃗ = ⟨1, 3⟩

29. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨1, 1⟩

30. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨2, 3⟩

31. u⃗ = ⟨1, 5, 1⟩, v⃗ = ⟨1, 2, 3⟩

32. u⃗ = ⟨3,−1, 2⟩, v⃗ = ⟨2, 2, 1⟩

33. A 10lb box sits on a ramp that rises 4Ō over a distance of
20Ō. Howmuch force is required to keep the box from slid-
ing down the ramp?

34. A 10lb box sits on a 15Ō ramp that makes a 30◦ angle with
the horizontal. Howmuch force is required to keep the box
from sliding down the ramp?

35. How much work is performed in moving a box horizontally
10Ō with a force of 20lb applied at an angle of 45◦ to the
horizontal?

36. How much work is performed in moving a box horizontally
10Ō with a force of 20lb applied at an angle of 10◦ to the
horizontal?

37. Howmuchwork is performed inmoving a box up the length
of a ramp that rises 2Ō over a distance of 10Ō, with a force
of 50lb applied horizontally?

38. Howmuchwork is performed inmoving a box up the length
of a ramp that rises 2Ō over a distance of 10Ō, with a force
of 50lb applied at an angle of 45◦ to the horizontal?

39. Howmuchwork is performed inmoving a box up the length
of a 10Ō ramp that makes a 5◦ angle with the horizontal,
with 50lb of force applied in the direcƟon of the ramp?
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10.4 The Cross Product
“Orthogonality” is immensely important. A quick scan of your current environ-
ment will undoubtedly reveal numerous surfaces and edges that are perpendic-
ular to each other (including the edges of this page). The dot product provides
a quick test for orthogonality: vectors u⃗ and v⃗ are perpendicular if, and only if,
u⃗ · v⃗ = 0.

Given two, non–parallel vectors u⃗ and v⃗ in space, it is very useful to find a
vector w⃗ that is perpendicular to both u⃗ and v⃗. There is a operaƟon, called the
cross product, that creates such a vector. This secƟon defines the cross product,
then explores its properƟes and applicaƟons.

.

.

.
DefiniƟon 61 Cross Product

Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ be vectors in R3. The cross
product of u⃗ and v⃗, denoted u⃗× v⃗, is the vector

u⃗× v⃗ = ⟨u2v3 − u3v2,−(u1v3 − u3v1), u1v2 − u2v1⟩ .

This definiƟon can be a bit cumbersome to remember. AŌer an example we
will give a convenient method for compuƟng the cross product. For now, careful
examinaƟon of the products and differences given in the definiƟon should reveal
a paƩern that is not too difficult to remember. (For instance, in the first compo-
nent only 2 and 3 appear as subscripts; in the second component, only 1 and 3
appear as subscripts. Further study reveals the order in which they appear.)

Let’s pracƟce using this definiƟon by compuƟng a cross product.

.. Example 335 ..CompuƟng a cross product
Let u⃗ = ⟨2,−1, 4⟩ and v⃗ = ⟨3, 2, 5⟩. Find u⃗ × v⃗, and verify that it is orthogonal
to both u⃗ and v⃗.

SÊ½çã®ÊÄ Using DefiniƟon 61, we have

u⃗× v⃗ =
⟨
(−1)5− (4)2,−

(
(2)5− (4)3

)
, (2)2− (−1)3

⟩
= ⟨−13, 2, 7⟩ .

(We encourage the reader to compute this product on their own, then verify
their result.)

We test whether or not u⃗× v⃗ is orthogonal to u⃗ and v⃗ using the dot product:(⃗
u× v⃗

)
· u⃗ = ⟨−13, 2, 7⟩ · ⟨2,−1, 4⟩ = 0,(⃗

u× v⃗
)
· v⃗ = ⟨−13, 2, 7⟩ · ⟨3, 2, 5⟩ = 0.

Notes:
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As each of these dot products is zero, u⃗× v⃗ is indeed orthogonal to both u⃗ and v⃗. ...

A convenient method of compuƟng the cross product starts with forming a
parƟcular 3 × 3 matrix, or rectangular array. The first row comprises the stan-
dard unit vectors i⃗, j⃗, and k⃗. The second and third rows are the vectors u⃗ and v⃗,
respecƟvely. Using u⃗ and v⃗ from Example 335, we begin with:

..
i⃗ j⃗ k⃗
2 −1 4
3 2 5

Now repeat the first two columns aŌer the original three:

..
i⃗ j⃗ k⃗ i⃗ j⃗
2 −1 4 2 −1
3 2 5 3 2

This gives three full “upper leŌ to lower right” diagonals, and three full “up-
per right to lower leŌ” diagonals, as shown. Compute the products along each
diagonal, then add the products on the right and subtract the products on the
leŌ:

..
i⃗ j⃗ k⃗ i⃗ j⃗
2 −1 4 2 −1
3 2 5 3 2

.

−5⃗i

.

12⃗j

.

4⃗k

.

−3⃗k

.

8⃗i

.

10⃗j

u⃗× v⃗ =
(
− 5⃗i+12⃗j+ 4⃗k

)
−
(
− 3⃗k+ 8⃗i+10⃗j

)
= −13⃗i+ 2⃗j+ 7⃗k = ⟨−13, 2, 7⟩ .

We pracƟce using this method.

.. Example 336 ..CompuƟng a cross product
Let u⃗ = ⟨1, 3, 6⟩ and v⃗ = ⟨−1, 2, 1⟩. Compute both u⃗× v⃗ and v⃗× u⃗.

SÊ½çã®ÊÄ To compute u⃗× v⃗, we form the matrix as prescribed above,
complete with repeated first columns:

i⃗ j⃗ k⃗ i⃗ j⃗
1 3 6 1 3
−1 2 1 −1 2

We let the reader compute the products of the diagonals; we give the result:

u⃗× v⃗ =
(
3⃗i− 6⃗j+ 2⃗k

)
−
(
− 3⃗k+ 12⃗i+ j⃗

)
= ⟨−9,−7, 5⟩ .

Notes:
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To compute v⃗× u⃗, we switch the second and third rows of the above matrix,
then mulƟply along diagonals and subtract:

i⃗ j⃗ k⃗ i⃗ j⃗
−1 2 1 −1 2
1 3 6 1 3

Note how with the rows being switched, the products that once appeared on
the right now appear on the leŌ, and vice–versa. Thus the result is:

v⃗× u⃗ =
(
12⃗i+ j⃗− 3⃗k

)
−
(
2⃗k+ 3⃗i− 6⃗j

)
= ⟨9, 7,−5⟩ ,

which is the opposite of u⃗ × v⃗. We leave it to the reader to verify that each of
these vectors is orthogonal to u⃗ and v⃗. ...

ProperƟes of the Cross Product

It is not coincidence that v⃗ × u⃗ = −(⃗u × v⃗) in the preceding example; one
can show using DefiniƟon 61 that this will always be the case. The following
theorem states several useful properƟes of the cross product, each of which can
be verified by referring to the definiƟon.

.

.

.
Theorem 87 ProperƟes of the Cross Product

Let u⃗, v⃗ and w⃗ be vectors in R3 and let c be a scalar. The following idenƟƟes hold:

1. u⃗× v⃗ = −(⃗v× u⃗) AnƟcommutaƟve Property

2. (a) (⃗u+ v⃗)× w⃗ = u⃗× w⃗+ v⃗× w⃗ DistribuƟve ProperƟes

(b) u⃗× (⃗v+ w⃗) = u⃗× v⃗+ u⃗× w⃗

3. c(⃗u× v⃗) = (c⃗u)× v⃗ = u⃗× (c⃗v)

4. (a) (⃗u× v⃗) · u⃗ = 0 Orthogonality ProperƟes

(b) (⃗u× v⃗) · v⃗ = 0

5. u⃗× u⃗ = 0⃗

6. u⃗× 0⃗ = 0⃗

7. u⃗ · (⃗v× w⃗) = (⃗u× v⃗) · w⃗ Triple Scalar Product

We introduced the cross product as a way to find a vector orthogonal to
two given vectors, but we did not give a proof that the construcƟon given in

Notes:
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Note: DefiniƟon 58 (through Theorem
86) defines u⃗ and v⃗ to be orthogonal if
u⃗ · v⃗ = 0. We could use Theorem 88 to
define u⃗ and v⃗ are parallel if u⃗× v⃗ = 0. By
such a definiƟon, 0⃗ would be both orthog-
onal and parallel to every vector. Appar-
ent paradoxes such as this are not uncom-
mon in mathemaƟcs and can be very use-
ful. (See also the marginal note on page
551.)

10.4 The Cross Product

DefiniƟon 61 saƟsfies this property. Theorem 87 asserts this property holds; we
leave it as a problem in the Exercise secƟon to verify this.

Property 5 from the theorem is also leŌ to the reader to prove in the Exercise
secƟon, but it reveals something more interesƟng than “the cross product of a
vector with itself is 0⃗.” Let u⃗ and v⃗ be parallel vectors; that is, let there be a scalar
c such that v⃗ = c⃗u. Consider their cross product:

u⃗× v⃗ = u⃗× (c⃗u)
= c(⃗u× u⃗) (by Property 3 of Theorem 87)
= 0⃗. (by Property 5 of Theorem 87)

We have just shown that the cross product of parallel vectors is 0⃗. This hints
at something deeper. Theorem 86 related the angle between two vectors and
their dot product; there is a similar relaƟonship relaƟng the cross product of two
vectors and the angle between them, given by the following theorem.

.

.

.
Theorem 88 The Cross Product and Angles

Let u⃗ and v⃗ be vectors in R3. Then

|| u⃗× v⃗ || = || u⃗ || || v⃗ || sin θ,

where θ, 0 ≤ θ ≤ π, is the angle between u⃗ and v⃗.

Note that this theoremmakes a statement about themagnitude of the cross
product. When the angle between u⃗ and v⃗ is 0 or π (i.e., the vectors are parallel),
the magnitude of the cross product is 0. The only vector with a magnitude of 0
is 0⃗ (see Property 9 of Theorem 84), hence the cross product of nonzero parallel
vectors is 0⃗.

We demonstrate the truth of this theorem in the following example.

.. Example 337 ..The cross product and angles
Let u⃗ = ⟨1, 3, 6⟩ and v⃗ = ⟨−1, 2, 1⟩ as in Example 336. Verify Theorem 88 by
finding θ, the angle between u⃗ and v⃗, and the magnitude of u⃗× v⃗.

Notes:
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.. u⃗.
v⃗

.
u⃗ × v⃗

.

x

.
y

.

z

Figure 10.39: IllustraƟng the Right Hand
Rule of the cross product.

Chapter 10 Vectors

SÊ½çã®ÊÄ We use Theorem 86 to find the angle between u⃗ and v⃗.

θ = cos−1
(

u⃗ · v⃗
|| u⃗ || || v⃗ ||

)
= cos−1

(
11√
46

√
6

)
≈ 0.8471 = 48.54◦.

Ourwork in Example 336 showed that u⃗×v⃗ = ⟨−9,−7, 5⟩, hence || u⃗×v⃗ || =√
155. Is || u⃗× v⃗ || = || u⃗ || || v⃗ || sin θ? Using numerical approximaƟons, we find:

|| u⃗× v⃗ || =
√
155 || u⃗ || || v⃗ || sin θ =

√
46

√
6 sin 0.8471

≈ 12.45. ≈ 12.45.

Numerically, they seem equal. Using a right triangle, one can show that

sin
(
cos−1

(
11√
46

√
6

))
=

√
155√
46

√
6
,

which allows us to verify the theorem exactly. ...

Right Hand Rule

The anƟcommutaƟve property of the cross product demonstrates that u⃗× v⃗
and v⃗×u⃗ differ only by a sign – these vectors have the samemagnitude but point
in the opposite direcƟon. When seeking a vector perpendicular to u⃗ and v⃗, we
essenƟally have two direcƟons to choose from, one in the direcƟon of u⃗× v⃗ and
one in the direcƟon of v⃗× u⃗. Does it maƩer which we choose? How can we tell
which one we will get without graphing, etc.?

Another wonderful property of the cross product, as defined, is that it fol-
lows the right hand rule. Given u⃗ and v⃗ in R3 with the same iniƟal point, point
the index finger of your right hand in the direcƟon of u⃗ and let yourmiddle finger
point in the direcƟon of v⃗ (much as we did when establishing the right hand rule
for the 3-dimensional coordinate system). Your thumb will naturally extend in
the direcƟon of u⃗× v⃗. One can “pracƟce” this using Figure 10.39. If you switch,
and point the index finder in the direcƟon of v⃗ and the middle finger in the di-
recƟon of u⃗, your thumb will now point in the opposite direcƟon, allowing you
to “visualize” the anƟcommutaƟve property of the cross product.

ApplicaƟons of the Cross Product

There are a number of ways in which the cross product is useful in mathe-
maƟcs, physics and other areas of science beyond “just” finding a vector per-
pendicular to two others. We highlight a few here.

Notes:
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Figure 10.40: Using the cross product to
find the area of a parallelogram.
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Figure 10.41: Sketching the parallelo-
grams in Example 338.

10.4 The Cross Product

Area of a Parallelogram

It is a standard geometry fact that the area of a parallelogram is A = bh,
where b is the length of the base and h is the height of the parallelogram, as
illustrated in Figure 10.40 (a). As shown when defining the Parallelogram Law of
vector addiƟon, two vectors u⃗ and v⃗ define a parallelogram when drawn from
the same iniƟal point, as illustrated in Figure 10.40 (b). Trigonometry tells us
that h = || u⃗ || sin θ, hence the area of the parallelogram is

A = || u⃗ || || v⃗ || sin θ = || u⃗× v⃗ ||, (10.4)

where the second equality comes from Theorem 88. We illustrate using Equa-
Ɵon (10.4) in the following example.

.. Example 338 Finding the area of a parallelogram

1. Find the area of the parallelogram defined by the vectors u⃗ = ⟨2, 1⟩ and
v⃗ = ⟨1, 3⟩.

2. Verify that the points A = (1, 1, 1), B = (2, 3, 2), C = (4, 5, 3) and
D = (3, 3, 2) are the verƟces of a parallelogram. Find the area of the
parallelogram.

SÊ½çã®ÊÄ

1. Figure 10.41 (a) sketches the parallelogram defined by the vectors u⃗ and
v⃗. We have a slight problem in that our vectors exist in R2, not R3, and
the cross product is only defined on vectors in R3. We skirt this issue by
viewing u⃗ and v⃗ as vectors in the x−y plane ofR3, and rewrite themas u⃗ =
⟨2, 1, 0⟩ and v⃗ = ⟨1, 3, 0⟩. We can now compute the cross product. It is
easy to show that u⃗×v⃗ = ⟨0, 0, 5⟩; therefore the area of the parallelogram
is A = || u⃗× v⃗ || = 5.

2. To show that the quadrilateral ABCD is a parallelogram (shown in Figure
10.41 (b)), we need to show that the opposite sides are parallel. We can
quickly show that # ‰AB =

# ‰DC = ⟨1, 2, 1⟩ and # ‰BC =
#  ‰AD = ⟨2, 2, 1⟩. We find

the area by compuƟng the magnitude of the cross product of # ‰AB and # ‰BC:
# ‰AB× # ‰BC = ⟨0, 1,−2⟩ ⇒ || # ‰AB× # ‰BC || =

√
5 ≈ 2.236.

..

This applicaƟon is perhaps more useful in finding the area of a triangle (in
short, triangles are used more oŌen than parallelograms). We illustrate this in
the following example.

Notes:
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Figure 10.42: Finding the area of a trian-
gle in Example 339.

Note: The word “parallelepiped” is pro-
nounced “parallel–eh–pipe-ed.”

...
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Figure 10.43: A parallelepiped is the three
dimensional analogue to the parallelo-
gram.
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Figure 10.44: A parallelepiped in Example
340.
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.. Example 339 Area of a triangle
Find the area of the triangle with verƟces A = (1, 2), B = (2, 3) and C = (3, 1),
as pictured in Figure 10.42.

SÊ½çã®ÊÄ We found the area of this triangle in Example 200 to be 1.5
using integraƟon. There we discussed the fact that finding the area of a triangle
can be inconvenient using the “ 12bh” formula as one has to compute the height,
which generally involves finding angles, etc. Using a cross product is muchmore
direct.

We can choose any two sides of the triangle to use to form vectors; we
choose # ‰AB = ⟨1, 1⟩ and # ‰AC = ⟨2,−1⟩. As in the previous example, we will
rewrite these vectors with a third component of 0 so that we can apply the cross
product. The area of the triangle is

1
2
|| # ‰AB× # ‰AC || = 1

2
|| ⟨1, 1, 0⟩ × ⟨2,−1, 0⟩ || = 1

2
|| ⟨0, 0,−3⟩ || = 3

2
.

We arrive at the same answer as before with less work. ..

Volume of a Parallelepiped
The three dimensional analogue to the parallelogram is the parallelepiped.

Each face is parallel to the face opposite face, as illustrated in Figure 10.43. By
crossing v⃗ and w⃗, one gets a vector whose magnitude is the area of the base.
Doƫng this vector with u⃗ computes the volume of parallelepiped! (Up to a sign;
take the absolute value.)

Thus the volume of a parallelepiped defined by vectors u⃗, v⃗ and w⃗ is

V = |⃗u · (⃗v× w⃗)|. (10.5)

Note how this is the Triple Scalar Product, first seen in Theorem 87. Applying
the idenƟƟes given in the theorem shows that we can apply the Triple Scalar
Product in any “order” we choose to find the volume. That is,

V = |⃗u · (⃗v× w⃗)| = |⃗u · (w⃗× v⃗)| = |(⃗u× v⃗) · w⃗|, etc.

.. Example 340 Finding the volume of parallelepiped
Find the volume of the parallepiped defined by the vectors u⃗ = ⟨1, 1, 0⟩, v⃗ =
⟨−1, 1, 0⟩ and w⃗ = ⟨0, 1, 1⟩.

SÊ½çã®ÊÄ We apply EquaƟon (10.5). We first find v⃗× w⃗ = ⟨1, 1,−1⟩.
Then

|⃗u · (⃗v× w⃗)| = | ⟨1, 1, 0⟩ · ⟨1, 1,−1⟩ | = 2.

So the volume of the parallelepiped is 2 cubic units. ..

Notes:
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Figure 10.45: Showing a force being ap-
plied to a lever in Example 341.

10.4 The Cross Product

While this applicaƟon of the Triple Scalar Product is interesƟng, it is not used
all that oŌen: parallelepipeds are not a common shape in physics and engineer-
ing. The last applicaƟon of the cross product is very applicable in engineering.

Torque

Torque is a measure of the turning force applied to an object. A classic sce-
nario involving torque is the applicaƟon of a wrench to a bolt. When a force is
applied to the wrench, the bolt turns. When we represent the force and wrench
with vectors F⃗ and ℓ⃗, we see that the bolt moves (because of the threads) in a di-
recƟon orthogonal to F⃗ and ℓ⃗. Torque is usually represented by the Greek leƩer
τ, or tau, and has units of N·m, a Newton–meter, or Ō·lb, a foot–pound.

While a full understanding of torque is beyond the purposes of this book,
when a force F⃗ is applied to a lever arm ℓ⃗, the resulƟng torque is

τ⃗ = ℓ⃗× F⃗. (10.6)

.. Example 341 ..CompuƟng torque
A lever of length 2Ōmakes an anglewith the horizontal of 45◦. Find the resulƟng
torque when a force of 10lb is applied to the end of the level where:

1. the force is perpendicular to the lever, and

2. the force makes an angle of 60◦ with the lever, as shown in Figure 10.45.

SÊ½çã®ÊÄ

1. We start by determining vectors for the force and lever arm. Since the
lever arm makes a 45◦ angle with the horizontal and is 2Ō long, we can
state that ℓ⃗ = 2 ⟨cos 45◦, sin 45◦⟩ =

⟨√
2,
√
2
⟩
.

Since the force vector is perpendicular to the lever arm (as seen in the
leŌ hand side of Figure 10.45), we can conclude it is making an angle of
−45◦ with the horizontal. As it has a magnitude of 10lb, we can state
F⃗ = 10 ⟨cos−45◦, sin−45◦⟩ =

⟨
5
√
2,−5

√
2
⟩
.

Using EquaƟon (10.6) to find the torque requires a cross product. We
again let the third component of each vector be 0 and compute the cross
product:

τ⃗ = ℓ⃗× F⃗

=
⟨√

2,
√
2, 0
⟩
×
⟨
5
√
2,−5

√
2, 0
⟩

= ⟨0, 0,−20⟩

Notes:
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This clearly has a magnitude of 20 Ō-lb.

We can view the force and lever arm vectors as lying “on the page”; our
computaƟon of τ⃗ shows that the torque goes “into the page.” This follows
the Right Hand Rule of the cross product, and it alsomatcheswell with the
example of the wrench turning the bolt. Turning a bolt clockwise moves
it in.

2. Our lever arm can sƟll be represented by ℓ⃗ =
⟨√

2,
√
2
⟩
. As our force

vector makes a 60◦ angle with ℓ⃗, we can see (referencing the right hand
side of the figure) that F⃗makes a−15◦ angle with the horizontal. Thus

F⃗ = 10 ⟨cos−15◦, sin−15◦⟩ =
⟨
5(1+

√
3)√

2
,−5(1+

√
3)√

2

⟩
≈ ⟨9.659,−2.588⟩ .

We again make the third component 0 and take the cross product to find
the torque:

τ⃗ = ℓ⃗× F⃗

=
⟨√

2,
√
2, 0
⟩
×
⟨
5(1+

√
3)√

2
,−5(1+

√
3)√

2
, 0
⟩

=
⟨
0, 0,−10

√
3
⟩

≈ ⟨0, 0,−17.321⟩ .

As one might expect, when the force and lever arm vectors are orthogo-
nal, the magnitude of force is greater than when the vectors are not or-
thogonal.

...

While the cross product has a variety of applicaƟons (as noted in this chap-
ter), its fundamental use is finding a vector perpendicular to two others. Know-
ing a vector orthogonal to two others is of incredible importance, as it allows
us to find the equaƟons of lines and planes in a variety of contexts. The impor-
tance of the cross product, in some sense, relies on the importance of lines and
planes, which see widespread use throughout engineering, physics and mathe-
maƟcs. We study lines and planes in the next two secƟons.

Notes:
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Exercises 10.4
Terms and Concepts
1. The cross product of two vectors is a , not a

scalar.

2. One can visualize the direcƟon of u⃗× v⃗ using the
.

3. Give a synonym for “orthogonal.”

4. T/F: A fundamental principle of the cross product is that
u⃗× v⃗ is orthogonal to u⃗ and v⃗.

5. is a measure of the turning force applied to an
object.

Problems
In Exercises 6 – 14, vectors u⃗ and v⃗ are given. Compute u⃗× v⃗
and show this is orthogonal to both u⃗ and v⃗.

6. u⃗ = ⟨3, 2,−2⟩, v⃗ = ⟨0, 1, 5⟩

7. u⃗ = ⟨5,−4, 3⟩, v⃗ = ⟨2,−5, 1⟩

8. u⃗ = ⟨4,−5,−5⟩, v⃗ = ⟨3, 3, 4⟩

9. u⃗ = ⟨−4, 7,−10⟩, v⃗ = ⟨4, 4, 1⟩

10. u⃗ = ⟨1, 0, 1⟩, v⃗ = ⟨5, 0, 7⟩

11. u⃗ = ⟨1, 5,−4⟩, v⃗ = ⟨−2,−10, 8⟩

12. u⃗ = i⃗, v⃗ = j⃗

13. u⃗ = i⃗, v⃗ = k⃗

14. u⃗ = j⃗, v⃗ = k⃗

15. Pick any vectors u⃗, v⃗ and w⃗ inR3 and show that u⃗×(⃗v+w⃗) =
u⃗× v⃗+ u⃗× w⃗.

16. Pick any vectors u⃗, v⃗ and w⃗ inR3 and show that u⃗· (⃗v×w⃗) =
(⃗u× v⃗) · w⃗.

In Exercises 17 – 20, the magnitudes of vectors u⃗ and v⃗ in R3

are given, along with the angle θ between them. Use this in-
formaƟon to find the magnitude of u⃗× v⃗.

17. || u⃗ || = 2, || v⃗ || = 5, θ = 30◦

18. || u⃗ || = 3, || v⃗ || = 7, θ = π/2

19. || u⃗ || = 3, || v⃗ || = 4, θ = π

20. || u⃗ || = 2, || v⃗ || = 5, θ = 5π/6

In Exercises 21 – 24, find the area of the parallelogram de-
fined by the given vectors.

21. u⃗ = ⟨1, 1, 2⟩, v⃗ = ⟨2, 0, 3⟩

22. u⃗ = ⟨−2, 1, 5⟩, v⃗ = ⟨−1, 3, 1⟩

23. u⃗ = ⟨1, 2⟩, v⃗ = ⟨2, 1⟩

24. u⃗ = ⟨2, 0⟩, v⃗ = ⟨0, 3⟩

In Exercises 25 – 28, find the area of the triangle with the
given verƟces.

25. VerƟces: (0, 0, 0), (1, 3,−1) and (2, 1, 1).

26. VerƟces: (5, 2,−1), (3, 6, 2) and (1, 0, 4).

27. VerƟces: (1, 1), (1, 3) and (2, 2).

28. VerƟces: (3, 1), (1, 2) and (4, 3).

In Exercises 29 – 30, find the area of the quadrilateral with
the given verƟces. (Hint: break the quadrilateral into 2 trian-
gles.)

29. VerƟces: (0, 0), (1, 2), (3, 0) and (4, 3).

30. VerƟces: (0, 0, 0), (2, 1, 1), (−1, 2,−8) and (1,−1, 5).

In Exercises 31 – 32, find the volume of the parallelepiped
defined by the given vectors.

31. u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨1, 2, 3⟩, w⃗ = ⟨1, 0, 1⟩

32. u⃗ = ⟨−1, 2, 1⟩, v⃗ = ⟨2, 2, 1⟩, w⃗ = ⟨3, 1, 3⟩

In Exercises 33 – 36, find a unit vector orthogonal to both u⃗
and v⃗.

33. u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨2, 0, 1⟩

34. u⃗ = ⟨1,−2, 1⟩, v⃗ = ⟨3, 2, 1⟩

35. u⃗ = ⟨5, 0, 2⟩, v⃗ = ⟨−3, 0, 7⟩

36. u⃗ = ⟨1,−2, 1⟩, v⃗ = ⟨−2, 4,−2⟩

37. A bicycle rider applies 150lb of force, straight down,
onto a pedal that extends 7in horizontally from the
crankshaŌ. Find the magnitude of the torque applied to
the crankshaŌ.

38. A bicycle rider applies 150lb of force, straight down, onto
a pedal that extends 7in from the crankshaŌ, making a 30◦

anglewith the horizontal. Find themagnitude of the torque
applied to the crankshaŌ.

39. To turn a stubborn bolt, 80lb of force is applied to a 10in
wrench. What is the maximum amount of torque that can
be applied to the bolt?

40. To turn a stubborn bolt, 80lb of force is applied to a 10in
wrench in a confined space, where the direcƟon of ap-
plied force makes a 10◦ angle with the wrench. How much
torque is subsequently applied to the wrench?

41. Show, using the definiƟon of the Cross Product, that u⃗ · (⃗u×
v⃗) = 0; that is, that u⃗ is orthogonal to the cross product of
u⃗ and v⃗.

42. Show, using the definiƟon of the Cross Product, that u⃗×u⃗ =
0⃗.
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Figure 10.47: Defining a line in space.

Chapter 10 Vectors

10.5 Lines
To find the equaƟon of a line in the x− y plane, we need two pieces of informa-
Ɵon: a point and the slope. The slope conveys direcƟon informaƟon. As verƟcal
lines have an undefined slope, the following statement is more accurate:

To define a line, one needs a point on the line and the direcƟon of
the line.

This holds true for lines in space.

Let P be a point in space, let p⃗ be the vector with iniƟal point at the origin
and terminal point at P (i.e., p⃗ “points” to P), and let d⃗ be a vector. Consider the
points on the line through P in the direcƟon of d⃗.

Clearly one point on the line is P; we can say that the vector p⃗ lies at this
point on the line. To find another point on the line, we can start at p⃗ and move
in a direcƟon parallel to d⃗. For instance, starƟng at p⃗ and traveling one length of
d⃗ places one at another point on the line. Consider Figure 10.47 where certain
points along the line are indicated.

The figure illustrates how every point on the line can be obtained by starƟng
with p⃗ and moving a certain distance in the direcƟon of d⃗. That is, we can define
the line as a funcƟon of t:

ℓ⃗(t) = p⃗+ t d⃗. (10.7)

In many ways, this is not a new concept. Compare EquaƟon (10.7) to the
familiar “y = mx+ b” equaƟon of a line:

..y = b + mx. ℓ⃗(t) = p⃗ + t d⃗.

StarƟng
Point

.

DirecƟon

.

How Far To
Go In That
DirecƟon

Figure 10.46: Understanding the vector equaƟon of a line.

The equaƟons exhibit the same structure: they give a starƟng point, define
a direcƟon, and state how far in that direcƟon to travel.

EquaƟon (10.7) is an example of a vector–valued funcƟon; the input of the
funcƟon is a real number and the output is a vector. Wewill cover vector–valued
funcƟons extensively in the next chapter.

Notes:
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10.5 Lines

There are other ways to represent a line. Let p⃗ = ⟨x0, y0, z0⟩ and let d⃗ =

⟨a, b, c⟩. Then the equaƟon of the line through p⃗ in the direcƟon of d⃗ is:

ℓ⃗(t) = p⃗+ t⃗d
= ⟨x0, y0, z0⟩+ t ⟨a, b, c⟩
= ⟨x0 + at, y0 + bt, z0 + ct⟩

The last line states the the x values of the line are given by x = x0 + at, the
y values are given by y = y0 + bt, and the z values are given by z = z0 + ct.
These three equaƟons, taken together, are the parametric equaƟons of the line
through p⃗ in the direcƟon of d⃗.

Finally, each of the equaƟons for x, y and z above contain the variable t. We
can solve for t in each equaƟon:

x = x0 + at ⇒ t =
x− x0

a
,

y = y0 + bt ⇒ t =
y− y0

b
,

z = z0 + ct ⇒ t =
z− z0

c
,

assuming a, b, c ̸= 0. Since t is equal to each expression on the right, we can set
these equal to each other, forming the symmetric equaƟons of the line through
p⃗ in the direcƟon of d⃗:

x− x0
a

=
y− y0

b
=

z− z0
c

.

Each representaƟon has its own advantages, depending on the context. We
summarize these three forms in the following definiƟon, then give examples of
their use.

Notes:
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Figure 10.48: Graphing a line in Example
342.
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.

.

.
DefiniƟon 62 EquaƟons of Lines in Space

Consider the line in space that passes through p⃗ = ⟨x0, y0, z0⟩ in the
direcƟon of d⃗ = ⟨a, b, c⟩ .

1. The vector equaƟon of the line is

ℓ⃗(t) = p⃗+ t⃗d.

2. The parametric equaƟons of the line are

x = x0 + at, y = y0 + bt, z = z0 + ct.

3. The symmetric equaƟons of the line are

x− x0
a

=
y− y0

b
=

z− z0
c

.

.. Example 342 ..Finding the equaƟon of a line
Give all three equaƟons, as given inDefiniƟon 62, of the line throughP = (2, 3, 1)
in the direcƟon of d⃗ = ⟨−1, 1, 2⟩. Does the pointQ = (−1, 6, 6) lie on this line?

SÊ½çã®ÊÄ We idenƟfy the point P = (2, 3, 1) with the vector p⃗ =
⟨2, 3, 1⟩. Following the definiƟon, we have

• the vector equaƟon of the line is ℓ⃗(t) = ⟨2, 3, 1⟩+ t ⟨−1, 1, 2⟩;

• the parametric equaƟons of the line are

x = 2− t, y = 3+ t z = 1+ 2t; and

• the symmetric equaƟons of the line are

x− 2
−1

=
y− 3
1

=
z− 1
2

.

The first two equaƟons of the line are useful when a t value is given: one
can immediately find the corresponding point on the line. These forms are good
when calculaƟng with a computer; most soŌware programs easily handle equa-
Ɵons in these formats. (For instance, to make Figure 10.48, a certain graphics
program was given the input (2-x,3+x,1+2*x). This parƟcular program re-
quires the variable always be “x” instead of “t”).

Notes:
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Figure 10.49: A graph of the line in Exam-
ple 343.

10.5 Lines

Does the point Q = (−1, 6, 6) lie on the line? The graph in Figure 10.48
makes it clear that it does not. We can answer this quesƟon without the graph
using any of the three equaƟon forms. Of the three, the symmetric equaƟons
are probably best suited for this task. Simply plug in the values of x, y and z and
see if equality is maintained:

−1− 2
−1

?
=

6− 3
1

?
=

6− 1
2

⇒ 3 = 3 ̸= 2.5.

We see that Q does not lie on the line as it did not saƟsfy the symmetric equa-
Ɵons. ...

.. Example 343 Finding the equaƟon of a line through two points
Find the parametric equaƟons of the line through the points P = (2,−1, 2) and
Q = (1, 3,−1).

SÊ½çã®ÊÄ Recall the statement made at the beginning of this secƟon:
to find the equaƟon of a line, we need a point and a direcƟon. We have two
points; either one will suffice. The direcƟon of the line can be found by the
vector with iniƟal point P and terminal point Q: #  ‰PQ = ⟨−1, 4,−3⟩.

The parametric equaƟons of the line ℓ through P in the direcƟon of #  ‰PQ are:

ℓ : x = 2− t y = −1+ 4t z = 2− 3t.

A graph of the points and line are given in Figure 10.49. Note how in the
given parametrizaƟon of the line, t = 0 corresponds to the point P, and t = 1
corresponds to the pointQ. This relates to the understanding of the vector equa-
Ɵon of a line described in Figure 10.46. The parametric equaƟons “start” at the
point P, and t determines how far in the direcƟon of #  ‰PQ to travel. When t = 0,
we travel 0 lengths of #  ‰PQ; when t = 1, we travel one length of #  ‰PQ, resulƟng in
the point Q. ..

Parallel, IntersecƟng and Skew Lines

In the plane, two disƟnct lines can either be parallel or they will intersect
at exactly one point. In space, given equaƟons of two lines, it can someƟmes
be difficult to tell whether the lines are disƟnct or not (i.e., the same line can be
represented in different ways). Given lines ℓ⃗1(t) = p⃗1+ t⃗d1 and ℓ⃗2(t) = p⃗2+ t⃗d2,
we have four possibiliƟes: ℓ⃗1 and ℓ⃗2 are

the same line they share all points;
intersecƟng lines share only 1 point;
parallel lines d⃗1 ∥ d⃗2, no points in common; or
skew lines d⃗1 ∦ d⃗2, no points in common.

Notes:
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Figure 10.50: Sketching the lines from Ex-
ample 344.
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The next two examples invesƟgate these possibiliƟes.

.. Example 344 Comparing lines
Consider lines ℓ1 and ℓ2, given in parametric equaƟon form:

ℓ1 :
x = 1+ 3t
y = 2− t
z = t

ℓ2 :
x = −2+ 4s
y = 3+ s
z = 5+ 2s.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are parallel, or skew.

SÊ½çã®ÊÄ We start by looking at the direcƟons of each line. Line ℓ1
has the direcƟon given by d⃗1 = ⟨3,−1, 1⟩ and line ℓ2 has the direcƟon given by
d⃗2 = ⟨4, 1, 2⟩. It should be clear that d⃗1 and d⃗2 are not parallel, hence ℓ1 and ℓ2
are not the same line, nor are they parallel. Figure 10.50 verifies this fact (where
the points and direcƟons indicated by the equaƟons of each line are idenƟfied).

We next check to see if they intersect (if they do not, they are skew lines).
To find if they intersect, we look for t and s values such that the respecƟve x, y
and z values are the same. That is, we want s and t such that:

1+ 3t = −2+ 4s
2− t = 3+ s
t = 5+ 2s.

This is a relaƟvely simple system of linear equaƟons. Since the last equaƟon is
already solved for t, subsƟtute that value of t into the equaƟon above it:

2− (5+ 2s) = 3+ s ⇒ s = −2, t = 1.

A key to remember is that we have three equaƟons; we need to check if s =
−2, t = 1 saƟsfies the first equaƟon as well:

1+ 3(1) ̸= −2+ 4(−2).

It does not. Therefore, we conclude that the lines ℓ1 and ℓ2 are skew. ..

.. Example 345 ..Comparing lines
Consider lines ℓ1 and ℓ2, given in parametric equaƟon form:

ℓ1 :
x = −0.7+ 1.6t
y = 4.2+ 2.72t
z = 2.3− 3.36t

ℓ2 :
x = 2.8− 2.9s
y = 10.15− 4.93s
z = −5.05+ 6.09s.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are parallel, or skew.

Notes:
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Figure 10.51: Graphing the lines in Exam-
ple 345.

10.5 Lines

SÊ½çã®ÊÄ It is obviously very difficult to simply look at these equaƟons
and discern anything. This is done intenƟonally. In the “real world,” most equa-
Ɵons that are used do not have nice, integer coefficients. Rather, there are lots
of digits aŌer the decimal and the equaƟons can look “messy.”

We again start by deciding whether or not each line has the same direcƟon.
The direcƟon of ℓ1 is given by d⃗1 = ⟨1.6, 2.72,−3.36⟩ and the direcƟon of ℓ2
is given by d⃗2 = ⟨−2.9,−4.93, 6.09⟩. When it is not clear through observaƟon
whether two vectors are parallel or not, the standard way of determining this is
by comparing their respecƟve unit vectors. Using a calculator, we find:

u⃗1 =
d⃗1

|| d⃗1 ||
= ⟨0.3471, 0.5901,−0.7289⟩

u⃗2 =
d⃗2

|| d⃗2 ||
= ⟨−0.3471,−0.5901, 0.7289⟩ .

The two vectors seem to be parallel (at least, their components are equal to
4 decimal places). In most situaƟons, it would suffice to conclude that the lines
are at least parallel, if not the same. One way to be sure is to rewrite d⃗1 and d⃗2
in terms of fracƟons, not decimals. We have

d⃗1 =
⟨
16
10

,
272
100

,−336
100

⟩
d⃗2 =

⟨
−29
10

,−493
100

,
609
100

⟩
.

One can then find the magnitudes of each vector in terms of fracƟons, then
compute the unit vectors likewise. AŌer a lot of manual arithmeƟc (or aŌer
briefly using a computer algebra system), one finds that

u⃗1 =

⟨√
10
83

,
17√
830

,− 21√
830

⟩
u⃗2 =

⟨
−
√

10
83

,− 17√
830

,
21√
830

⟩
.

We can now say without equivocaƟon that these lines are parallel.
Are they the same line? The parametric equaƟons for a line describe one

point that lies on the line, so we know that the point P1 = (−0.7, 4.2, 2.3) lies
on ℓ1. To determine if this point also lies on ℓ2, plug in the x, y and z values of P1
into the symmetric equaƟons for ℓ2:

(−0.7)− 2.8
−2.9

?
=

(4.2)− 10.15
−4.93

?
=

(2.3)− (−5.05)
6.09

⇒ 1.2069 = 1.2069 = 1.2069.

The point P1 lies on both lines, so we conclude they are the same line, just
parametrized differently. Figure 10.51 graphs this line along with the points and
vectors described by the parametric equaƟons. Note how d⃗1 and d⃗2 are parallel,
though point in opposite direcƟons (as indicated by their unit vectors above). ...

Notes:
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Distances

Given a point Q and a line ℓ⃗(t) = p⃗ + t⃗d in space, it is oŌen useful to know
the distance from the point to the line. (Here we use the standard definiƟon
of “distance,” i.e., the length of the shortest line segment from the point to the
line.) IdenƟfying p⃗ with the point P, Figure 10.52 will help establish a general
method of compuƟng this distance h.

From trigonometry, we know h = || #  ‰PQ || sin θ. We have a similar idenƟty
involving the cross product: || #  ‰PQ × d⃗ || = || #  ‰PQ || || d⃗ || sin θ. Divide both sides
of this laƩer equaƟon by || d⃗ || to obtain h:

h =
|| #  ‰PQ× d⃗ ||

|| d⃗ ||
. (10.8)

It is also useful to determine the distance between lines, which we define as
the length of the shortest line segment that connects the two lines (an argument
from geometry shows that this line segments is perpendicular to both lines). Let
lines ℓ⃗1(t) = p⃗1 + t⃗d1 and ℓ⃗2(t) = p⃗2 + t⃗d2 be given, as shown in Figure 10.53.
To find the direcƟon orthogonal to both d⃗1 and d⃗2, we take the cross product:
c⃗ = d⃗1 × d⃗2. The magnitude of the orthogonal projecƟon of #      ‰P1P2 onto c⃗ is the
distance h we seek:

h = || proj c⃗
#      ‰P1P2 ||

=

∣∣∣∣∣∣∣∣ #      ‰P1P2 · c⃗
c⃗ · c⃗

c⃗
∣∣∣∣∣∣∣∣

=
| #      ‰P1P2 · c⃗|
|| c⃗ ||2

|| c⃗ ||

=
| #      ‰P1P2 · c⃗|
|| c⃗ ||

.

A problem in the Exercise secƟon is to show that this distance is 0 when the lines
intersect. Note the use of the Triple Scalar Product: #      ‰P1P2 · c =

#      ‰P1P2 · (⃗d1 × d⃗2).

The following Key Idea restates these two distance formulas.

Notes:
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.

.

.
Key Idea 51 Distances to Lines

1. Let P be a point on a line ℓ that is parallel to d⃗. The distance h from
a point Q to the line ℓ is:

h =
|| #  ‰PQ× d⃗ ||

|| d⃗ ||
.

2. Let P1 be a point on line ℓ1 that is parallel to d⃗1, and let P2 be a
point on line ℓ2 parallel to d⃗2, and let c⃗ = d⃗1 × d⃗2, where lines ℓ1
and ℓ2 are not parallel. The distance h between the two lines is:

h =
| #      ‰P1P2 · c⃗|
|| c⃗ ||

.

.. Example 346 Finding the distance from a point to a line
Find the distance from the point Q = (1, 1, 3) to the line ℓ⃗(t) = ⟨1,−1, 1⟩ +
t ⟨2, 3, 1⟩ .

SÊ½çã®ÊÄ TheequaƟonof the line line gives us the pointP = (1,−1, 1)
that lies on the line, hence #  ‰PQ = ⟨0, 2, 2⟩. The equaƟon also gives d⃗ = ⟨2, 3, 1⟩.
Following Key Idea 51, we have the distance as

h =
|| #  ‰PQ× d⃗ ||

|| d⃗ ||

=
|| ⟨−4, 4,−4⟩ ||√

14
4
√
3√

14
≈ 1.852.

The point Q is approximately 1.852 units from the line ℓ⃗(t). ..

.. Example 347 ..Finding the distance between lines
Find the distance between the lines

ℓ1 :
x = 1+ 3t
y = 2− t
z = t

ℓ2 :
x = −2+ 4s
y = 3+ s
z = 5+ 2s.

Notes:
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SÊ½çã®ÊÄ These are the sames lines as given in Example 344, where
we showed them to be skew. The equaƟons allow us to idenƟfy the following
points and vectors:

P1 = (1, 2, 0) P2 = (−2, 3, 5) ⇒ #      ‰P1P2 = ⟨−3, 1, 5⟩ .

d⃗1 = ⟨3,−1, 1⟩ d⃗2 = ⟨4, 1, 2⟩ ⇒ c⃗ = d⃗1 × d⃗2 = ⟨−3,−2, 7⟩ .

From Key Idea 51 we have the distance h between the two lines is

h =
| #      ‰P1P2 · c⃗|
|| c⃗ ||

=
42√
62

≈ 5.334.

The lines are approximately 5.334 units apart. ...

One of the key points to understand from this secƟon is this: to describe a
line, we need a point and a direcƟon. Whenever a problem is posed concern-
ing a line, one needs to take whatever informaƟon is offered and glean point
and direcƟon informaƟon. Many quesƟons can be asked (and are asked in the
Exercise secƟon) whose answer immediately follows from this understanding.

Notes:
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Exercises 10.5
Terms and Concepts
1. To find an equaƟon of a line, what two pieces of informa-

Ɵon are needed?

2. Two disƟnct lines in the plane can intersect or be
.

3. Two disƟnct lines in space can intersect, be or be
.

4. Use your ownwords to describewhat it means for two lines
in space to be skew.

Problems
In Exercises 5 – 14, write the vector, parametric and symmet-
ric equaƟons of the lines described.

5. Passes through P = (2,−4, 1), parallel to d⃗ = ⟨9, 2, 5⟩.

6. Passes through P = (6, 1, 7), parallel to d⃗ = ⟨−3, 2, 5⟩.

7. Passes through P = (2, 1, 5) and Q = (7,−2, 4).

8. Passes through P = (1,−2, 3) and Q = (5, 5, 5).

9. Passes through P = (0, 1, 2) and orthogonal to both
d⃗1 = ⟨2,−1, 7⟩ and d⃗2 = ⟨7, 1, 3⟩.

10. Passes through P = (5, 1, 9) and orthogonal to both
d⃗1 = ⟨1, 0, 1⟩ and d⃗2 = ⟨2, 0, 3⟩.

11. Passes through the point of intersecƟon of ℓ1(t) and ℓ2(t)
and orthogonal to both lines, where
ℓ1(t) = ⟨2, 1, 1⟩+ t ⟨5, 1,−2⟩ and
ℓ2(t) = ⟨−2,−1, 2⟩+ t ⟨3, 1,−1⟩.

12. Passes through the point of intersecƟon of ℓ1(t) and ℓ2(t)
and orthogonal to both lines, where

ℓ1 =


x = t
y = −2+ 2t
z = 1+ t

and ℓ2 =


x = 2+ t
y = 2− t
z = 3+ 2t

.

13. Passes through P = (1, 1), parallel to d⃗ = ⟨2, 3⟩.

14. Passes through P = (−2, 5), parallel to d⃗ = ⟨0, 1⟩.

In Exercises 15 – 22, determine if the described lines are the
same line, parallel lines, intersecƟng or skew lines. If inter-
secƟng, give the point of intersecƟon.

15. ℓ1(t) = ⟨1, 2, 1⟩+ t ⟨2,−1, 1⟩,
ℓ2(t) = ⟨3, 3, 3⟩+ t ⟨−4, 2,−2⟩.

16. ℓ1(t) = ⟨2, 1, 1⟩+ t ⟨5, 1, 3⟩,
ℓ2(t) = ⟨14, 5, 9⟩+ t ⟨1, 1, 1⟩.

17. ℓ1(t) = ⟨3, 4, 1⟩+ t ⟨2,−3, 4⟩,
ℓ2(t) = ⟨−3, 3,−3⟩+ t ⟨3,−2, 4⟩.

18. ℓ1(t) = ⟨1, 1, 1⟩+ t ⟨3, 1, 3⟩,
ℓ2(t) = ⟨7, 3, 7⟩+ t ⟨6, 2, 6⟩.

19. ℓ1 =


x = 1+ 2t
y = 3− 2t
z = t

and ℓ2 =


x = 3− t
y = 3+ 5t
z = 2+ 7t

20. ℓ1 =


x = 1.1+ 0.6t
y = 3.77+ 0.9t
z = −2.3+ 1.5t

and ℓ2 =


x = 3.11+ 3.4t
y = 2+ 5.1t
z = 2.5+ 8.5t

21. ℓ1 =


x = 0.2+ 0.6t
y = 1.33− 0.45t
z = −4.2+ 1.05t

and ℓ2 =


x = 0.86+ 9.2t
y = 0.835− 6.9t
z = −3.045+ 16.1t

22. ℓ1 =


x = 0.1+ 1.1t
y = 2.9− 1.5t
z = 3.2+ 1.6t

and ℓ2 =


x = 4− 2.1t
y = 1.8+ 7.2t
z = 3.1+ 1.1t

In Exercises 23 – 26, find the distance from the point to the
line.

23. P = (1, 1, 1), ℓ(t) = ⟨2, 1, 3⟩+ t ⟨2, 1,−2⟩

24. P = (2, 5, 6), ℓ(t) = ⟨−1, 1, 1⟩+ t ⟨1, 0, 1⟩

25. P = (0, 3), ℓ(t) = ⟨2, 0⟩+ t ⟨1, 1⟩

26. P = (1, 1), ℓ(t) = ⟨4, 5⟩+ t ⟨−4, 3⟩

In Exercises 27 – 28, find the distance between the two lines.

27. ℓ1(t) = ⟨1, 2, 1⟩+ t ⟨2,−1, 1⟩,
ℓ2(t) = ⟨3, 3, 3⟩+ t ⟨4, 2,−2⟩.

28. ℓ1(t) = ⟨0, 0, 1⟩+ t ⟨1, 0, 0⟩,
ℓ2(t) = ⟨0, 0, 3⟩+ t ⟨0, 1, 0⟩.

Exercises 29 – 31 explore special cases of the distance formu-
las found in Key Idea 51.

29. Let Q be a point on the line ℓ(t). Show why the distance
formula correctly gives the distance from the point to the
line as 0.

30. Let lines ℓ1(t) and ℓ2(t) be intersecƟng lines. Show why
the distance formula correctly gives the distance between
these lines as 0.

31. Let lines ℓ1(t) and ℓ2(t) be parallel. Show why the distance
formula cannot be used as stated to find the distance be-
tween the lines, then showwhy leƫng c = (

#     ‰P1P2× d⃗2)× d⃗2
allows one to the use the given formula.
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Figure 10.54: IllustraƟng defining a plane
with a sheet of cardboard and a nail.
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10.6 Planes
Any flat surface, such as a wall, table top or sƟff piece of cardboard can be
thought of as represenƟng part of a plane. Consider a piece of cardboard with
a point P marked on it. One can take a nail and sƟck it into the cardboard at P
such that the nail is perpendicular to the cardboard; see Figure 10.54

This nail provides a “handle” for the cardboard. Moving the cardboard around
moves P to different locaƟons in space. TilƟng the nail (but keeping P fixed) Ɵlts
the cardboard. Both moving and ƟlƟng the cardboard defines a different plane
in space. In fact, we can define a plane by: 1) the locaƟon of P in space, and 2)
the direcƟon of the nail.

The previous secƟon showed that one can define a line given a point on the
line and the direcƟon of the line (usually given by a vector). One can make a
similar statement about planes: we can define a plane in space given a point on
the plane and the direcƟon the plane “faces” (using the descripƟon above, the
direcƟon of the nail). Once again, the direcƟon informaƟon will be supplied by
a vector, called a normal vector, that is orthogonal to the plane.

What exactly does “orthogonal to the plane”mean? Choose any twopoints P
and Q in the plane, and consider the vector #  ‰PQ. We say a vector n⃗ is orthogonal
to the plane if n⃗ is perpendicular to #  ‰PQ for all choices of P and Q; that is, if
n⃗ · #  ‰PQ = 0 for all P and Q.

This gives us way of wriƟng an equaƟon describing the plane. Let P =
(x0, y0, z0) be a point in the plane and let n⃗ = ⟨a, b, c⟩ be a normal vector to
the plane. A point Q = (x, y, z) lies in the plane defined by P and n⃗ if, and only
if, #  ‰PQ is orthogonal to n⃗. Knowing #  ‰PQ = ⟨x− x0, y− y0, z− z0⟩, consider:

#  ‰PQ · n⃗ = 0
⟨x− x0, y− y0, z− z0⟩ · ⟨a, b, c⟩ = 0

a(x− x0) + b(y− y0) + c(z− z0) = 0 (10.9)

EquaƟon (10.9) defines an implicit funcƟon describing the plane. More algebra
produces:

ax+ by+ cz = ax0 + by0 + cz0.

The right hand side is just a number, so we replace it with d:

ax+ by+ cz = d. (10.10)

As long as c ̸= 0, we can solve for z:

z =
1
c
(d− ax− by). (10.11)

Notes:
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Figure 10.55: Sketching the plane in Ex-
ample 348.

10.6 Planes

EquaƟon (10.11) is especially useful asmany computer programs can graph func-
Ɵons in this form. EquaƟons (10.9) and (10.10) have specific names, given next.

.

.

.
DefiniƟon 63 EquaƟons of a Plane in Standard and General Forms

The plane passing through the point P = (x0, y0, z0) with normal vector
n⃗ = ⟨a, b, c⟩ can be described by an equaƟon with standard form

a(x− x0) + b(y− y0) + c(z− z0) = 0;

the equaƟon’s general form is

ax+ by+ cz = d.

A key to remember throughout this secƟon is this: to find the equaƟon of a
plane, we need a point and a normal vector. We will give several examples of
finding the equaƟon of a plane, and in each one different types of informaƟon
are given. In each case, we need to use the given informaƟon to find a point on
the plane and a normal vector.

.. Example 348 Finding the equaƟon of a plane.
Write the equaƟon of the plane that passes through the points P = (1, 1, 0),
Q = (1, 2,−1) and R = (0, 1, 2) in standard form.

SÊ½çã®ÊÄ We need a vector n⃗ that is orthogonal to the plane. Since P,
Q and R are in the plane, so are the vectors #  ‰PQ and # ‰PR; #  ‰PQ × # ‰PR is orthogonal
to #  ‰PQ and # ‰PR and hence the plane itself.

It is straighƞorward to compute n⃗ =
#  ‰PQ × # ‰PR = ⟨2, 1, 1⟩. We can use any

point we wish in the plane (any of P, Q or R will do) and we arbitrarily choose P.
Following DefiniƟon 63, the equaƟon of the plane in standard form is

2(x− 1) + (y− 1) + z = 0.

The plane is sketched in Figure 10.55. ..

We have just demonstrated the fact that any three non-collinear points de-
fine a plane. (This is why a three-legged stool does not “rock;” it’s three feet
always lie in a plane. A four-legged stool will rock unless all four feet lie in the
same plane.)

.. Example 349 ..Finding the equaƟon of a plane.
Verify that lines ℓ1 and ℓ2, whose parametric equaƟons are given below, inter-

Notes:
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Figure 10.56: Sketching the plane in Ex-
ample 349.
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Figure 10.57: The line and plane in Exam-
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sect, then give the equaƟon of the plane that contains these two lines in general
form.

ℓ1 :
x = −5+ 2s
y = 1+ s
z = −4+ 2s

ℓ2 :
x = 2+ 3t
y = 1− 2t
z = 1+ t

SÊ½çã®ÊÄ The lines clearly are not parallel. If they do not intersect,
they are skew, meaning there is not a plane that contains them both. If they do
intersect, there is such a plane.

To find their point of intersecƟon, we set the x, y and z equaƟons equal to
each other and solve for s and t:

−5+ 2s = 2+ 3t
1+ s = 1− 2t

−4+ 2s = 1+ t
⇒ s = 2, t = −1.

When s = 2 and t = −1, the lines intersect at the point P = (−1, 3, 0).
Let d⃗1 = ⟨2, 1, 2⟩ and d⃗2 = ⟨3,−2, 1⟩ be the direcƟons of lines ℓ1 and ℓ2,

respecƟvely. A normal vector to the plane containing these the two lines will
also be orthogonal to d⃗1 and d⃗2. Thus we find a normal vector n⃗ by compuƟng
n⃗ = d⃗1 × d⃗2 = ⟨5, 4− 7⟩.

We can pick any point in the plane with which to write our equaƟon; each
line gives us infinite choices of points. We choose P, the point of intersecƟon.
We follow DefiniƟon 63 to write the plane’s equaƟon in general form:

5(x+ 1) + 4(y− 3)− 7z = 0
5x+ 5+ 4y− 12− 7z = 0

5x+ 4y− 7z = 7.

The plane’s equaƟon in general form is 5x+ 4y− 7z = 7; it is sketched in Figure
10.56. ...

.. Example 350 ..Finding the equaƟon of a plane
Give the equaƟon, in standard form, of the plane that passes through the point
P = (−1, 0, 1) and is orthogonal to the linewith vector equaƟon ℓ⃗(t) = ⟨−1, 0, 1⟩+
t ⟨1, 2, 2⟩.

SÊ½çã®ÊÄ As the plane is to be orthogonal to the line, the plane must
be orthogonal to the direcƟon of the line given by d⃗ = ⟨1, 2, 2⟩. We use this as
our normal vector. Thus the plane’s equaƟon, in standard form, is

(x+ 1) + 2y+ 2(z− 1) = 0.

Notes:
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Figure 10.58: Graphing the planes and
their line of intersecƟon in Example 351.

10.6 Planes

The line and plane are sketched in Figure 10.57. ...

.. Example 351 Finding the intersecƟon of two planes
Give the parametric equaƟons of the line that is the intersecƟon of the planes
p1 and p2, where:

p1 : x− (y− 2) + (z− 1) = 0
p2 : −2(x− 2) + (y+ 1) + (z− 3) = 0

SÊ½çã®ÊÄ To find an equaƟon of a line, we need a point on the line and
the direcƟon of the line.

We can find a point on the line by solving each equaƟon of the planes for z:

p1 : z = −x+ y− 1
p2 : z = 2x− y− 2

We can now set these two equaƟons equal to each other (i.e., we are finding
values of x and y where the planes have the same z value:

−x+ y− 1 = 2x− y− 2
2y = 3x− 1

y =
1
2
(3x− 1)

We can choose any value for x; we choose x = 1. This determines that y = 1.
We can now use the equaƟons of either plane to find z: when x = 1 and y = 1,
z = −1 on both planes. We have found a point P on the line: P = (1, 1,−1).

We now need the direcƟon of the line. Since the line lies in each plane,
its direcƟon is orthogonal to a normal vector for each plane. Considering the
equaƟons for p1 and p2, we can quickly determine a normal vector. For p1, n⃗1 =
⟨1,−1, 1⟩ and for p2, n⃗2 = ⟨−2, 1, 1⟩ . A direcƟon orthogonal to both of these
direcƟons is their cross product: d⃗ = n⃗1 × n⃗2 = ⟨−2,−3,−1⟩ .

The parametric equaƟons of the line through P = (1, 1,−1) in the direcƟon
of d = ⟨−2,−3,−1⟩ is:

ℓ : x = −2t+ 1 y = −3t+ 1 z = −t− 1.

The planes and line are graphed in Figure 10.58. ..

.. Example 352 ..Finding the intersecƟon of a plane and a line
Find the point of intersecƟon, if any, of the line ℓ(t) = ⟨3,−3,−1⟩+ t ⟨−1, 2, 1⟩
and the plane with equaƟon in general form 2x+ y+ z = 4.

Notes:
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SÊ½çã®ÊÄ TheequaƟonof the plane shows that the vector n⃗ = ⟨2, 1, 1⟩
is a normal vector to the plane, and the equaƟon of the line shows that the line
moves parallel to d⃗ = ⟨−1, 2, 1⟩. Since these are not orthogonal, we know
there is a point of intersecƟon. (If there were orthogonal, it would mean that
the plane and line were parallel to each other, either never intersecƟng or the
line was in the plane itself.)

To find the point of intersecƟon, we need to find a t value such that ℓ(t)
saƟsfies the equaƟon of the plane. RewriƟng the equaƟon of the line with para-
metric equaƟons will help:

ℓ(t) =


x = 3− t
y = −3+ 2t
z = −1+ t

.

Replacing x, y and z in the equaƟon of the plane with the expressions containing
t found in the equaƟon of the line allows us to determine a t value that indicates
the point of intersecƟon:

2x+ y+ z = 4
2(3− t) + (−3+ 2t) + (−1+ t) = 4

t = 2.

When t = 2, the point on the line saƟsfies the equaƟon of the plane; that point
is ℓ(2) = ⟨1, 1, 1⟩. Thus the point (1, 1, 1) is the point of intersecƟon between
the plane and the line, illustrated in Figure 10.59. ...

Distances

Just as itwas useful to finddistances betweenpoints and lines in the previous
secƟon, it is also oŌen necessary to find the distance from a point to a plane.

Consider Figure 10.60, where a plane with normal vector n⃗ is sketched con-
taining a point P and a point Q, not on the plane, is given. We measure the
distance from Q to the plane by measuring the length of the projecƟon of #  ‰PQ
onto n⃗. That is, we want:

|| proj n⃗
#  ‰PQ || =

∣∣∣∣∣
∣∣∣∣∣ n⃗ ·

#  ‰PQ
|| n⃗ ||2

n⃗

∣∣∣∣∣
∣∣∣∣∣ = |⃗n · #  ‰PQ|

|| n⃗ ||
(10.12)

EquaƟon (10.12) is important as it doesmore than just give the distance between
a point and a plane. We will see how it allows us to find several other distances
as well: the distance between parallel planes and the distance from a line and a
plane. Because EquaƟon (10.12) is important, we restate it as a Key Idea.

Notes:
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.

.

.
Key Idea 52 Distance from a Point to a Plane

Let a plane with normal vector n⃗ be given, and let Q be a point. The
distance h from Q to the plane is

h =
|⃗n · #  ‰PQ|
|| n⃗ ||

,

where P is any point in the plane.

.. Example 353 Distance between a point and a plane
Find the distance bewteen the point Q = (2, 1, 4) and the plane with equaƟon
2x− 5y+ 6z = 9.

SÊ½çã®ÊÄ Using the equaƟon of the plane, we find the normal vector
n⃗ = ⟨2,−5, 6⟩. To find a point on the plane, we can let x and y be anything we
choose, then let z be whatever saƟsfies the equaƟon. Leƫng x and y be 0 seems
simple; this makes z = 1.5. Thus we let P = ⟨0, 0, 1.5⟩, and #  ‰PQ = ⟨2, 1, 2.5⟩ .

The distance h from Q to the plane is given by Key Idea 52:

h =
|⃗n · #  ‰PQ|
|| n⃗ ||

=
| ⟨2,−5,−6⟩ · ⟨2, 1, 2.5⟩ |

|| ⟨2,−5,−6⟩ ||

=
| − 16|√

65
≈ 1.98...

We can use Key Idea 52 to find other distances. Given two parallel planes,
we can find the distance between these planes by leƫng P be a point on one
plane and Q a point on the other. If ℓ is a line parallel to a plane, we can use
the Key Idea to find the distance between them as well: again, let P be a point
in the plane and let Q be any point on the line. (One can also use Key Idea 51.)
The Exercise secƟon contains problems of these types.

These past two secƟons have not explored lines and planes in space as an
exercise of mathemaƟcal curiosity. Rather, there are many, many applicaƟons
of these fundamental concepts. Complex shapes can be modeled (or, approxi-
mated) using planes. For instance, part of the exterior of an aircraŌ may have
a complex, yet smooth, shape, and engineers will want to know how air flows
across this piece as well as how heat might build up due to air fricƟon. Many

Notes:
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equaƟons that help determine air flow and heat dissipaƟon are difficult to apply
to arbitrary surfaces, but simple to apply to planes. By approximaƟng a surface
with millions of small planes one can more readily model the needed behavior.

Notes:
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Exercises 10.6
Terms and Concepts
1. In order to find the equaƟon of a plane, what two pieces of

informaƟon must one have?

2. What is the relaƟonship between a plane and one of its nor-
mal vectors?

Problems
In Exercises 3 – 6, give any two points in the given plane.

3. 2x− 4y+ 7z = 2

4. 3(x+ 2) + 5(y− 9)− 4z = 0

5. x = 2

6. 4(y+ 2)− (z− 6) = 0

In Exercises 7 – 20, give the equaƟon of the described plane
in standard and general forms.

7. Passes through (2, 3, 4) and has normal vector
n⃗ = ⟨3,−1, 7⟩.

8. Passes through (1, 3, 5) and has normal vector
n⃗ = ⟨0, 2, 4⟩.

9. Passes through the points (1, 2, 3), (3,−1, 4) and (1, 0, 1).

10. Passes through the points (5, 3, 8), (6, 4, 9) and (3, 3, 3).

11. Contains the intersecƟng lines
ℓ1(t) = ⟨2, 1, 2⟩+ t ⟨1, 2, 3⟩ and
ℓ2(t) = ⟨2, 1, 2⟩+ t ⟨2, 5, 4⟩.

12. Contains the intersecƟng lines
ℓ1(t) = ⟨5, 0, 3⟩+ t ⟨−1, 1, 1⟩ and
ℓ2(t) = ⟨1, 4, 7⟩+ t ⟨3, 0,−3⟩.

13. Contains the parallel lines
ℓ1(t) = ⟨1, 1, 1⟩+ t ⟨1, 2, 3⟩ and
ℓ2(t) = ⟨1, 1, 2⟩+ t ⟨1, 2, 3⟩.

14. Contains the parallel lines
ℓ1(t) = ⟨1, 1, 1⟩+ t ⟨4, 1, 3⟩ and
ℓ2(t) = ⟨2, 2, 2⟩+ t ⟨4, 1, 3⟩.

15. Contains the point (2,−6, 1) and the line

ℓ(t) =


x = 2+ 5t
y = 2+ 2t
z = −1+ 2t

16. Contains the point (5, 7, 3) and the line

ℓ(t) =


x = t
y = t
z = t

17. Contains the point (5, 7, 3) and is orthogonal to the line
ℓ(t) = ⟨4, 5, 6⟩+ t ⟨1, 1, 1⟩.

18. Contains the point (4, 1, 1) and is orthogonal to the line

ℓ(t) =


x = 4+ 4t
y = 1+ 1t
z = 1+ 1t

19. Contains the point (−4, 7, 2) and is parallel to the plane
3(x− 2) + 8(y+ 1)− 10z = 0.

20. Contains the point (1, 2, 3) and is parallel to the plane
x = 5.

In Exercises 21 – 22, give the equaƟon of the line that is the
intersecƟon of the given planes.

21. p1 : 3(x− 2) + (y− 1) + 4z = 0, and
p2 : 2(x− 1)− 2(y+ 3) + 6(z− 1) = 0.

22. p1 : 5(x− 5) + 2(y+ 2) + 4(z− 1) = 0, and
p2 : 3x− 4(y− 1) + 2(z− 1) = 0.

In Exercises 23 – 26, find the point of intersecƟon between
the line and the plane.

23. line: ⟨5, 1,−1⟩+ t ⟨2, 2, 1⟩,
plane: 5x− y− z = −3

24. line: ⟨4, 1, 0⟩+ t ⟨1, 0,−1⟩,
plane: 3x+ y− 2z = 8

25. line: ⟨1, 2, 3⟩+ t ⟨3, 5,−1⟩,
plane: 3x− 2y− z = 4

26. line: ⟨1, 2, 3⟩+ t ⟨3, 5,−1⟩,
plane: 3x− 2y− z = −4

In Exercises 27 – 30, find the given distances.

27. The distance from the point (1, 2, 3) to the plane
3(x− 1) + (y− 2) + 5(z− 2) = 0.

28. The distance from the point (2, 6, 2) to the plane
2(x− 1)− y+ 4(z+ 1) = 0.

29. The distance between the parallel planes
x+ y+ z = 0 and
(x− 2) + (y− 3) + (z+ 4) = 0

30. The distance between the parallel planes
2(x− 1) + 2(y+ 1) + (z− 2) = 0 and
2(x− 3) + 2(y− 1) + (z− 3) = 0

31. Show why if the point Q lies in a plane, then the distance
formula correctly gives the distance from the point to the
plane as 0.

32. How is Exercise 30 in SecƟon 10.5 easier to answer once we
have an understanding of planes?
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Figure 11.1: Sketching the graph of a
vector–valued funcƟon.
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11.1 Vector–Valued FuncƟons
We are very familiar with real valued funcƟons, that is, funcƟons whose output
is a real number. This secƟon introduces vector–valued funcƟons – funcƟons
whose output is a vector.

.

.

.
DefiniƟon 64 Vector–Valued FuncƟons

A vector–valued funcƟon is a funcƟon of the form

r⃗(t) = ⟨ f(t), g(t) ⟩ or r⃗(t) = ⟨ f(t), g(t), h(t) ⟩ ,

where f, g and h are real valued funcƟons.

The domain of r⃗ is the set of all values of t for which r⃗(t) is defined. The
range of r⃗ is the set of all possible output vectors r⃗(t).

EvaluaƟng and Graphing Vector–Valued FuncƟons

EvaluaƟng a vector–valued funcƟon at a specific value of t is straighƞorward;
simply evaluate each component funcƟon at that value of t. For instance, if
r⃗(t) =

⟨
t2, t2 + t− 1

⟩
, then r⃗(−2) = ⟨4, 1⟩. We can sketch this vector, as is

done in Figure 11.1 (a). Ploƫng lots of vectors is cumbersome, though, so gen-
erally we do not sketch the whole vector but just the terminal point. The graph
of a vector–valued funcƟon is the set of all terminal points of r⃗(t), where the
iniƟal point of each vector is always the origin. In Figure 11.1 (b) we sketch the
graph of r⃗ ; we can indicate individual points on the graph with their respecƟve
vector, as shown.

Vector–valued funcƟons are closely related to parametric equaƟons of graphs.
While in bothmethods we plot points

(
x(t), y(t)

)
or
(
x(t), y(t), z(t)

)
to produce

a graph, in the context of vector–valued funcƟons each such point represents a
vector. The implicaƟons of this will be more fully realized in the next secƟon as
we apply calculus ideas to these funcƟons.
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Chapter 11 Vector Valued FuncƟons

.. Example 354 Graphing vector–valued funcƟons

Graph r⃗(t) =
⟨
t3 − t,

1
t2 + 1

⟩
, for−2 ≤ t ≤ 2. Sketch r⃗(−1) and r⃗(2).

SÊ½çã®ÊÄ We start by making a table of t, x and y values as shown in
Figure 11.2 (a). Ploƫng these points gives an indicaƟon of what the graph looks
like. In Figure 11.2 (b), we indicate these points and sketch the full graph. We
also highlight r⃗(−1) and r⃗(2) on the graph. ..

.. Example 355 Graphing vector–valued funcƟons.
Graph r⃗(t) = ⟨cos t, sin t, t⟩ for 0 ≤ t ≤ 4π.

SÊ½çã®ÊÄ We can again plot points, but careful consideraƟon of this
funcƟon is very revealing. Momentarily ignoring the third component, we see
the x and y components trace out a circle of radius 1 centered at the origin.
NoƟcing that the z component is t, we see that as the graph winds around the
z-axis, it is also increasing at a constant rate in the posiƟve z direcƟon, forming a
spiral. This is graphed in Figure 11.3. In the graph r⃗(7π/4) ≈ (0.707,−0.707, 5.498)
is highlighted to help us understand the graph. ..

Algebra of Vector–Valued FuncƟons

.

.

.
DefiniƟon 65 OperaƟons on Vector–Valued FuncƟons

Let r⃗1(t) = ⟨f1(t), g1(t)⟩ and r⃗2(t) = ⟨f2(t), g2(t)⟩ be vector–valued
funcƟons in R2 and let c be a scalar. Then:

1. r⃗1(t)± r⃗2(t) = ⟨ f1(t)± f2(t), g1(t)± g2(t) ⟩.

2. c⃗r1(t) = ⟨ cf1(t), cg1(t) ⟩.

A similar definiƟon holds for vector–valued funcƟons in R3.

This definiƟon states that we add, subtract and scale vector-valued funcƟons
component–wise. Combining vector–valued funcƟons in this way can be very
useful (as well as create interesƟng graphs).

.. Example 356 ..Adding and scaling vector–valued funcƟons.
Let r⃗1(t) = ⟨ 0.2t, 0.3t ⟩, r⃗2(t) = ⟨ cos t, sin t ⟩ and r⃗(t) = r⃗1(t) + r⃗2(t). Graph
r⃗1(t), r⃗2(t), r⃗(t) and 5⃗r(t) on−10 ≤ t ≤ 10.

Notes:
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Figure 11.5: Graphing the funcƟons in Ex-
ample 356.

11.1 Vector–Valued FuncƟons

SÊ½çã®ÊÄ We can graph r⃗1 and r⃗2 easily by ploƫng points (or just using
technology). Let’s think about each for a moment to beƩer understand how
vector–valued funcƟons work.

We can rewrite r⃗1(t) = ⟨ 0.2t, 0.3t ⟩ as r⃗1(t) = t ⟨0.2, 0.3⟩. That is, the
funcƟon r⃗1 scales the vector ⟨0.2, 0.3⟩ by t. This scaling of a vector produces a
line in the direcƟon of ⟨0.2, 0.3⟩.

We are familiar with r⃗2(t) = ⟨ cos t, sin t ⟩; it traces out a circle, centered at
the origin, of radius 1. Figure 11.5 (a) graphs r⃗1(t) and r⃗2(t).

Adding r⃗1(t) to r⃗2(t) produces r⃗(t) = ⟨ cos t+ 0.2t, sin t+ 0.3t ⟩, graphed
in Figure 11.5 (b). The linear movement of the line combines with the circle to
create loops that move in the direcƟon of ⟨0.2, 0.3⟩. (We encourage the reader
to experiment by changing r⃗1(t) to ⟨2t, 3t⟩, etc., and observe the effects on the
loops.)

MulƟplying r⃗(t) by 5 scales the funcƟon by 5, producing 5⃗r(t) = ⟨5 cos t +
1, 5 sin t + 1.5⟩, which is graphed in Figure 11.5 (c) along with r⃗(t). The new
funcƟon is “5 Ɵmes bigger” than r⃗(t). Note how the graph of 5⃗r(t) in (c) looks
idenƟcal to the graph of r⃗(t) in (b). This is due to the fact that the x and y bounds
of the plot in (c) are exactly 5 Ɵmes larger than the bounds in (b). ...

.. Example 357 ..Adding and scaling vector–valued funcƟons.
A cycloid is a graph traced by a point p on a rolling circle, as shown in Figure
11.4. Find an equaƟon describing the cycloid, where the circle has radius 1.

..
p

Figure 11.4: Tracing a cycloid.

SÊ½çã®ÊÄ This problem is not very difficult if we approach it in a clever
way. We start by leƫng p⃗(t) describe the posiƟon of the point p on the circle,
where the circle is centered at the origin and only rotates clockwise (i.e., it does
not roll). This is relaƟvely simple given our previous experienceswith parametric
equaƟons; p⃗(t) = ⟨cos t,− sin t⟩.

We now want the circle to roll. We represent this by leƫng c⃗(t) represent
the locaƟon of the center of the circle. It should be clear that the y component
of c⃗(t) should be 1; the center of the circle is always going to be 1 if it rolls on a
horizontal surface.

The x component of c⃗(t) is a linear funcƟon of t: f(t) = mt for some scalarm.
When t = 0, f(t) = 0 (the circle starts centered on the y-axis). When t = 2π,
the circle has made one complete revoluƟon, traveling a distance equal to its

Notes:
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Chapter 11 Vector Valued FuncƟons

circumference, which is also 2π. This gives us a point on our line f(t) = mt, the
point (2π, 2π). It should be clear thatm = 1 and f(t) = t. So c⃗(t) = ⟨t, 1⟩.

Wenow combine p⃗ and c⃗ together to form the equaƟon of the cycloid: r⃗(t) =
p⃗(t) + c⃗(t) = ⟨cos t+ t,− sin t+ 1⟩, which is graphed in Figure 11.6. ...

Displacement

A vector–valued funcƟon r⃗(t) is oŌen used to describe the posiƟon of amov-
ing object at Ɵme t. At t = t0, the object is at r⃗(t0); at t = t1, the object is at
r⃗(t1). Knowing the locaƟons r⃗(t0) and r⃗(t1) give no indicaƟon of the path taken
between them, but oŌen we only care about the difference of the locaƟons,
r⃗(t1)− r⃗(t0), the displacement.

.

.

.
DefiniƟon 66 Displacement

Let r⃗(t) be a vector–valued funcƟon and let t0 < t1 be values in the
domain. The displacement d⃗ of r⃗, from t = t0 to t = t1, is

d⃗ = r⃗(t1)− r⃗(t0).

When the displacement vector is drawnwith iniƟal point at r⃗(t0), its terminal
point is r⃗(t1). We think of it as the vector which points from a starƟng posiƟon
to an ending posiƟon.

.. Example 358 Finding and graphing displacement vectors
Let r⃗(t) =

⟨
cos( π2 t), sin(

π
2 t)
⟩
. Graph r⃗(t) on−1 ≤ t ≤ 1, and find the displace-

ment of r⃗(t) on this interval.

SÊ½çã®ÊÄ The funcƟon r⃗(t) traces out the unit circle, though at a dif-
ferent rate than the “usual” ⟨cos t, sin t⟩ parametrizaƟon. At t0 = −1, we have
r⃗(t0) = ⟨0,−1⟩; at t1 = 1, we have r⃗(t1) = ⟨0, 1⟩. The displacement of r⃗(t) on
[−1, 1] is thus d⃗ = ⟨0, 1⟩ − ⟨0,−1⟩ = ⟨0, 2⟩ .

A graph of r⃗(t) on [−1, 1] is given in Figure 11.7, along with the displacement
vector d⃗ on this interval. ..

Measuring displacement makes us contemplate related, yet very different,
concepts. Considering the semi–circular path the object in Example 358 took,
we can quickly verify that the object ended up a distance of 2 units from its iniƟal
locaƟon. That is, we can compute || d⃗ || = 2. However, measuring distance from
the starƟng point is different from measuring distance traveled. Being a semi–

Notes:
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circle, we can measure the distance traveled by this object as π ≈ 3.14 units.
Knowing distance from the starƟng point allows us to compute average rate of
change.

.

.

.
DefiniƟon 67 Average Rate of Change

Let r⃗(t) be a vector–valued funcƟon, where each of its component func-
Ɵons is conƟnuous on its domain, and let t0 < t1. The average rate of
change of r⃗(t) on [t0, t1] is

average rate of change =
r⃗(t1)− r⃗(t0)

t1 − t0
.

.. Example 359 Average rate of change
Let r⃗(t) =

⟨
cos( π2 t), sin(

π
2 t)
⟩
as in Example 358. Find the average rate of change

of r⃗(t) on [−1, 1] and on [−1, 5].

SÊ½çã®ÊÄ We computed in Example 358 that the displacement of r⃗(t)
on [−1, 1] was d⃗ = ⟨0, 2⟩. Thus the average rate of change of r⃗(t) on [−1, 1] is:

r⃗(1)− r⃗(−1)
1− (−1)

=
⟨0, 2⟩
2

= ⟨0, 1⟩ .

We interpret this as follows: the object followed a semi–circular path, meaning
it moved towards the right then moved back to the leŌ, while climbing slowly,
then quickly, then slowly again. On average, however, it progressed straight up
at a constant rate of ⟨0, 1⟩ per unit of Ɵme.

We canquickly see that the displacement on [−1, 5] is the sameas on [−1, 1],
so d⃗ = ⟨0, 2⟩. The average rate of change is different, though:

r⃗(5)− r⃗(−1)
5− (−1)

=
⟨0, 2⟩
6

= ⟨0, 1/3⟩ .

As it took “3 Ɵmes as long” to arrive at the same place, this average rate of
change on [−1, 5] is 1/3 the average rate of change on [−1, 1]. ..

We considered average rates of change in SecƟons 1.1 and 2.1 as we studied
limits and derivaƟves. The same is true here; in the following secƟon we apply
calculus concepts to vector–valued funcƟons as we find limits, derivaƟves, and
integrals. Understanding the average rate of change will give us an understand-
ing of the derivaƟve; displacement gives us an understanding of integraƟon.

Notes:
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Exercises 11.1
Terms and Concepts
1. Vector–valued funcƟons are closely related to

of graphs.

2. When sketching vector–valued funcƟons, technically one
isn’t graphing points, but rather .

3. It can be useful to think of as a vector that points
from a starƟng posiƟon to an ending posiƟon.

Problems
In Exercises 4 – 11, sketch the vector–valued funcƟon on the
given interval.

4. r⃗(t) =
⟨
t2, t2 − 1

⟩
, for−2 ≤ t ≤ 2.

5. r⃗(t) =
⟨
t2, t3

⟩
, for−2 ≤ t ≤ 2.

6. r⃗(t) =
⟨
1/t, 1/t2

⟩
, for−2 ≤ t ≤ 2.

7. r⃗(t) =
⟨ 1
10 t

2, sin t
⟩
, for−2π ≤ t ≤ 2π.

8. r⃗(t) =
⟨ 1
10 t

2, sin t
⟩
, for−2π ≤ t ≤ 2π.

9. r⃗(t) = ⟨3 sin(πt), 2 cos(πt)⟩, on [0, 2].

10. r⃗(t) = ⟨3 cos t, 2 sin(2t)⟩, on [0, 2π].

11. r⃗(t) = ⟨2 sec t, tan t⟩, on [−π, π].

In Exercises 12 – 15, sketch the vector–valued funcƟon on the
given interval inR3. Technologymay be useful in creaƟng the
sketch.

12. r⃗(t) = ⟨2 cos t, t, 2 sin t⟩, on [0, 2π].

13. r⃗(t) = ⟨3 cos t, sin t, t/π⟩ on [0, 2π].

14. r⃗(t) = ⟨cos t, sin t, sin t⟩ on [0, 2π].

15. r⃗(t) = ⟨cos t, sin t, sin(2t)⟩ on [0, 2π].

In Exercises 16 – 19, find || r⃗(t) ||.

16. r⃗(t) =
⟨
t, t2
⟩
.

17. r⃗(t) = ⟨5 cos t, 3 sin t⟩.

18. r⃗(t) = ⟨2 cos t, 2 sin t, t⟩.

19. r⃗(t) =
⟨
cos t, t, t2

⟩
.

In Exercises 20 – 27, create a vector–valued funcƟon whose
graph matches the given descripƟon.

20. A circle of radius 2, centered at (1, 2), traced counter–
clockwise once on [0, 2π].

21. A circle of radius 3, centered at (5, 5), traced clockwise
once on [0, 2π].

22. An ellipse, centered at (0, 0) with verƟcal major axis of
length 10 and minor axis of length 3, traced once counter–
clockwise on [0, 2π].

23. An ellipse, centered at (3,−2)with horizontal major axis of
length 6 and minor axis of length 4, traced once clockwise
on [0, 2π].

24. A line through (2, 3) with a slope of 5.

25. A line through (1, 5) with a slope of−1/2.

26. A verƟcally oriented helix with radius of 2 that starts at
(2, 0, 0) and ends at (2, 0, 4π) aŌer 1 revoluƟon on [0, 2π].

27. A verƟcally oriented helix with radius of 3 that starts at
(3, 0, 0) and ends at (3, 0, 3) aŌer 2 revoluƟons on [0, 1].

In Exercises 28 – 31, find the average rate of change of r⃗(t) on
the given interval.

28. r⃗(t) =
⟨
t, t2
⟩
on [−2, 2].

29. r⃗(t) = ⟨t, t+ sin t⟩ on [0, 2π].

30. r⃗(t) = ⟨3 cos t, 2 sin t, t⟩ on [0, 2π].

31. r⃗(t) =
⟨
t, t2, t3

⟩
on [−1, 3].
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11.2 Calculus and Vector–Valued FuncƟons

11.2 Calculus and Vector–Valued FuncƟons

The previous secƟon introduced us to a new mathemaƟcal object, the vector–
valued funcƟon. We now apply calculus concepts to these funcƟons. We start
with the limit, then work our way through derivaƟves to integrals.

Limits of Vector–Valued FuncƟons

The iniƟal definiƟon of the limit of a vector–valued funcƟon is a bit inƟmi-
daƟng, as was the definiƟon of the limit in DefiniƟon 1. The theorem following
the definiƟon shows that in pracƟce, taking limits of vector–valued funcƟons is
no more difficult than taking limits of real–valued funcƟons.

.

.

.
DefiniƟon 68 Limits of Vector–Valued FuncƟons

Let a vector–valued funcƟon r⃗(t) be given, defined on an open interval I
containing c. The limit of r⃗(t), as t approaches c is L⃗, expressed as

lim
t→c

r⃗(t) = L⃗,

means that given any ε > 0, there exists a δ > 0 such that whenever
|t− c| < δ, we have || r⃗(t)− L⃗ || < ε.

Note how the measurement of distance between real numbers is the abso-
lute value of their difference; the measure of distance between vectors is the
vector norm, or magnitude, of their difference.

.

.

.
Theorem 89 Limits of Vector–Valued FuncƟons

1. Let r⃗(t) = ⟨ f(t), g(t) ⟩ be a vector–valued funcƟon in R2 defined
on an open interval I containing c. Then

lim
t→c

r⃗(t) =
⟨
lim
t→c

f(t) , lim
t→c

g(t)
⟩
.

2. Let r⃗(t) = ⟨ f(t), g(t), h(t) ⟩ be a vector–valued funcƟon in R3 de-
fined on an open interval I containing c. Then

lim
t→c

r⃗(t) =
⟨
lim
t→c

f(t) , lim
t→c

g(t) , lim
t→c

h(t)
⟩

Notes:
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Theorem 89 states that we compute limits component–wise.

.. Example 360 Finding limits of vector–valued funcƟons

Let r⃗(t) =
⟨
sin t
t

, t2 − 3t+ 3, cos t
⟩
. Find lim

t→0
r⃗(t).

SÊ½çã®ÊÄ Weapply the theoremand compute limits component–wise.

lim
t→0

r⃗(t) =
⟨
lim
t→0

sin t
t

, lim
t→0

t2 − 3t+ 3 , lim
t→0

cos t
⟩

= ⟨1, 3, 1⟩ ...

ConƟnuity

.

.

.
DefiniƟon 69 ConƟnuity of Vector–Valued FuncƟons

Let r⃗(t) be a vector–valued funcƟon defined on an open interval I con-
taining c.

1. r⃗(t) is conƟnuous at c if lim
t→c

r⃗(t) = r(c).

2. If r⃗(t) is conƟnuous at all c in I, then r⃗(t) is conƟnuous on I.

We again have a theorem that lets us evaluate conƟnuity component–wise.

.

.

.
Theorem 90 ConƟnuity of Vector–Valued FuncƟons

Let r⃗(t) be a vector–valued funcƟon defined on an open interval I con-
taining c. r⃗(t) is conƟnuous at c if, and only if, each of its component
funcƟons is conƟnuous at c.

.. Example 361 ..EvaluaƟng conƟnuity of vector–valued funcƟons

Let r⃗(t) =

⟨
sin t
t

, t2 − 3t+ 3, cos t
⟩
. Determine whether r⃗ is conƟnuous at

t = 0 and t = 1.

SÊ½çã®ÊÄ While the second and third components of r⃗(t) are defined
at t = 0, the first component, (sin t)/t, is not. Since the first component is not
even defined at t = 0, r⃗(t) is not defined at t = 0, and hence it is not conƟnuous
at t = 0.

Notes:

606



Alternate notaƟons for the derivaƟve of r⃗
include:

r⃗ ′(t) =
d
dt
(
r⃗(t)

)
=

d⃗r
dt
.

11.2 Calculus and Vector–Valued FuncƟons

At t = 1 each of the component funcƟons is conƟnuous. Therefore r⃗(t) is
conƟnuous at t = 1. ...

DerivaƟves

Consider a vector–valued funcƟon r⃗ defined on an open interval I containing
t0 and t1. We can compute the displacement of r⃗ on [t0, t1], as shown in Figure
11.8 (a). Recall that dividing the displacement vector by t1−t0 gives the average
rate of change on [t0, t1], as shown in (b).

....

r⃗(t0)

.

r⃗(t1)

.

r⃗(t1) − r⃗(t0)

....

r⃗(t0)

.

r⃗(t1)

.

r⃗(t1) − r⃗(t0)

t1 − t0

.

r⃗ ′(t0)

(a) (b)

Figure 11.8: IllustraƟng displacement, leading to an understanding of the derivaƟve of vector–valued funcƟons.

The derivaƟve of a vector–valued funcƟon is ameasure of the instantaneous
rate of change, measured by taking the limit as the length of [t0, t1] goes to 0.
Instead of thinking of an interval as [t0, t1], we think of it as [c, c + h] for some
value of h (hence the interval has length h). The average rate of change is

r⃗(c+ h)− r⃗(c)
h

for any value of h ̸= 0. We take the limit as h → 0 tomeasure the instantaneous
rate of change; this is the derivaƟve of r⃗.

.

.

.
DefiniƟon 70 DerivaƟve of a Vector–Valued FuncƟon

Let r⃗(t) be conƟnuous on an open interval I containing c.

1. The derivaƟve of r⃗ at t = c is

r⃗ ′(c) = lim
h→0

r⃗(c+ h)− r⃗(c)
h

.

2. The derivaƟve of r⃗ is

r⃗ ′(t) = lim
h→0

r⃗(t+ h)− r⃗(t)
h

.

Notes:
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Figure 11.9: Graphing the derivaƟve of a
vector–valued funcƟon in Example 362.

Chapter 11 Vector Valued FuncƟons

If a vector–valued funcƟon has a derivaƟve for all c in an open interval I, we
say that r⃗(t) is differenƟable on I.

Once again we might view this definiƟon as inƟmidaƟng, but recall that we
can evaluate limits component–wise. The following theorem verifies that this
means we can compute derivaƟves component–wise as well, making the task
not too difficult.

.

.

.
Theorem 91 DerivaƟves of Vector–Valued FuncƟons

1. Let r⃗(t) = ⟨ f(t), g(t) ⟩. Then

r⃗ ′(t) = ⟨ f ′(t), g′(t) ⟩ .

2. Let r⃗(t) = ⟨ f(t), g(t), h(t) ⟩. Then

r⃗ ′(t) = ⟨ f ′(t), g′(t), h′(t) ⟩ .

.. Example 362 DerivaƟves of vector–valued funcƟons
Let r⃗(t) =

⟨
t2, t
⟩
.

1. Sketch r⃗(t) and r⃗ ′(t) on the same axes.

2. Compute r⃗ ′(1) and sketch this vector with its iniƟal point at the origin and
at r⃗(1).

SÊ½çã®ÊÄ

1. Theorem 91 allows us to compute derivaƟves component–wise, so

r⃗ ′(t) = ⟨2t, 1⟩ .

r⃗(t) and r⃗ ′(t) are graphed together in Figure 11.9 (a). Note how ploƫng
the two of these together, in this way, is not very illuminaƟng. When
dealing with real–valued funcƟons, ploƫng f(x) with f ′(x) gave us useful
informaƟon as we were able to compare f and f ′ at the same x-values.
When dealing with vector–valued funcƟons, it is hard to tell which points
on the graph of r⃗ ′ correspond to which points on the graph of r⃗.

2. We easily compute r⃗ ′(1) = ⟨2, 1⟩, which is drawn in Figure 11.9 with its
iniƟal point at the origin, as well as at r⃗(1) = ⟨1, 1⟩ . These are sketched
in Figure 11.9 (b)...

Notes:
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Figure 11.10: Viewing a vector–valued
funcƟon, and its derivaƟve at one point,
from two different perspecƟves.
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Figure 11.11: Graphing a curve in space
with its tangent line.
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.. Example 363 DerivaƟves of vector–valued funcƟons
Let r⃗(t) = ⟨cos t, sin t, t⟩. Compute r⃗ ′(t) and r⃗ ′(π/2). Sketch r⃗ ′(π/2) with its
iniƟal point at the origin and at r⃗(π/2).

SÊ½çã®ÊÄ We compute r⃗ ′ as r⃗ ′(t) = ⟨− sin t, cos t, 1⟩. At t = π/2, we
have r⃗ ′(π/2) = ⟨−1, 0, 1⟩. Figure 11.10 shows two graphs of r⃗(t), from differ-
ent perspecƟves, with r⃗ ′(π/2) ploƩed with its iniƟal point at the origin and at
r⃗(π/2). ..

In Examples 362 and 363, sketching a parƟcular derivaƟve with its iniƟal
point at the origin did not seem to reveal anything significant. However, when
we sketched the vector with its iniƟal point on the corresponding point on the
graph, we did see something significant: the vector appeared to be tangent to
the graph. We have not yet defined what “tangent” means in terms of curves in
space; in fact, we use the derivaƟve to define this term.

.

.

.
DefiniƟon 71 Tangent Vector, Tangent Line

Let r⃗(t) be a differenƟable vector–valued funcƟon on an open interval I
containing c, where r⃗ ′(c) ̸= 0⃗.

1. A vector v⃗ is tangent to the graph of r⃗(t) at t = c if v⃗ is parallel to
r⃗ ′(c).

2. The tangent line to the graph of r⃗(t) at t = c is the line through
r⃗(c) with direcƟon parallel to r⃗ ′(c). An equaƟon of the tangent
line is

ℓ⃗(t) = r⃗(c) + t r⃗ ′(c).

.. Example 364 Finding tangent lines to curves in space
Let r⃗(t) =

⟨
t, t2, t3

⟩
on [−1.5, 1.5]. Find the vector equaƟon of the line tangent

to the graph of r⃗ at t = −1.

SÊ½çã®ÊÄ To find the equaƟon of a line, we need a point on the line
and the line’s direcƟon. The point is given by r⃗(−1) = ⟨−1, 1,−1⟩. (To be clear,
⟨−1, 1,−1⟩ is a vector, not a point, but we use the point “pointed to” by this
vector.)

The direcƟon comes from r⃗ ′(−1). We compute, component–wise, r⃗ ′(t) =⟨
1, 2t, 3t2

⟩
. Thus r⃗ ′(−1) = ⟨1,−2, 3⟩.

The vector equaƟon of the line is ℓ(t) = ⟨−1, 1,−1⟩+ t ⟨1,−2, 3⟩. This line
and r⃗(t) are sketched, from two perspecƟves, in Figure 11.11 (a) and (b). ..

Notes:
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Figure 11.12: Graphing r⃗(t) and its tan-
gent line in Example 365.
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.. Example 365 Finding tangent lines to curves
Find the equaƟons of the lines tangent to r⃗(t) =

⟨
t3, t2

⟩
at t = −1 and t = 0.

SÊ½çã®ÊÄ We find that r⃗ ′(t) =
⟨
3t2, 2t

⟩
. At t = 1, we have

r⃗(−1) = ⟨−1, 1⟩ and r⃗ ′(1) = ⟨3,−2⟩ ,

so the equaƟon of the line tangent to the graph of r⃗(t) at t = −1 is

ℓ(t) = ⟨−1, 1⟩+ t ⟨3,−2⟩ .

This line is graphed with r⃗(t) in Figure 11.12.

At t = 0, we have r⃗ ′(0) = ⟨0, 0⟩ = 0⃗! This implies that the tangent line “has
no direcƟon.” We cannot apply DefiniƟon 71, hence cannot find the equaƟon of
the tangent line. ..

We were unable to compute the equaƟon of the tangent line to r⃗(t) =⟨
t3, t2

⟩
at t = 0 because r⃗ ′(0) = 0⃗. The graph in Figure 11.12 shows that there

is a cusp at this point. This leads us to another definiƟon of smooth, previously
defined by DefiniƟon 46 in SecƟon 9.2.

.

.

.
DefiniƟon 72 Smooth Vector–Valued FuncƟons

Let r⃗(t) be a differenƟable vector–valued funcƟon on an open interval I.
r⃗(t) is smooth on I if r⃗ ′(t) ̸= 0⃗ on I.

Having established derivaƟves of vector–valued funcƟons, we now explore
the relaƟonships between the derivaƟve and other vector operaƟons. The fol-
lowing theorem states how the derivaƟve interacts with vector addiƟon and the
various vector products.

Notes:
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.

.

.
Theorem 92 Properies of DerivaƟves of Vector–Valued FuncƟons

Let r⃗ and s⃗ be differenƟable vector–valued funcƟons, let f be a differen-
Ɵable real–valued funcƟon, and let c be a real number.

1.
d
dt

(⃗
r(t)± s⃗(t)

)
= r⃗ ′(t)± s⃗ ′(t)

2.
d
dt

(
c⃗r(t)

)
= c⃗r ′(t)

3. d
dt

(
f(t)⃗r(t)

)
= f ′(t)⃗r(t) + f(t)⃗r ′(t) Product Rule

4. d
dt

(⃗
r(t) · s⃗(t)

)
= r⃗ ′(t) · s⃗(t) + r⃗(t) · s⃗ ′(t) Product Rule

5. d
dt

(⃗
r(t)× s⃗(t)

)
= r⃗ ′(t)× s⃗(t) + r⃗(t)× s⃗ ′(t) Product Rule

6. d
dt

(⃗
r
(
f(t)
))

= r⃗ ′
(
f(t)
)
f ′(t) Chain Rule

.. Example 366 ..Using derivaƟve properƟes of vector–valued funcƟons
Let r⃗(t) =

⟨
t, t2 − 1

⟩
and let u⃗(t) be the unit vector that points in the direcƟon

of r⃗(t).

1. Graph r⃗(t) and u⃗(t) on the same axes, on [−2, 2].

2. Find u⃗ ′(t) and sketch u⃗ ′(−2), u⃗ ′(−1) and u⃗ ′(0). Sketch each with iniƟal
point the corresponding point on the graph of u⃗.

SÊ½çã®ÊÄ

1. To form the unit vector that points in the direcƟon of r⃗, we need to divide
r⃗(t) by its magnitude.

|| r⃗(t) || =
√

t2 + (t2 − 1)2 ⇒ u⃗(t) =
1√

t2 + (t2 − 1)2
⟨
t, t2 − 1

⟩
.

r⃗(t) and u⃗(t) are graphed in Figure 11.13. Note how the graph of u⃗(t)
forms part of a circle; this must be the case, as the length of u⃗(t) is 1 for
all t.

Notes:
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Figure 11.14: Graphing some of the
derivaƟves of u⃗(t) in Example 366.

Chapter 11 Vector Valued FuncƟons

2. To compute u⃗ ′(t), we use Theorem 92, wriƟng

u⃗(t) = f(t)⃗r(t), where f(t) =
1√

t2 + (t2 − 1)2
=
(
t2+(t2−1)2

)−1/2
.

(We could write

u⃗(t) =

⟨
t√

t2 + (t2 − 1)2
,

t2 − 1√
t2 + (t2 − 1)2

⟩

and then take the derivaƟve. It is amaƩer of preference; this laƩermethod
requires two applicaƟons of theQuoƟent Rulewhere ourmethod uses the
Product and Chain Rules.)

We find f ′(t) using the Chain Rule:

f ′(t) = −1
2
(
t2 + (t2 − 1)2

)−3/2(2t+ 2(t2 − 1)(2t)
)

= − 2t(2t2 − 1)

2
(√

t2 + (t2 − 1)2
)3

We now find u⃗ ′(t) using part 3 of Theorem 92:

u⃗ ′(t) = f ′(t)⃗u(t) + f(t)⃗u ′(t)

= − 2t(2t2 − 1)

2
(√

t2 + (t2 − 1)2
)3 ⟨t, t2 − 1

⟩
+

1√
t2 + (t2 − 1)2

⟨1, 2t⟩ .

This is admiƩedly very “messy;” such is usually the case when we deal
with unit vectors. We can use this formula to compute u⃗ (−2), u⃗ (−1)
and u⃗ (0):

u⃗ (−2) =
⟨
− 15
13

√
13

,− 10
13

√
13

⟩
≈ ⟨−0.320,−0.213⟩

u⃗ (−1) = ⟨0,−2⟩
u⃗ (0) = ⟨1, 0⟩

Each of these is sketched in Figure 11.14. Note how the length of the
vector gives an indicaƟon of how quickly the circle is being traced at that
point. When t = −2, the circle is being drawn relaƟvely slow; when t =
−1, the circle is being traced much more quickly....

It is a basic geometric fact that a line tangent to a circle at a point P is per-
pendicular to the line passing through the center of the circle and P. This is

Notes:
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11.2 Calculus and Vector–Valued FuncƟons

illustrated in Figure 11.14; each tangent vector is perpendicular to the line that
passes through its iniƟal point and the center of the circle. Since the center of
the circle is the origin, we can state this another way: u⃗ ′(t) is orthogonal to u⃗(t).

Recall that the dot product serves as a test for orthogonality: if u⃗ · v⃗ = 0,
then u⃗ is orthogonal to v⃗. Thus in the above example, u⃗(t) · u⃗ ′(t) = 0.

This is true of any vector–valued funcƟon that has a constant length, that is,
that traces out part of a circle. It has important implicaƟons later on, so we state
it as a theorem (and leave its formal proof as an Exercise.)

.

.

.
Theorem 93 Vector–Valued FuncƟons of Constant Length

Let r⃗(t) be a differenƟable vector–valued funcƟon on an open interval I of
constant length. That is, || r⃗(t) || = c for all t in I (equivalently, r⃗(t) ·⃗r(t) =
c2 for all t in I). Then r⃗(t) · r⃗ ′(t) = 0 for all t in I.

IntegraƟon

Indefinite and definite integrals of vector–valued funcƟons are also evalu-
ated component–wise.

.

.

.
Theorem94 Indefinite and Definite Integrals of Vector–Valued

FuncƟons
Let r⃗(t) = ⟨f(t), g(t)⟩ be a vector–valued funcƟon in R2.

1.
∫

r⃗(t) dt =
⟨∫

f(t) dt,
∫

g(t) dt
⟩

2.
∫ b

a
r⃗(t) dt =

⟨∫ b

a
f(t) dt,

∫ b

a
g(t) dt

⟩

A similar statement holds for vector–valued funcƟons in R3.

.. Example 367 ..EvaluaƟng a definite integral of a vector–valued funcƟon

Let r⃗(t) =
⟨
e2t, sin t

⟩
. Evaluate

∫ 1

0
r⃗(t) dt.

Notes:
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Chapter 11 Vector Valued FuncƟons

SÊ½çã®ÊÄ We follow Theorem 94.∫ 1

0
r⃗(t) dt =

∫ 1

0

⟨
e2t, sin t

⟩
dt

=

⟨∫ 1

0
e2t dt ,

∫ 1

0
sin t dt

⟩
=

⟨
1
2
e2t
∣∣∣1
0
,− cos t

∣∣∣1
0

⟩
=

⟨
1
2
(e2 − 1) ,− cos(1) + 1

⟩
≈ ⟨3.19, 0.460⟩ ....

.. Example 368 ..Solving an iniƟal value problem
Let r⃗ ′′(t) = ⟨2, cos t, 12t⟩. Find r⃗(t) where:

• r⃗(0) = ⟨−7,−1, 2⟩ and

• r⃗ ′(0) = ⟨5, 3, 0⟩ .

SÊ½çã®ÊÄ Knowing r⃗ ′′(t) = ⟨2, cos t, 12t⟩, we find r⃗ ′(t) by evaluaƟng the
indefinite integral.∫

r⃗ ′′(t) dt =
⟨∫

2 dt ,
∫

cos t dt ,
∫

12t dt
⟩

=
⟨
2t+ C1, sin t+ C2, 6t2 + C3

⟩
=
⟨
2t, sin t, 6t2

⟩
+ ⟨C1, C2, C3⟩

=
⟨
2t, sin t, 6t2

⟩
+ C⃗.

Note how each indefinite integral creates its own constant which we collect as
one constant vector C⃗. Knowing r⃗ ′(0) = ⟨5, 3, 0⟩ allows us to solve for C⃗:

r⃗ ′(t) =
⟨
2t, sin t, 6t2

⟩
+ C⃗

r⃗ ′(0) = ⟨0, 0, 0⟩+ C⃗

⟨5, 3, 0⟩ = C⃗

So r⃗ ′(t) =
⟨
2t, sin t, 6t2

⟩
+ ⟨5, 3, 0⟩ =

⟨
2t+ 5, sin t+ 3, 6t2

⟩
. To find r⃗(t),

we integrate once more.

∫
r⃗ ′(t) dt =

⟨∫
2t+ 5 dt,

∫
sin t+ 3 dt,

∫
6t2 dt

⟩
=
⟨
t2 + 5t,− cos t+ 3t, 2t3

⟩
+ C⃗

Notes:

614



11.2 Calculus and Vector–Valued FuncƟons

With r⃗(0) = ⟨−7,−1, 2⟩, we solve for C⃗:

r⃗(t) =
⟨
t2 + 5t,− cos t+ 3t, 2t3

⟩
+ C⃗

r⃗(0) = ⟨0,−1, 0⟩+ C⃗

⟨−7,−1, 2⟩ = ⟨0,−1, 0⟩+ C⃗

⟨−7, 0, 2⟩ = C⃗.

So r⃗(t) =
⟨
t2 + 5t,− cos t+ 3t, 2t3

⟩
+⟨−7, 0, 2⟩ =

⟨
t2 + 5t− 7,− cos t+ 3t, 2t3 + 2

⟩
.

...

What does the integraƟon of a vector–valued funcƟon mean? There are
many applicaƟons, but none as direct as “the area under the curve” that we
used in understanding the integral of a real–valued funcƟon.

A key understanding for us comes from considering the integral of a deriva-
Ɵve: ∫ b

a
r⃗ ′(t) dt = r⃗(t)

∣∣∣b
a
= r⃗(b)− r⃗(a).

IntegraƟng a rate of change funcƟon gives displacement.
NoƟng that vector–valued funcƟons are closely related to parametric equa-

Ɵons, we can describe the arc length of the graph of a vector–valued funcƟon
as an integral. Given parametric equaƟons x = f(t), y = g(t), the arc length on
[a, b] of the graph is

Arc Length =

∫ b

a

√
f ′(t)2 + g′(t)2 dt,

as stated in Theorem82 in SecƟon9.3. If r⃗(t) = ⟨f(t), g(t)⟩, note that
√

f ′(t)2 + g′(t)2 =
|| r⃗ ′(t) ||. Therefore we can express the arc length of the graph of a vector–
valued funcƟon as an integral of the magnitude of its derivaƟve.

.

.

.
Theorem 95 Arc Length of a Vector–Valued FuncƟon

Let r⃗(t) be a vector–valued funcƟon where r⃗ ′(t) is conƟnuous on [a, b].
The arc length L of the graph of r⃗(t) is

L =
∫ b

a
|| r⃗ ′(t) || dt.

Note that we are actually integraƟng a scalar–funcƟon here, not a vector–
valued funcƟon.

Notes:
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Chapter 11 Vector Valued FuncƟons

The next secƟon takes what we have established thus far and applies it to
objects in moƟon. We will let r⃗(t) describe the path of a moƟon in the plane or
in space and will discover the informaƟon provided by r⃗ ′(t) and r⃗ ′′(t).

Notes:
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Exercises 11.2
Terms and Concepts
1. Limits, derivaƟves and integrals of vector–valued funcƟons

are all evaluated –wise.

2. The definite integral of a rate of change funcƟon gives
.

3. Why is it generally not useful to graph both r⃗(t) and r⃗ ′(t)
on the same axes?

Problems
In Exercises 4 – 7, evaluate the given limit.

4. lim
t→5

⟨
2t+ 1, 3t2 − 1, sin t

⟩
5. lim

t→3

⟨
et,

t2 − 9
t+ 3

⟩
6. lim

t→0

⟨ t
sin t

, (1+ t)
1
t

⟩
7. lim

h→0

r⃗(t+ h)− r⃗(t)
h

, where r⃗(t) =
⟨
t2, t, 1

⟩
.

In Exercises 8 – 9, idenƟfy the interval(s) on which r⃗(t) is con-
Ɵnuous.

8. r⃗(t) =
⟨
t2, 1/t

⟩
9. r⃗(t) =

⟨
cos t, et, ln t

⟩
In Exercises 10 – 14, find the derivaƟve of the given funcƟon.

10. r⃗(t) =
⟨
cos t, et, ln t

⟩
11. r⃗(t) =

⟨
1
t
,
2t− 1
3t+ 1

, tan t
⟩

12. r⃗(t) = (t2) ⟨sin t, 2t+ 5⟩

13. r⃗(t) =
⟨
t2 + 1, t− 1

⟩
· ⟨sin t, 2t+ 5⟩

14. r⃗(t) =
⟨
t2 + 1, t− 1, 1

⟩
× ⟨sin t, 2t+ 5, 1⟩

In Exercises 15 – 18, find r⃗ ′(t). Sketch r⃗(t) and r⃗ ′(1), with the
iniƟal point of r⃗ ′(1) at r⃗(1).

15. r⃗(t) =
⟨
t2 + t, t2 − t

⟩
16. r⃗(t) =

⟨
t2 − 2t+ 2, t3 − 3t2 + 2t

⟩
17. r⃗(t) =

⟨
t2 + 1, t3 − t

⟩
18. r⃗(t) =

⟨
t2 − 4t+ 5, , t3 − 6t2 + 11t− 6

⟩
In Exercises 19 – 22, give the equaƟon of the line tangent to
the graph of r⃗(t) at the given t value.

19. r⃗(t) =
⟨
t2 + t, t2 − t

⟩
at t = 1.

20. r⃗(t) = ⟨3 cos t, sin t⟩ at t = π/4.

21. r⃗(t) = ⟨3 cos t, 3 sin t, t⟩ at t = π.

22. r⃗(t) =
⟨
et, tan t, t

⟩
at t = 0.

In Exercises 23 – 26, find the value(s) of t for which r⃗(t) is not
smooth.

23. r⃗(t) = ⟨cos t, sin t− t⟩

24. r⃗(t) =
⟨
t2 − 2t+ 1, t3 + t2 − 5t+ 3

⟩
25. r⃗(t) = ⟨cos t− sin t, sin t− cos t, cos(4t)⟩

26. r⃗(t) =
⟨
t3 − 3t+ 2,− cos(πt), sin2(πt)

⟩
Exercises 27 – 29 ask you to verify parts of Theorem 92.
In each let f(t) = t3, r⃗(t) =

⟨
t2, t− 1, 1

⟩
and s⃗(t) =⟨

sin t, et, t
⟩
. Compute the various derivaƟves as indicated.

27. Simplify f(t)⃗r(t), then find its derivaƟve; show this is the
same as f ′(t)⃗r(t) + f(t)⃗r ′(t).

28. Simplify r⃗(t) · s⃗(t), then find its derivaƟve; show this is the
same as r⃗ ′(t) · s⃗(t) + r⃗(t) · s⃗ ′(t).

29. Simplify r⃗(t)× s⃗(t), then find its derivaƟve; show this is the
same as r⃗ ′(t)× s⃗(t) + r⃗(t)× s⃗ ′(t).

In Exercises 30 – 33 , evaluate the given definite or indefinite
integral.

30.
∫ ⟨

t3, cos t, tet
⟩
dt

31.
∫ ⟨

1
1+ t2

, sec2 t
⟩

dt

32.
∫ π

0
⟨− sin t, cos t⟩ dt

33.
∫ 2

−2
⟨2t+ 1, 2t− 1⟩ dt

In Exercises 34 – 37 , solve the given iniƟal value problems.

34. Find r⃗(t), given that r⃗ ′(t) = ⟨t, sin t⟩ and r⃗(0) = ⟨2, 2⟩.

35. Find r⃗(t), given that r⃗ ′(t) = ⟨1/(t+ 1), tan t⟩ and
r⃗(0) = ⟨1, 2⟩.

36. Find r⃗(t), given that r⃗ ′′(t) =
⟨
t2, t, 1

⟩
,

r⃗ ′(0) = ⟨1, 2, 3⟩ and r⃗(0) = ⟨4, 5, 6⟩.

37. Find r⃗(t), given that r⃗ ′′(t) =
⟨
cos t, sin t, et

⟩
,

r⃗ ′(0) = ⟨0, 0, 0⟩ and r⃗(0) = ⟨0, 0, 0⟩.

In Exercises 38 – 41 , find the arc length of r⃗(t) on the indi-
cated interval.

38. r⃗(t) = ⟨2 cos t, 2 sin t, 3t⟩ on [0, 2π].

39. r⃗(t) = ⟨5 cos t, 3 sin t, 4 sin t⟩ on [0, 2π].

40. r⃗(t) =
⟨
t3, t2, t3

⟩
on [0, 1].

41. r⃗(t) =
⟨
e−t cos t, e−t sin t

⟩
on [0, 1].

42. Prove Theorem 93; that is, show if r⃗(t) has constant length
and is differenƟable, then r⃗(t) · r⃗ ′(t) = 0. (Hint: use the
Product Rule to compute d

dt

(⃗
r(t) · r⃗(t)

)
.)
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Figure 11.15: Graphing the posiƟon, ve-
locity and acceleraƟon of an object in Ex-
ample 369.

Chapter 11 Vector Valued FuncƟons

11.3 The Calculus of MoƟon
A common use of vector–valued funcƟons is to describe themoƟon of an object
in the plane or in space. A posiƟon funcƟon r⃗(t) gives the posiƟon of an object
at Ɵme t. This secƟon explores how derivaƟves and integrals are used to study
the moƟon described by such a funcƟon.

.

.

.
DefiniƟon 73 Velocity, Speed and AcceleraƟon

Let r⃗(t) be a posiƟon funcƟon in R2 or R3.

1. Velocity, denoted v⃗(t), is the instantaneous rate of posiƟon
change; that is, v⃗(t) = r⃗ ′(t).

2. Speed is the magnitude of velocity, || v⃗(t) ||.

3. AcceleraƟon, denoted a⃗(t), is the instantaneous rate of velocity
change; that is, a⃗(t) = v⃗ ′(t) = r⃗ ′′(t).

.. Example 369 ..Finding velocity and acceleraƟon
An object is moving with posiƟon funcƟon r⃗(t) =

⟨
t2 − t, t2 + t

⟩
, −3 ≤ t ≤ 3,

where distances are measured in feet and Ɵme is measured in seconds.

1. Find v⃗(t) and a⃗(t).

2. Sketch r⃗(t); plot v⃗(−1), a⃗(−1), v⃗(1) and a⃗(1), each with their iniƟal point
at their corresponding point on the graph of r⃗(t).

3. When is the object’s speed minimized?

SÊ½çã®ÊÄ

1. Taking derivaƟves, we find

v⃗(t) = r⃗ ′(t) = ⟨2t− 1, 2t+ 1⟩ and a⃗(t) = r⃗ ′′(t) = ⟨2, 2⟩ .

Note that acceleraƟon is constant.

2. v⃗(−1) = ⟨−3,−1⟩, a⃗(−1) = ⟨2, 2⟩; v⃗(1) = ⟨1, 3⟩, a⃗(1) = ⟨2, 2⟩.
These are ploƩed with r⃗(t) in Figure 11.15 (a).

We can think of acceleraƟon as “pulling” the velocity vector in a certain
direcƟon. At t = −1, the velocity vector points down and to the leŌ; at
t = 1, the velocity vector has been pulled in the ⟨2, 2⟩ direcƟon and is

Notes:
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Figure 11.16: Ploƫng velocity and accel-
eraƟon vectors for Object 1 in Example
370.

11.3 The Calculus of MoƟon

now poinƟng up and to the right. In Figure 11.15 (b) we plot more veloc-
ity/acceleraƟon vectors, making more clear the effect acceleraƟon has on
velocity.

Since a⃗(t) is constant in this example, as t grows large v⃗(t) becomes almost
parallel to a⃗(t). For instance, when t = 10, v⃗(10) = ⟨19, 21⟩, which is
nearly parallel to ⟨2, 2⟩.

3. The object’s speed is given by

|| v⃗(t) || =
√
(2t− 1)2 + (2t+ 1)2 =

√
8t2 + 2.

To find the minimal speed, we could apply calculus techniques (such as
set the derivaƟve equal to 0 and solve for t, etc.) but we can find it by
inspecƟon. Inside the square root we have a quadraƟc which is minimized
when t = 0. Thus the speed is minimized at t = 0, with a speed of

√
2

Ō/s.

The graph in Figure 11.15 (b) also implies speed is minimized here. The
filled dots on the graph are located at integer values of t between −3
and 3. Dots that are far apart imply the object traveled a far distance in
1 second, indicaƟng high speed; dots that are close together imply the
object did not travel far in 1 second, indicaƟng a low speed. The dots are
closest together near t = 0, implying the speed is minimized near that
value....

.. Example 370 ..Analyzing MoƟon
Two objects follow an idenƟcal path at different rates on [−1, 1]. The posiƟon
funcƟon for Object 1 is r⃗1(t) =

⟨
t, t2
⟩
; the posiƟon funcƟon for Object 2 is

r⃗2(t) =
⟨
t3, t6

⟩
, where distances are measured in feet and Ɵme is measured

in seconds. Compare the velocity, speed and acceleraƟon of the two objects on
the path.

SÊ½çã®ÊÄ We begin by compuƟng the velocity and acceleraƟon func-
Ɵon for each object:

v⃗1(t) = ⟨1, 2t⟩ v⃗2(t) =
⟨
3t2, 6t5

⟩
a⃗1(t) = ⟨0, 2⟩ a⃗2(t) =

⟨
6t, 30t4

⟩
We immediately see that Object 1 has constant acceleraƟon, whereas Object 2
does not.

At t = −1, we have v⃗1(−1) = ⟨1,−2⟩ and v⃗2(−1) = ⟨3,−6⟩; the velocity
of Object 2 is three Ɵmes that of Object 1 and so it follows that the speed of
Object 2 is three Ɵmes that of Object 1 (3

√
5 Ō/s compared to

√
5 Ō/s.)

Notes:
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Figure 11.17: Comparing the posiƟons of
Objects 1 and 2 in Example 370.

Chapter 11 Vector Valued FuncƟons

At t = 0, the velocity of Object 1 is v⃗(1) = ⟨1, 0⟩ and the velocity of Object
2 is 0⃗! This tells us that Object 2 comes to a complete stop at t = 0.

In Figure 11.16, we see the velocity and acceleraƟon vectors for Object 1
ploƩed for t = −1,−1/2, 0, 1/2 and t = 1. Note again how the constant accel-
eraƟon vector seems to “pull” the velocity vector from poinƟng down, right to
up, right. We could plot the analogous picture for Object 2, but the velocity and
acceleraƟon vectors are rather large (⃗a2(−1) = ⟨−6, 30⟩!)

Instead, we simply plot the locaƟons of Object 1 and 2 on intervals of 1/10th
of a second, shown in Figure 11.17 (a) and (b). Note how the x-values of Object
1 increase at a steady rate. This is because the x-component of a⃗(t) is 0; there is
no acceleraƟon in the x-component. The dots are not evenly spaced; the object
is moving faster near t = −1 and t = 1 than near t = 0.

In part (b) of the Figure, we see the points ploƩed for Object 2. Note the
large change in posiƟon from t = −1 to t = −0.9; the object starts moving very
quickly. However, it slows considerably at it approaches the origin, and comes
to a complete stop at t = 0. While it looks like there are 3 points near the origin,
there are in reality 5 points there.

Since the objects begin and end at the same locaƟon, the have the same dis-
placement. Since they begin and end at the same Ɵme, with the same displace-
ment, they have they have the same average rate of change (i.e, they have the
same average velocity). Since they follow the same path, they have the same
distance traveled. Even though these three measurements are the same, the
objects obviously travel the path in very different ways. ...

.. Example 371 ..Analyzing the moƟon of a whirling ball on a string
A young boy whirls a ball, aƩached to a string, above his head in a counter-
clockwise circle. The ball follows a circular path and makes 2 revoluƟons per
second. The string has length 2Ō.

1. Find the posiƟon funcƟon r⃗(t) that describes this situaƟon.

2. Find the acceleraƟon of the ball and derive a physical interpretaƟon of it.

3. A tree stands 10Ō in front of the boy. At what t-values should the boy
release the string so that the ball hits the tree?

SÊ½çã®ÊÄ

1. The ball whirls in a circle. Since the string is 2Ō long, the radius of the
circle is 2. The posiƟon funcƟon r⃗(t) = ⟨2 cos t, 2 sin t⟩ describes a circle
with radius 2, centered at the origin, but makes a full revoluƟon every
2π seconds, not two revoluƟons per second. Wemodify the period of the

Notes:
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Figure 11.18: Modeling the flight of a ball
in Example 371.

11.3 The Calculus of MoƟon

trigonometric funcƟons to be 1/2 bymulƟplying t by 4π. The final posiƟon
funcƟon is thus

r⃗(t) = ⟨2 cos(4πt), 2 sin(4πt)⟩ .

(Plot this for 0 ≤ t ≤ 1/2 to verify that one revoluƟon is made in 1/2 a
second.)

2. To find a⃗(t), we derive r⃗(t) twice.

v⃗(t) = r⃗ ′(t) = ⟨−8π sin(4πt), 8π cos(4πt)⟩
a⃗(t) = r⃗ ′′(t) =

⟨
−32π2 cos(4πt),−32π2 sin(4πt)

⟩
= −32π2 ⟨cos(4πt), sin(4πt)⟩ .

Note how a⃗(t) is parallel to r⃗(t), but has a different magnitude and points
in the opposite direcƟon. Why is this?

Recall the classic phyics equaƟon, “Force=mass× acceleraƟon.” A force
acƟng on a mass induces acceleraƟon (i.e., the mass moves); acceleraƟon
acƟng on a mass induces a force (gravity gives our mass a weight). Thus
force and acceleraƟon are closely related. A moving ball “wants” to travel
in a straight line. Why does the ball in our example move in a circle? It is
aƩached to the boy’s handby a string. The string applies a force to the ball,
affecƟng it’s moƟon: the string accelerates the ball. This is not accelera-
Ɵon in the sense of “it travels faster;” rather, this acceleraƟon is changing
the velocity of the ball. In what direcƟon is this force/acceleraƟon being
applied? In the direcƟon of the string, towards the boy’s hand.

Themagnitude of the acceleraƟon is related to the speed at which the ball
is traveling. A ball whirling quickly is rapidly changing direcƟon/velocity.
When velocity is changing rapidly, the acceleraƟon must be “large.”

3. When the boy releases the string, the string no longer applies a force to
the ball, meaning acceleraƟon is 0⃗ and the ball can nowmove in a straight
line in the direcƟon of v⃗(t). ..

Let t = t0 be the Ɵme when the boy lets go of the string. The ball will be
at r⃗(t0), traveling in the direcƟon of v⃗(t0). We want to find t0 so that this
line contains the point (0, 10) (since the tree is 10Ō directly in front of the
boy).

There are many ways to find this Ɵme value. We choose one that is rela-
Ɵvely simple computaƟonally. As shown in Figure 11.18, the vector from
the release point to the tree is ⟨0, 10⟩− r⃗(t0). This line segment is tangent
to the circle, which means it is also perpendicular to r⃗(t0) itself, so their
dot product is 0.

Notes:
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r⃗(t0) ·
(
⟨0, 10⟩ − r⃗(t0)

)
= 0

⟨2 cos(4πt0), 2 sin(4πt0)⟩ · ⟨−2 cos(4πt0), 10− 2 sin(4πt0)⟩ = 0

−4 cos2(4πt0) + 20 sin(4πt0)− 4 sin2(4πt0) = 0
20 sin(4πt0)− 4 = 0

sin(4πt0) = 1/5

4πt0 = sin−1(1/5)
4πt0 ≈ 0.2+ 2πn,

where n is an integer. Solving for t0 we have:

t0 ≈ 0.016+ n/2

This is a wonderful formula. Every 1/2 second aŌer t = 0.016s the boy
can release the string (since the ball makes 2 revoluƟons per second, he
has two chances each second to release the ball)....

.. Example 372 Analyzing moƟon in space
An object moves in spiral with posiƟon funcƟon r⃗(t) = ⟨cos t, sin t, t⟩, where
distances are measured in meters and Ɵme is in minutes. Describe the object’s
speed and acceleraƟon at Ɵme t.

SÊ½çã®ÊÄ With r⃗(t) = ⟨cos t, sin t, t⟩, we have:

v⃗(t) = ⟨− sin t, cos t, 1⟩ and
a⃗(t) = ⟨− cos t,− sin t, 0⟩ .

The speed of the object is || v⃗(t) || =
√
(− sin t)2 + cos2 t+ 1 =

√
2m/min;

it moves at a constant speed. Note that the object does not accelerate in the
z-direcƟon, but rather moves up at a constant rate of 1m/min. ..

The objects in Examples 371 and 372 traveled at a constant speed. That is,
|| v⃗(t) || = c for some constant c. Recall Theorem 93, which states that if a
vector–valued funcƟon r⃗(t) has constant length, then r⃗(t) is perpendicular to
its derivaƟve: r⃗(t) · r⃗ ′(t) = 0. In these examples, the velocity funcƟon has
constant length, therefore we can conclude that the velocity is perpendicular to
the acceleraƟon: v⃗(t) · a⃗(t) = 0. A quick check verifies this.

There is an intuiƟve understanding of this. If acceleraƟon is parallel to veloc-
ity, then it is only affecƟng the object’s speed; it does not change the direcƟon
of travel. (For example, consider a dropped stone. AcceleraƟon and velocity are

Notes:
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Note: In this text we use g = 32Ō/s when
using Imperial units, and g = 9.8m/s
when using SI units.

11.3 The Calculus of MoƟon

parallel – straight down – and the direcƟon of velocity never changes, though
speed does increase.) If acceleraƟon is not perpendicular to velocity, then there
is some acceleraƟon in the direcƟon of travel, influencing the speed. If speed
is constant, then acceleraƟon must be orthogonal to velocity, as it then only
affects direcƟon, and not speed.

.

.

.
Key Idea 53 Objects With Constant Speed

If an objectmoveswith constant speed, then its velocity and acceleraƟon
vectors are orthogonal. That is, v⃗(t) · a⃗(t) = 0.

ProjecƟle MoƟon

An important applicaƟon of vector–valued posiƟon funcƟons is projecƟle
moƟon: the moƟon of objects under the influence of gravity. We will measure
Ɵme in seconds, and distances will either be in meters or feet. We will show
that we can completely describe the path of such an object knowing its iniƟal
posiƟon and iniƟal velocity (i.e., where it is and where it is going.)

Suppose an object has iniƟal posiƟon r⃗(0) = ⟨x0, y0⟩ and iniƟal velocity
v⃗(0) = ⟨vx, vy⟩. It is customary to rewrite v⃗(0) in terms of its speed v0 and
direcƟon u⃗, where u⃗ is a unit vector. Recall all unit vectors in R2 can be wriƩen
as ⟨cos θ, sin θ⟩, where θ is an angle measure counter–clockwise from the x-axis.
(We refer to θ as the angle of elevaƟon.) Thus v⃗(0) = v0 ⟨cos θ, sin θ⟩ .

Since the acceleraƟon of the object is known, namely a⃗(t) = ⟨0,−g⟩, where
g is the gravitaƟonal constant, we can find r⃗(t) knowing our two iniƟal condi-
Ɵons. We first find v⃗(t):

v⃗(t) =
∫

a⃗(t) dt

v⃗(t) =
∫

⟨0,−g⟩ dt

v⃗(t) = ⟨0,−gt⟩+ C⃗.

Knowing v⃗(0) = v0 ⟨cos θ, sin θ⟩, we have C⃗ = v0 ⟨cos t, sin t⟩ and so

v⃗(t) =
⟨
v0 cos θ,−gt+ v0 sin θ

⟩
.

Notes:
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We integrate once more to find r⃗(t):

r⃗(t) =
∫

v⃗(t) dt

r⃗(t) =
∫ ⟨

v0 cos θ,−gt+ v0 sin θ
⟩
dt

r⃗(t) =
⟨(

v0 cos θ
)
t,−1

2
gt2 +

(
v0 sin θ

)
t
⟩
+ C⃗

Knowing r⃗(0) = ⟨x0, y0⟩, we conclude C⃗ = ⟨x0, y0⟩ and

r⃗(t) =
⟨(

v0 cos θ
)
t+ x0 ,−

1
2
gt2 +

(
v0 sin θ

)
t+ y0

⟩

.

.

.
Key Idea 54 ProjecƟle MoƟon

The posiƟon funcƟon of a projecƟle propelled from an iniƟal posiƟon of
r⃗0 = ⟨x0, y0⟩, with iniƟal speed v0, with angle of elevaƟon θ and neglect-
ing all acceleraƟons but gravity is

r⃗(t) =
⟨(

v0 cos θ
)
t+ x0 ,−

1
2
gt2 +

(
v0 sin θ

)
t+ y0

⟩
.

Leƫng v⃗0 = v0 ⟨cos θ, sin θ⟩, r⃗(t) can be wriƩen as

r⃗(t) =
⟨
0,−1

2
gt2
⟩
+ v⃗0t+ r⃗0.

We demonstrate how to use this posiƟon funcƟon in the next two examples.

.. Example 373 ..ProjecƟle MoƟon
Sydney shoots her Red Ryder® bb gun across level ground from an elevaƟon of
4Ō, where the barrel of the gun makes a 5◦ angle with the horizontal. Find how
far the bb travels before landing, assuming the bb is fired at the adverƟsed rate
of 350Ō/s and ignoring air resistance.

SÊ½çã®ÊÄ A direct applicaƟon of Key Idea 54 gives

r⃗(t) =
⟨
(350 cos 5◦)t,−16t2 + (350 sin 5◦)t+ 4

⟩
≈
⟨
346.67t,−16t2 + 30.50t+ 4

⟩
,

Notes:
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wherewe set her iniƟal posiƟon to be ⟨0, 4⟩. We need to findwhen the bb lands,
then we can find where. We accomplish this by seƫng the y-component equal
to 0 and solving for t:

−16t2 + 30.50t+ 4 = 0

t =
−30.50±

√
30.502 − 4(−16)(4)
−32

t ≈ 2.03s.

(We discarded a negaƟve soluƟon that resulted from our quadraƟc equaƟon.)
We have found that the bb lands 2.03s aŌer firing; with t = 2.03, we find

the x-component of our posiƟon funcƟon is 346.67(2.03) = 703.74Ō. The bb
lands about 704 feet away. ...

.. Example 374 ..ProjecƟle MoƟon
Alex holds his sister’s bb gun at a height of 3Ō and wants to shoot a target that
is 6Ō above the ground, 25Ō away. At what angle should he hold the gun to hit
his target? (We sƟll assume the muzzle velocity is 350Ō/s.)

SÊ½çã®ÊÄ The posiƟon funcƟon for the path of Alex’s bb is

r⃗(t) =
⟨
(350 cos θ)t,−16t2 + (350 sin θ)t+ 3

⟩
.

We need to find θ so that r⃗(t) = ⟨25, 6⟩ for some value of t. That is, we want to
find θ and t such that

(350 cos θ)t = 25 and − 16t2 + (350 sin θ)t+ 3 = 6.

This is not trivial (though not “hard”). We start by solving each equaƟon for cos θ
and sin θ, respecƟvely.

cos θ =
25
350t

and sin θ =
3+ 16t2

350t
.

Using the Pythagorean IdenƟty cos2 θ + sin2 θ = 1, we have(
25
350t

)2

+

(
3+ 16t2

350t

)2

= 1

MulƟply both sides by (350t)2:

252 + (3+ 16t2)2 = 3502t2

256t4 − 122, 404t2 + 634 = 0

Notes:
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This is a quadraƟc in t2. That is, we can apply the quadraƟc formula to find t2,
then solve for t itself.

t2 =
122, 404±

√
122, 4042 − 4(256)(634)

512
t2 = 0.0052, 478.135
t = ±0.072, ±21.866

Clearly the negaƟve t values do not fit our context, so we have t = 0.072 and
t = 21.866. Using cos θ = 25/(350t), we can solve for θ:

θ = cos−1
(

25
350 · 0.072

)
and cos−1

(
25

350 · 21.866

)
θ = 7.03◦ and 89.8◦.

Alex has two choices of angle. He can hold the rifle at an angle of about 7◦ with
the horizontal and hit his target 0.07s aŌer firing, or he can hold his rifle almost
straight up, with an angle of 89.8◦, where he’ll hit his target about 22s later. The
first opƟon is clearly the opƟon he should choose. ...

Distance Traveled

Consider a driver who sets her cruise–control to 60mph, and travels at this
speed for an hour. We can ask:

1. How far did the driver travel?

2. How far from her starƟng posiƟon is the driver?

The first is easy to answer: she traveled 60 miles. The second is impossible to
answer with the given informaƟon. We do not know if she traveled in a straight
line, on an oval racetrack, or along a slowly–winding highway.

This highlights an important fact: to compute distance traveled, we need
only to know the speed, given by || v⃗(t) ||.

.

.

.
Theorem 96 Distance Traveled

Let v⃗(t) be a velocity funcƟon for a moving object. The distance traveled
by the object on [a, b] is:

distance traveled =

∫ b

a
|| v⃗(t) || dt.

Note that this is just a restatement of Theorem 95: arc length is the same as dis-
tance traveled, just viewed in a different context.

Notes:
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Figure 11.19: The path of the parƟcle,
from two perspecƟves, in Example 375.

11.3 The Calculus of MoƟon

.. Example 375 Distance Traveled, Displacement, and Average Speed
AparƟclemoves in spacewith posiƟon funcƟon r⃗(t) =

⟨
t, t2, sin(πt)

⟩
on [−2, 2],

where t is measured in seconds and distances are in meters. Find:

1. The distance traveled by the parƟcle on [−2, 2].

2. The displacement of the parƟcle on [−2, 2].

3. The parƟcle’s average speed.

SÊ½çã®ÊÄ

1. We use Theorem 96 to establish the integral:

distance traveled =

∫ 2

−2
|| v⃗(t) || dt

=

∫ 2

−2

√
1+ (2t)2 + π2 cos2(πt) dt.

This cannot be solved in terms of elementary funcƟons so we turn to nu-
merical integraƟon, finding the distance to be 12.88m.

2. The displacement is the vector

r⃗(2)− r⃗(−2) = ⟨2, 4, 0⟩ − ⟨−2, 4, 0⟩ = ⟨4, 0, 0⟩ .

That is, the parƟcle ends with an x-value increased by 4 and with y- and
z-values the same (see Figure 11.19).

3. We found above that the parƟcle traveled 12.88mover 4 seconds. We can
compute average speed by dividing: 12.88/4 = 3.22m/s.
We should also consider DefiniƟon 22 of SecƟon 5.4, which says that the
average value of a funcƟon f on [a, b] is 1

b−a

∫ b
a f(x) dx. In our context, the

average value of the speed is

average speed =
1

2− (−2)

∫ 2

−2
|| v⃗(t) || dt ≈ 1

4
12.88 = 3.22m/s.

Note how the physical context of a parƟcle traveling gives meaning to a
more abstract concept learned earlier...

In DefiniƟon 22 we defined the average value of a funcƟon f(x) on [a, b] to
be

1
b− a

∫ b

a
f(x) dx.

Notes:
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Note how in Example 375 we computed the average speed as

distance traveled
travel Ɵme

=
1

2− (−2)

∫ 2

−2
|| v⃗(t) || dt;

that is, we just found the average value of || v⃗(t) || on [−2, 2].
Likewise, given posiƟon funcƟon r⃗(t), the average velocity on [a, b] is

displacement
travel Ɵme

=
1

b− a

∫ b

a
r⃗ ′(t) dt =

r⃗(b)− r⃗(a)
b− a

;

that is, it is the average value of r⃗ ′(t), or v⃗(t), on [a, b].

The next two secƟons invesƟgate more properƟes of the graphs of vector–
valued funcƟons and we’ll apply these new ideas to what we just learned about
moƟon.

Notes:
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Exercises 11.3
Terms and Concepts
1. How is velocity different from speed?

2. What is the difference between displacement and distance
traveled?

3. What is the difference between average velocity and aver-
age speed?

4. Distance traveled is the same as , just
viewed in a different context.

5. Describe a scenario where an object’s average speed is a
large number, but the magnitude of the average velocity is
not a large number.

6. Explain why it is not possible to have an average velocity
with a large magnitude but a small average speed.

Problems
In Exercises 7 – 10 , a posiƟon funcƟon r⃗(t) is given. Find v⃗(t)
and a⃗(t).

7. r⃗(t) = ⟨2t+ 1, 5t− 2, 7⟩

8. r⃗(t) =
⟨
3t2 − 2t+ 1,−t2 + t+ 14

⟩
9. r⃗(t) = ⟨cos t, sin t⟩

10. r⃗(t) = ⟨t/10,− cos t, sin t⟩

In Exercises 11 – 14 , a posiƟon funcƟon r⃗(t) is given. Sketch
r⃗(t) on the indicated interval. Find v⃗(t) and a⃗(t), then add
v⃗(t0) and a⃗(t0) to your sketch, with their iniƟal points at r⃗(t0),
for the given value of t0.

11. r⃗(t) = ⟨t, sin t⟩ on [0, π/2]; t0 = π/4

12. r⃗(t) =
⟨
t2, sin t2

⟩
on [0, π/2]; t0 =

√
π/4

13. r⃗(t) =
⟨
t2 + t,−t2 + 2t

⟩
on [−2, 2]; t0 = 1

14. r⃗(t) =
⟨
2t+ 3
t2 + 1

, t2
⟩

on [−1, 1]; t0 = 0

In Exercises 15 – 24 , a posiƟon funcƟon r⃗(t) of an object is
given. Find the speed of the object in terms of t, and find
where the speed is minimized/maximized on the indicated
interval.

15. r⃗(t) =
⟨
t2, t
⟩
on [−1, 1]

16. r⃗(t) =
⟨
t2, t2 − t3

⟩
on [−1, 1]

17. r⃗(t) = ⟨5 cos t, 5 sin t⟩ on [0, 2π]

18. r⃗(t) = ⟨2 cos t, 5 sin t⟩ on [0, 2π]

19. r⃗(t) = ⟨sec t, tan t⟩ on [0, π/4]

20. r⃗(t) = ⟨t+ cos t, 1− sin t⟩ on [0, 2π]

21. r⃗(t) = ⟨12t, 5 cos t, 5 sin t⟩ on [0, 4π]

22. r⃗(t) =
⟨
t2 − t, t2 + t, t

⟩
on [0, 1]

23. r⃗(t) =
⟨
t, t2,

√
1− t2

⟩
on [−1, 1]

24. ProjecƟleMoƟon: r⃗(t) =
⟨
(v0 cos θ)t,−

1
2
gt2 + (v0 sin θ)t

⟩
on
[
0,

2v0 sin θ
g

]
In Exercises 25 – 28 , posiƟon funcƟons r⃗1(t) and r⃗2(s) for two
objects are given that follow the same path on the respecƟve
intervals.

(a) Show that the posiƟons are the same at the indicated
t0 and s0 values; i.e., show r⃗1(t0) = r⃗2(s0).

(b) Find the velocity, speed and acceleraƟon of the two
objects at t0 and s0, respecƟvely.

25. r⃗1(t) =
⟨
t, t2
⟩
on [0, 1]; t0 = 1

r⃗2(s) =
⟨
s2, s4

⟩
on [0, 1]; s0 = 1

26. r⃗1(t) = ⟨3 cos t, 3 sin t⟩ on [0, 2π]; t0 = π/2
r⃗2(s) = ⟨3 cos(4s), 3 sin(4s)⟩ on [0, π/2]; s0 = π/8

27. r⃗1(t) = ⟨3t, 2t⟩ on [0, 2]; t0 = 2
r⃗2(s) = ⟨6t− 6, 4t− 4⟩ on [1, 2]; s0 = 2

28. r⃗1(t) =
⟨
t,
√
t
⟩
on [0, 1]; t0 = 1

r⃗2(s) =
⟨
sin t,

√
sin t

⟩
on [0, π/2]; s0 = π/2

In Exercises 29 – 32 , find the posiƟon funcƟon of an object
given its acceleraƟon and iniƟal velocity and posiƟon.

29. a⃗(t) = ⟨2, 3⟩; v⃗(0) = ⟨1, 2⟩, r⃗(0) = ⟨5,−2⟩
30. a⃗(t) = ⟨2, 3⟩; v⃗(1) = ⟨1, 2⟩, r⃗(1) = ⟨5,−2⟩
31. a⃗(t) = ⟨cos t,− sin t⟩; v⃗(0) = ⟨0, 1⟩, r⃗(0) = ⟨0, 0⟩
32. a⃗(t) = ⟨0,−32⟩; v⃗(0) = ⟨10, 50⟩, r⃗(0) = ⟨0, 0⟩
In Exercises 33 – 36 , find the displacement, distance traveled,
average velocity and average speed of the described object
on the given interval.

33. An object with posiƟon funcƟon r⃗(t) = ⟨2 cos t, 2 sin t, 3t⟩,
where distances are measured in feet and Ɵme is in sec-
onds, on [0, 2π].

34. An object with posiƟon funcƟon r⃗(t) = ⟨5 cos t,−5 sin t⟩,
where distances are measured in feet and Ɵme is in sec-
onds, on [0, π].

35. An object with velocity funcƟon v⃗(t) = ⟨cos t, sin t⟩, where
distances are measured in feet and Ɵme is in seconds, on
[0, 2π].

36. An object with velocity funcƟon v⃗(t) = ⟨1, 2,−1⟩, where
distances are measured in feet and Ɵme is in seconds, on
[0, 10].

Exercises 37 – 42 ask you to solve a variety of problems based
on the principles of projecƟle moƟon.

37. A boy whirls a ball, aƩached to a 3Ō string, above his head
in a counter–clockwise circle. The ball makes 2 revoluƟons
per second.
At what t-values should the boy release the string so that
the ball heads directly for a tree standing 10Ō in front of
him?
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38. David faces Goliath with only a stone in a 3Ō sling, which
he whirls above his head at 4 revoluƟons per second. They
stand 20Ō apart.

(a) At what t-values must David release the stone in his
sling in order to hit Goliath?

(b) What is the speed at which the stone is traveling
when released?

(c) Assume David releases the stone from a height of 6Ō
and Goliath’s forehead is 9Ō above the ground. What
angle of elevaƟonmustDavid apply to the stone to hit
Goliath’s head?

39. A hunter aims at a deer which is 40 yards away. Her cross-
bow is at a height of 5Ō, and she aims for a spot on the
deer 4Ō above the ground. The crossbow fires her arrows
at 300Ō/s.

(a) At what angle of elevaƟon should she hold the cross-
bow to hit her target?

(b) If the deer is moving perpendicularly to her line of
sight at a rate of 20mph, by approximately howmuch

should she lead the deer in order to hit it in the de-
sired locaƟon?

40. A baseball player hits a ball at 100mph, with an iniƟal height
of 3Ō and an angle of elevaƟon of 20◦, at Boston’s Fenway
Park. The ball flies towards the famed “Green Monster,” a
wall 37Ō high located 310Ō from home plate.

(a) Show that as hit, the ball hits the wall.

(b) Show that if the angle of elevaƟon is 21◦, the ball
clears the Green Monster.

41. A Cessna flies at 1000Ō at 150mph and drops a box of sup-
plies to the professor (and his wife) on an island. Ignoring
wind resistance, how far horizontally will the supplies travel
before they land?

42. A football quarterback throws a pass from a height of 6Ō,
intending to hit his receiver 20yds away at a height of 5Ō.

(a) If the ball is thrown at a rate of 50mph, what angle of
elevaƟon is needed to hit his intended target?

(b) If the ball is thrown at with an angle of elevaƟon of
8◦, what iniƟal ball speed is needed to hit his target?
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Figure 11.20: Ploƫng unit tangent vec-
tors in Example 376.

11.4 Unit Tangent and Normal Vectors

11.4 Unit Tangent and Normal Vectors
Unit Tangent Vector

Given a smooth vector–valued funcƟon r⃗(t), we defined in DefiniƟon 71 that
any vector parallel to r⃗ ′(t0) is tangent to the graph of r⃗(t) at t = t0. It is oŌen
useful to consider just the direcƟon of r⃗ ′(t) and not its magnitude. Therefore
we are interested in the unit vector in the direcƟon of r⃗ ′(t). This leads to a
definiƟon.

.

.

.
DefiniƟon 74 Unit Tangent Vector

Let r⃗(t) be a smooth funcƟon on an open interval I. The unit tangent
vector T⃗(t) is

T⃗(t) =
1

|| r⃗ ′(t) ||
r⃗ ′(t).

.. Example 376 ..CompuƟng the unit tangent vector
Let r⃗(t) = ⟨3 cos t, 3 sin t, 4t⟩. Find T⃗(t) and compute T⃗(0) and T⃗(1).

SÊ½çã®ÊÄ We apply DefiniƟon 74 to find T⃗(t).

T⃗(t) =
1

|| r⃗ ′(t) ||
r⃗ ′(t)

=
1√(

− 3 sin t
)2

+
(
3 cos t

)2
+ 42

⟨−3 sin t, 3 cos t, 4⟩

=

⟨
−3
5
sin t,

3
5
cos t,

4
5

⟩
.

We can now easily compute T⃗(0) and T⃗(1):

T⃗(0) =
⟨
0,

3
5
,
4
5

⟩
; T⃗(1) =

⟨
−3
5
sin 1,

3
5
cos 1,

4
5

⟩
≈ ⟨−0.505, 0.324, 0.8⟩ .

These are ploƩed in Figure 11.20with their iniƟal points at r⃗(0) and r⃗(1), respec-
Ɵvely. (They look rather “short” since they are only length 1.)

The unit tangent vector T⃗(t) always has a magnitude of 1, though it is some-
Ɵmes easy to doubt that is true. We can help solidify this thought in our minds
by compuƟng || T⃗(1) ||:

|| T⃗(1) || ≈
√
(−0.505)2 + 0.3242 + 0.82 = 1.000001.

Notes:

631



.....−2. 2. 4. 6.

2

.

4

.

6

.
x

.

y

Figure 11.21: Ploƫng unit tangent vec-
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Figure 11.22: Given a direcƟon in the
plane, there are always two direcƟons or-
thogonal to it.

Note: T⃗(t) is a unit vector, by definiƟon.
This does not imply that T⃗ ′(t) is also a unit
vector.

Chapter 11 Vector Valued FuncƟons

We have rounded in our computaƟon of T⃗(1), so we don’t get 1 exactly. We
leave it to the reader to use the exact representaƟon of T⃗(1) to verify it has
length 1. ...

In many ways, the previous example was “too nice.” It turned out that r⃗ ′(t)
was always of length 5. In the next example the length of r⃗ ′(t) is variable, leav-
ing us with a formula that is not as clean.

.. Example 377 CompuƟng the unit tangent vector
Let r⃗(t) =

⟨
t2 − t, t2 + t

⟩
. Find T⃗(t) and compute T⃗(0) and T⃗(1).

SÊ½çã®ÊÄ We find r⃗ ′(t) = ⟨2t− 1, 2t+ 1⟩, and

|| r⃗ ′(t) || =
√
(2t− 1)2 + (2t+ 1)2 =

√
8t2 + 2.

Therefore

T⃗(t) =
1√

8t2 + 2
⟨2t− 1, 2t+ 1⟩ =

⟨
2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

⟩
.

When t = 0, we have T⃗(0) =
⟨
−1/

√
2, 1/

√
2
⟩
; when t = 1, we have T⃗(1) =⟨

1/
√
10, 3/

√
10
⟩
.We leave it to the reader to verify each of these is a unit vec-

tor. They are ploƩed in Figure 11.21 ..

Unit Normal Vector

Just as knowing the direcƟon tangent to a path is important, knowing a direc-
Ɵon orthogonal to a path is important. When dealingwith real-valued funcƟons,
we defined the normal line at a point to the be the line through the point that
was perpendicular to the tangent line at that point. We can do a similar thing
with vector–valued funcƟons. Given r⃗(t) inR2, we have 2 direcƟons perpendic-
ular to the tangent vector, as shown in Figure 11.22. It is good to wonder “Is one
of these two direcƟons preferable over the other?”

Given r⃗(t) in R3, however, there are infinite vectors orthogonal to the tan-
gent vector at a given point. Again, we might wonder “Is one of these infinite
choices preferable over the others? Is one of these the ‘right’ choice?”

The answer in both R2 and R3 is “Yes, there is one vector that is not only
preferable, it is the ‘right’ one to choose.” Recall Theorem 93, which states that
if r⃗(t) has constant length, then r⃗(t) is orthogonal to r⃗ ′(t) for all t. We know
T⃗(t), the unit tangent vector, has constant length. Therefore T⃗(t) is orthogonal
to T⃗ ′(t).

We’ll see that T⃗ ′(t) is more than just a convenient choice of vector that is
orthogonal to r⃗ ′(t); rather, it is the “right” choice. Since all we care about is the
direcƟon, we define this newly found vector to be a unit vector.

Notes:
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Figure 11.23: Ploƫng unit tangent and
normal vectors in Example 11.23.

11.4 Unit Tangent and Normal Vectors

.

.

.
DefiniƟon 75 Unit Normal Vector

Let r⃗(t) be a vector–valued funcƟon where the unit tangent vector, T⃗(t),
is smooth on an open interval I. The unit normal vector N⃗(t) is

N⃗(t) =
1

|| T⃗ ′(t) ||
T⃗ ′(t).

.. Example 378 CompuƟng the unit normal vector
Let r⃗(t) = ⟨3 cos t, 3 sin t, 4t⟩ as in Example 376. Sketch both T⃗(π/2) and N⃗(π/2)
with iniƟal points at r⃗(π/2).

SÊ½çã®ÊÄ In Example 376, we found T⃗(t) =
⟨
(−3/5) sin t, (3/5) cos t, 4/5

⟩
.

Therefore

T⃗ ′(t) =
⟨
−3
5
cos t,−3

5
sin t, 0

⟩
and || T⃗ ′(t) || = 3

5
.

Thus

N⃗(t) =
T⃗ ′(t)
3/5

= ⟨− cos t,− sin t, 0⟩ .

We compute T⃗(π/2) = ⟨−3/5, 0, 4/5⟩ and N⃗(π/2) = ⟨0,−1, 0⟩. These are
sketched in Figure 11.23. ..

The previous example was once again “too nice.” In general, the expression
for T⃗(t) contains fracƟons of square–roots, hence the expression of T⃗ ′(t) is very
messy. We demonstrate this in the next example.

.. Example 379 ..CompuƟng the unit normal vector
Let r⃗(t) =

⟨
t2 − t, t2 + t

⟩
as in Example 377. Find N⃗(t) and sketch r⃗(t) with the

unit tangent and normal vectors at t = −1, 0 and 1.

SÊ½çã®ÊÄ In Example 377, we found

T⃗(t) =
⟨

2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

⟩
.

Finding T⃗ ′(t) requires two applicaƟons of the QuoƟent Rule:

Notes:
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Figure 11.24: Ploƫng unit tangent and
normal vectors in Example 379.
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T ′(t) =

⟨√
8t2 + 2(2)− (2t− 1)

( 1
2 (8t

2 + 2)−1/2(16t)
)

8t2 + 2
,

√
8t2 + 2(2)− (2t+ 1)

( 1
2 (8t

2 + 2)−1/2(16t)
)

8t2 + 2

⟩

=

⟨
4(2t+ 1)

(8t2 + 2)3/2
,

4(1− 2t)
(8t2 + 2)3/2

⟩

This is not a unit vector; to find N⃗(t), we need to divide T⃗ ′(t) by it’s magni-
tude.

|| T⃗ ′(t) || =

√
16(2t+ 1)2

(8t2 + 2)3
+

16(1− 2t)2

(8t2 + 2)3

=

√
16(8t2 + 2)
(8t2 + 2)3

=
4

8t2 + 2
.

Finally,

N⃗(t) =
1

4/(8t2 + 2)

⟨
4(2t+ 1)

(8t2 + 2)3/2
,

4(1− 2t)
(8t2 + 2)3/2

⟩

=

⟨
2t+ 1√
8t2 + 2

,− 2t− 1√
8t2 + 2

⟩
.

Using this formula for N⃗(t), we compute the unit tangent and normal vectors
for t = −1, 0 and 1 and sketch them in Figure 11.24. ...

The final result for N⃗(t) in Example 379 is suspiciously similar to T⃗(t). There
is a clear reason for this. If u⃗ = ⟨u1, u2⟩ is a unit vector in R2, then the only unit
vectors orthogonal to u⃗ are ⟨−u2, u1⟩ and ⟨u2,−u1⟩. Given T⃗(t), we can quickly
determine N⃗(t) if we know which term to mulƟply by (−1).

Consider again Figure 11.24, where we have ploƩed some unit tangent and
normal vectors. Note how N⃗(t) always points “inside” the curve, or to the con-
cave side of the curve. This is not a coincidence; this is true in general. Knowing
the direcƟon that r⃗(t) “turns” allows us to quickly find N⃗(t).

Notes:
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Note: Keep in mind that both aT and
aN are funcƟons of t; that is, the scalar
changes depending on t. It is convenƟon
to drop the “(t)” notaƟon from aT(t) and
simply write aT.

11.4 Unit Tangent and Normal Vectors

.

.

.
Theorem 97 Unit Normal Vectors in R2

Let r⃗(t) be a vector–valued funcƟon in R2 where T⃗ ′(t) is smooth on an
open interval I. Let T⃗(t) = ⟨t1, t2⟩. Then N⃗(t) is either

N⃗(t) = ⟨−t2, t1⟩ or N⃗(t) = ⟨t2,−t1⟩ ,

whichever is the vector that points to the concave side of the graph of r⃗.

ApplicaƟon to AcceleraƟon

Let r⃗(t) be a posiƟon funcƟon. It is a fact (stated later in Theorem 98) that
acceleraƟon, a⃗(t), lies in the plane defined by T⃗ and N⃗. That is, there are scalars
aT and aN such that

a⃗(t) = aTT⃗(t) + aNN⃗(t).

The scalar aTmeasures “howmuch” acceleraƟon is in the direcƟon of travel, that
is, it measures the component of acceleraƟon that affects the speed. The scalar
aNmeasures “howmuch” acceleraƟon is perpendicular to the direcƟon of travel,
that is, it measures the component of acceleraƟon that affects the direcƟon of
travel.

We can find aT using the orthogonal projecƟon of a⃗(t) onto T⃗(t) (review Def-
iniƟon 59 in SecƟon 10.3 if needed). Recalling that since T⃗(t) is a unit vector,
T⃗(t) · T⃗(t) = 1, so we have

proj T⃗(t) a⃗(t) =
a⃗(t) · T⃗(t)
T⃗(t) · T⃗(t)

T⃗(t) =
(⃗
a(t) · T⃗(t)

)︸ ︷︷ ︸
aT

T⃗(t).

Thus the amount of a⃗(t) in the direcƟon of T⃗(t) is aT = a⃗(t) · T⃗(t). The same
logic gives aN = a⃗(t) · N⃗(t).

While this is a fine way of compuƟng aT, there are simpler ways of finding aN
(as finding N⃗ itself can be complicated). The following theorem gives alternate
formulas for aT and aN.

Notes:
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.

.

.
Theorem 98 AcceleraƟon in the Plane Defined by T⃗ and N⃗

Let r⃗(t) be a posiƟon funcƟon with acceleraƟon a⃗(t) and unit tangent and
normal vectors T⃗(t) and N⃗(t). Then a⃗(t) lies in the plane defined by T⃗(t) and
N⃗(t); that is, there exists scalars aT and aN such that

a⃗(t) = aTT⃗(t) + aNN⃗(t).

Moreover,

aT = a⃗(t) · T⃗(t) = d
dt

(
|| v⃗(t) ||

)
aN = a⃗(t) · N⃗(t) =

√
|| a⃗(t) ||2 − a2T =

|| a⃗(t)× v⃗(t) ||
|| v⃗(t) ||

= || v⃗(t) || || T⃗ ′(t) ||

Note the second formula for aT:
d
dt

(
|| v⃗(t) ||

)
. This measures the rate of

change of speed, which again is the amount of acceleraƟon in the direcƟon of
travel.

.. Example 380 CompuƟng aT and aN
Let r⃗(t) = ⟨3 cos t, 3 sin t, 4t⟩ as in Examples 376 and 378. Find aT and aN.

SÊ½çã®ÊÄ The previous examples give a⃗(t) = ⟨−3 cos t,−3 sin t, 0⟩
and

T⃗(t) =
⟨
−3
5
sin t,

3
5
cos t,

4
5

⟩
and N⃗(t) = ⟨− cos t,− sin t, 0⟩ .

We can find aT and aN directly with dot products:

aT = a⃗(t) · T⃗(t) = 9
5
cos t sin t− 9

5
cos t sin t+ 0 = 0.

aN = a⃗(t) · N⃗(t) = 3 cos2 t+ 3 sin2 t+ 0 = 3.

Thus a⃗(t) = 0⃗T(t) + 3N⃗(t) = 3N⃗(t), which is clearly the case.
What is the pracƟcal interpretaƟon of these numbers? aT = 0 means the

object is moving at a constant speed, and hence all acceleraƟon comes in the
form of direcƟon change. ..

.. Example 381 ..CompuƟng aT and aN
Let r⃗(t) =

⟨
t2 − t, t2 + t

⟩
as in Examples 377 and 379. Find aT and aN.

Notes:
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Figure 11.25: Graphing r⃗(t) in Example
381.
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Figure 11.26: Ploƫng the posiƟon of a
thrown ball, with 1s increments shown.

11.4 Unit Tangent and Normal Vectors

SÊ½çã®ÊÄ The previous examples give a⃗(t) = ⟨2, 2⟩ and

T⃗(t) =
⟨

2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

⟩
and N⃗(t) =

⟨
2t+ 1√
8t2 + 2

,− 2t− 1√
8t2 + 2

⟩
.

While we can compute aN using N⃗(t), we instead demonstrate using another
formula from Theorem 98.

aT = a⃗(t) · T⃗(t) = 4t− 2√
8t2 + 2

+
4t+ 2√
8t2 + 2

=
8t√

8t2 + 2
.

aN =
√
|| a⃗(t) ||2 − a2T =

√
8−

(
8t√

8t2 + 2

)2

=
4√

8t2 + 2
.

When t = 2, aT =
16√
34

≈ 2.74 and aN =
4√
34

≈ 0.69. We interpret this to

mean that at t = 2, the parƟcle is accleraƟng mostly by increasing speed, not
by changing direcƟon. As the path near t = 2 is relaƟvely straight, this should
make intuiƟve sense. Figure 11.25 gives a graph of the path for reference.

Contrast this with t = 0, where aT = 0 and aN = 4/
√
2 ≈ 2.82. Here the

parƟcle’s speed is not changing and all acceleraƟon is in the form of direcƟon
change. ...

.. Example 382 ..Analyzing projecƟle moƟon
A ball is thrown from a height of 240Ō with an iniƟal velocity of 64Ō/s with an
angle of elevaƟon of 30◦. Find the posiƟon funcƟon r⃗(t) for the ball and analyze
aT and aN.

SÊ½çã®ÊÄ Using Key Idea 54 of SecƟon 11.3 we form the posiƟon func-
Ɵon of the ball:

r⃗(t) =
⟨(
64 cos 30◦

)
t,−16t2 +

(
64 sin 30◦

)
t+ 240

⟩
,

which we plot in Figure 11.26.
From thiswefind v⃗(t) = ⟨64 cos 30◦,−32t+ 64 sin 30◦⟩ and a⃗(t) = ⟨0,−32⟩.

CompuƟng T⃗(t) is not difficult, and with some simplificaƟon we find

T⃗(t) =
⟨ √

3√
t2 − 2t+ 4

,
1− t√

t2 − 2t+ 4

⟩
.

With a⃗(t) as simple as it is, finding aT is also simple:

aT = a⃗(t) · T⃗(t) = 32t− 32√
t2 − 2t+ 4

.

Notes:
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t aT aN
0 −16 27.7
1 0 32
2 16 27.7
3 24.2 20.9
4 27.7 16
5 29.4 12.7

Figure 11.27: A table of values of aT and
aN in Example 382.

Chapter 11 Vector Valued FuncƟons

Wechoose to not find N⃗(t) andfindaN through the formulaaN =
√
|| a⃗(t) ||2 − a2T :

aN =

√
322 −

(
32t− 32√
t2 − 2t+ 4

)2

=
32

√
3√

t2 − 2t+ 4
.

Figure 11.27 gives a table of values of aT and aN. When t = 0, we see the
ball’s speed is decreasing; when t = 1 the speed of the ball is unchanged. This
corresponds to the fact that at t = 1 the ball reaches its highest point.

AŌer t = 1 we see that aN is decreasing in value. This is because as the ball
falls, it’s path becomes straighter and most of the acceleraƟon is in the form of
speeding up the ball, and not in changing its direcƟon. ...

Our understanding of the unit tangent and normal vectors is aiding our un-
derstanding of moƟon. The work in Example 382 gave quanƟtaƟve analysis of
what we intuiƟvely knew.

The next secƟon provides two more important steps towards this analysis.
We currently describe posiƟon only in terms of Ɵme. In everyday life, though,
we oŌen describe posiƟon in terms of distance (“The gas staƟon is about 2miles
ahead, on the leŌ.”). The arc length parameter allows us to reference a parƟcle’s
posiƟon in terms of distance traveled.

We also intuiƟvely know that some paths are straighter than others – and
some are curvier than others, but we lack a measurement of “curviness.” The
arc length parameter provides a way for us to compute curvature, a quanƟtaƟve
measurement of how curvy a curve is.

Notes:
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Exercises 11.4
Terms and Concepts
1. If T⃗(t) is a unit tangent vector, what is || T⃗(t) ||?

2. If N⃗(t) is a unit normal vector, what is N⃗(t) · r⃗ ′(t)?

3. The acceleraƟon vector a⃗(t) lies in the plane defined by
what two vectors?

4. aT measures how much the acceleraƟon is affecƟng the
of an object.

Problems
In Exercises 5 – 8 , given r⃗(t), find T⃗(t) and evaluate it at the
indicated value of t.

5. r⃗(t) =
⟨
2t2, t2 − t

⟩
, t = 1

6. r⃗(t) = ⟨t, cos t⟩, t = π/4

7. r⃗(t) =
⟨
cos3 t, sin3 t

⟩
, t = π/4

8. r⃗(t) = ⟨cos t, sin t⟩, t = π

In Exercises 9 – 12 , find the equaƟon of the line tangent to
the curve at the indicated t-value using the unit tangent vec-
tor. Note: these are the same problems as in Exercises 5 –
8.

9. r⃗(t) =
⟨
2t2, t2 − t

⟩
, t = 1

10. r⃗(t) = ⟨t, cos t⟩, t = π/4

11. r⃗(t) =
⟨
cos3 t, sin3 t

⟩
, t = π/4

12. r⃗(t) = ⟨cos t, sin t⟩, t = π

In Exercises 13 – 16 , find N⃗(t) using DefiniƟon 75. Confirm
the result using Theorem 97.

13. r⃗(t) = ⟨3 cos t, 3 sin t⟩

14. r⃗(t) =
⟨
t, t2
⟩

15. r⃗(t) = ⟨cos t, 2 sin t⟩

16. r⃗(t) =
⟨
et, e−t⟩

In Exercises 17 – 20 , a posiƟon funcƟon r⃗(t) is given along
with its unit tangent vector T⃗(t) evaluated at t = a, for some
value of a.

(a) Confirm that T⃗(a) is as stated.

(b) Using a graph of r⃗(t) and Theorem 97, find N⃗(a).

17. r⃗(t) = ⟨3 cos t, 5 sin t⟩; T⃗(π/4) =
⟨
− 3√

34
,

5√
34

⟩
.

18. r⃗(t) =
⟨
t,

1
t2 + 1

⟩
; T⃗(1) =

⟨
2√
5
,− 1√

5

⟩
.

19. r⃗(t) = (1+ 2 sin t) ⟨cos t, sin t⟩; T⃗(0) =
⟨

2√
5
,

1√
5

⟩
.

20. r⃗(t) =
⟨
cos3 t, sin3 t

⟩
; T⃗(π/4) =

⟨
− 1√

2
,

1√
2

⟩
.

In Exercises 21 – 24 , find N⃗(t).

21. r⃗(t) = ⟨4t, 2 sin t, 2 cos t⟩

22. r⃗(t) = ⟨5 cos t, 3 sin t, 4 sin t⟩

23. r⃗(t) = ⟨a cos t, a sin t, bt⟩; a > 0

24. r⃗(t) = ⟨cos(at), sin(at), t⟩

In Exercises 25 – 30 , find aT and aN given r⃗(t). Sketch r⃗(t) on
the indicated interval, and comment on the relaƟve sizes of
aT and aN at the indicated t values.

25. r⃗(t) =
⟨
t, t2
⟩
on [−1, 1]; consider t = 0 and t = 1.

26. r⃗(t) = ⟨t, 1/t⟩ on (0, 4]; consider t = 1 and t = 2.

27. r⃗(t) = ⟨2 cos t, 2 sin t⟩ on [0, 2π]; consider t = 0 and
t = π/2.

28. r⃗(t) =
⟨
cos(t2), sin(t2)

⟩
on (0, 2π]; consider t =

√
π/2

and t =
√
π.

29. r⃗(t) = ⟨a cos t, a sin t, bt⟩ on [0, 2π], where a, b > 0; con-
sider t = 0 and t = π/2.

30. r⃗(t) = ⟨5 cos t, 4 sin t, 3 sin t⟩ on [0, 2π]; consider t = 0
and t = π/2.

639



.....−2. 2. 4. 6.

2

.

4

.

6

.

t = 0

.

t = 1

.

t = 2

.

r⃗(t)

.
x

.

y

(a)

.....−2. 2. 4. 6.

2

.

4

.

6

.

s = 0

.

s = 1

.

s = 2

.

s = 3

.

s = 4

.

s = 5

.

s = 6

.

r⃗(s)

.
x

.

y

(b)

Figure 11.28: Introducing the arc length
parameter.
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11.5 The Arc Length Parameter and Curvature

In normal conversaƟon we describe posiƟon in terms of both Ɵme and distance.
For instance, imagine driving to visit a friend. If she calls and asks where you
are, you might answer “I am 20 minutes from your house,” or you might say “I
am 10 miles from your house.” Both answers provide your friend with a general
idea of where you are.

Currently, our vector–valued funcƟons have defined pointswith a parameter
t, whichweoŌen take to represent Ɵme. Consider Figure 11.28 (a), where r⃗(t) =⟨
t2 − t, t2 + t

⟩
is graphed and the points corresponding to t = 0, 1 and 2 are

shown. Note how the arc length between t = 0 and t = 1 is smaller than the
arc length between t = 1 and t = 2; if the parameter t is Ɵme and r⃗ is posiƟon,
we can say that the parƟcle traveled faster on [1, 2] than on [0, 1].

Now consider Figure 11.28 (b), where the same graph is parametrized by a
different variable s. Points corresponding to s = 0 through s = 6 are ploƩed.
The arc length of the graph between each adjacent pair of points is 1. We can
view this parameter s as distance; that is, the arc length of the graph from s = 0
to s = 3 is 3, the arc length from s = 2 to s = 6 is 4, etc. If one wants to find the
point 2.5 units from an iniƟal locaƟon (i.e., s = 0), one would compute r⃗(2.5).
This parameter s is very useful, and is called the arc length parameter.

How do we find the arc length parameter?
Start with any parametrizaƟon of r⃗. We can compute the arc length of the

graph of r⃗ on the interval [0, t] with

arc length =

∫ t

0
|| r⃗ ′(u) || du.

We can turn this into a funcƟon: as t varies, we find the arc length s from 0 to t.
This funcƟon is

s(t) =
∫ t

0
|| r⃗ ′(u) || du. (11.1)

This establishes a relaƟonship between s and t. Knowing this relaƟonship
explicitly, we can rewrite r⃗(t) as a funcƟon of s: r⃗(s). We demonstrate this in an
example.

.. Example 383 ..Finding the arc length parameter
Let r⃗(t) = ⟨3t− 1, 4t+ 2⟩. Parametrize r⃗ with the arc length parameter s.

SÊ½çã®ÊÄ Using EquaƟon (11.1), we write

s(t) =
∫ t

0
|| r⃗ ′(u) || du.

Notes:
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Figure 11.29: Graphing r⃗ in Example 383
with parameters t and s.

11.5 The Arc Length Parameter and Curvature

We can integrate this, explicitly finding a relaƟonship between s and t:

s(t) =
∫ t

0
|| r⃗ ′(u) || du

=

∫ t

0

√
32 + 42 du

=

∫ t

0
5 du

= 5t.

Since s = 5t, we can write t = s/5 and replace t in r⃗(t) with s/5:

r⃗(s) = ⟨3(s/5)− 1, 4(s/5) + 2⟩ =
⟨
3
5
s− 1,

4
5
s+ 2

⟩
.

Clearly, as shown in Figure 11.29, the graph of r⃗ is a line, where t = 0 corre-
sponds to the point (−1, 2). What point on the line is 2 units away from this
iniƟal point? We find it with s(2) = ⟨1/5, 18/5⟩.

Is the point (1/5, 18/5) really 2 units away from (−1, 2)? We use the Dis-
tance Formula to check:

d =

√(
1
5
− (−1)

)2

+

(
18
5

− 2
)2

=

√
36
25

+
64
25

=
√
4 = 2.

Yes, s(2) is indeed 2 units away, in the direcƟon of travel, from the iniƟal point. ...

Things worked out very nicely in Example 383; we were able to establish
directly that s = 5t. Usually, the arc length parameter is much more difficult to
describe in terms of t, a result of integraƟng a square–root. There are a number
of things that we can learn about the arc length parameter from EquaƟon (11.1),
though, that are incredibly useful.

First, take the derivaƟve of s with respect to t. The Fundamental Theorem
of Calculus (see Theorem 39) states that

ds
dt

= s ′(t) = || r⃗ ′(t) ||. (11.2)

Leƫng t represent Ɵme and r⃗(t) represent posiƟon, we see that the rate of
change of s with respect to t is speed; that is, the rate of change of “distance
traveled” is speed, which should match our intuiƟon.

The Chain Rule states that
d⃗r
dt

=
d⃗r
ds

· ds
dt

r⃗ ′(t) = r⃗ ′(s) · || r⃗ ′(t) ||.

Notes:
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Figure 11.30: Establishing the concept of
curvature.
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Solving for r⃗ ′(s), we have

r⃗ ′(s) =
r⃗ ′(t)

|| r⃗ ′(t) ||
= T⃗(t), (11.3)

where T⃗(t) is the unit tangent vector. EquaƟon 11.3 is oŌen misinterpreted, as
one is tempted to think it states r⃗ ′(t) = T⃗(t), but there is a big difference be-
tween r⃗ ′(s) and r⃗ ′(t). The key to take from it is that r⃗ ′(s) is a unit vector. In fact,
the following theorem states that this characterizes the arc length parameter.

.

.

.
Theorem 99 Arc Length Parameter

Let r⃗(s) be a vector–valued funcƟon. The parameter s is the arc length
parameter if, and only if, || r⃗ ′(s) || = 1.

Curvature

Consider points A and B on the curve graphed in Figure 11.30 (a). One can
readily argue that the curve curvesmore sharply at A than at B. It is useful to use
a number to describe how sharply the curve bends; that number is the curvature
of the curve.

Wederive this number in the followingway. Consider Figure 11.30 (b), where
unit tangent vectors are graphed around points A and B. NoƟce how the direc-
Ɵon of the unit tangent vector changes quite a bit near A, whereas it does not
change as much around B. This leads to an important concept: measuring the
rate of change of the unit tangent vector with respect to arc length gives us a
measurement of curvature.

.

.

.
DefiniƟon 76 Curvature

Let r⃗(s) be a vector–valued funcƟon where s is the arc length parameter.
The curvature κ of the graph of r⃗(s) is

κ =

∣∣∣∣∣
∣∣∣∣∣ d⃗Tds

∣∣∣∣∣
∣∣∣∣∣ = ∣∣∣∣ T⃗ ′(s)

∣∣∣∣ .

If r⃗(s) is parametrized by the arc length parameter, then

T⃗(s) =
r⃗ ′(s)

|| r⃗ ′(s) ||
and N⃗(s) =

T⃗ ′(s)
|| T⃗ ′(s) ||

.

Notes:
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11.5 The Arc Length Parameter and Curvature

Having defined || T⃗ ′(s) || = κ, we can rewrite the second equaƟon as

T⃗ ′(s) = κN⃗(s). (11.4)

We already knew that T⃗ ′(s) is in the same direcƟon as N⃗(s); that is, we can think
of T⃗(s) as being “pulled” in the direcƟon of N⃗(s). How “hard” is it being pulled?
By a factor of κ. When the curvature is large, T⃗(s) is being “pulled hard” and the
direcƟon of T⃗(s) changes rapidly. When κ is small, T(s) is not being pulled hard
and hence its direcƟon is not changing rapidly.

We use DefiniƟon 76 to find the curvature of the line in Example 383.

.. Example 384 Finding the curvature of a line
Use DefiniƟon 76 to find the curvature of r⃗(t) = ⟨3t− 1, 4t+ 2⟩.

SÊ½çã®ÊÄ In Example 383, we found that the arc length parameter was
defined by s = 5t, so r⃗(s) = ⟨3t/5− 1, 4t/5+ 2⟩ parametrized r⃗ with the arc
length parameter. To find κ, we need to find T⃗ ′(s).

T⃗(s) = r⃗ ′(s) (recall this is a unit vector)
= ⟨3/5, 4/5⟩ .

Therefore

T⃗ ′(s) = ⟨0, 0⟩

and

κ =
∣∣∣∣ T⃗ ′(s)

∣∣∣∣ = 0.

It probably comes as no surprise that the curvature of a line is 0. (How “curvy”
is a line? It is not curvy at all.) ..

While the definiƟon of curvature is a beauƟful mathemaƟcal concept, it is
nearly impossible to use most of the Ɵme; wriƟng r⃗ in terms of the arc length
parameter is generally very hard. Fortunately, there are other methods of cal-
culaƟng this value that are much easier. There is a tradeoff: the definiƟon is
“easy” to understand though hard to compute, whereas these other formulas
are easy to compute though hard to understand why they work.

Notes:
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.

.

.
Theorem 100 Formulas for Curvature

Let C be a smooth curve on an open interval I in the plane or in space.

1. If C is defined by y = f(x), then

κ =
|f ′′(x)|(

1+
(
f ′(x)

)2)3/2 .
2. If C is defined as a vector–valued funcƟon in the plane, r⃗(t) =

⟨x(t), y(t)⟩, then

κ =
|x′y′′ − x′′y′|(

(x′)2 + (y′)2
)3/2 .

3. If C is defined in space by a vector–valued funcƟon r⃗(t), then

κ =
|| T⃗ ′(t) ||
|| r⃗ ′(t) ||

=
|| r⃗ ′(t)× r⃗ ′′(t) ||

|| r⃗ ′(t) ||3
=

a⃗(t) · N⃗(t)
|| v⃗(t) ||2

.

We pracƟce using these formulas.

.. Example 385 Finding the curvature of a circle
Find the curvature of a circle with radius r, defined by r⃗(t) = ⟨r cos t, r sin t⟩.

SÊ½çã®ÊÄ Before we start, we should expect the curvature of a circle
to be constant, and not dependent on t. (Why?)

We compute κ using the second part of Theorem 100.

κ =
|(−r sin t)(−r sin t)− (−r cos t)(r cos t)|(

(−r sin t)2 + (r cos t)2
)3/2

=
r2(sin2 t+ cos2 t)(

r2(sin2 t+ cos2 t)
)3/2

=
r2

r3
=

1
r
.

We have found that a circle with radius r has curvature κ = 1/r. ..

Notes:
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Figure 11.31: IllustraƟng the osculaƟng
circles for the curve seen in Figure 11.30.
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Figure 11.32: Examining the curvature of
y = x2.

11.5 The Arc Length Parameter and Curvature

Example 385 gives a great result. Before this example, if we were told “The
curve has a curvature of 5 at point A,” we would have no idea what this re-
ally meant. Is 5 “big” – does is correspond to a really sharp turn, or a not-so-
sharp turn? Now we can think of 5 in terms of a circle with radius 1/5. Knowing
the units (inches vs. miles, for instance) allows us to determine how sharply the
curve is curving.

Let a point P on a smooth curve C be given, and let κ be the curvature of the
curve at P. A circle that:

• passes through P,

• lies on the concave side of C,

• has a common tangent line as C at P and

• has radius r = 1/κ (hence has curvature κ)

is the osculaƟng circle, or circle of curvature, to C at P, and r is the radius of cur-
vature. Figure 11.31 shows the graph of the curve seen earlier in Figure 11.30
and its osculaƟng circles at A and B. A sharp turn corresponds to a circle with
a small radius; a gradual turn corresponds to a circle with a large radius. Being
able to think of curvature in terms of the radius of a circle is very useful. (The
word “osculaƟng” comes from a LaƟn word related to kissing; an osculaƟng cir-
cle “kisses” the graph at a parƟcular point. Many beauƟful ideas inmathemaƟcs
have come from studying the osculaƟng circles to a curve.)

.. Example 386 Finding curvature
Find the curvature of the parabola defined by y = x2 at the vertex and at x = 1.

SÊ½çã®ÊÄ We use the first formula found in Theorem 100.

κ(x) =
|2|(

1+ (2x)2
)3/2

=
2(

1+ 4x2
)3/2 .

At the vertex (x = 0), the curvature is κ = 2. At x = 1, the curvature
is κ = 2/(5)3/2 ≈ 0.179. So at x = 0, the curvature of y = x2 is that of
a circle of radius 1/2; at x = 1, the curvature is that of a circle with radius
≈ 1/0.179 ≈ 5.59. This is illustrated in Figure 11.32. At x = 3, the curvature is
0.009; the graph is nearly straight as the curvature is very close to 0. ..

Notes:
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Figure 11.33: Understanding the curva-
ture of a curve in space.

Chapter 11 Vector Valued FuncƟons

.. Example 387 Finding curvature
Find where the curvature of r⃗(t) =

⟨
t, t2, 2t3

⟩
is maximized.

SÊ½çã®ÊÄ We use the third formula in Theorem 100 as r⃗(t) is defined
in space. We leave it to the reader to verify that

r⃗ ′(t) =
⟨
1, 2t, 6t2

⟩
, r⃗ ′′(t) = ⟨0, 2, 12t⟩ , and r⃗ ′(t)×⃗r ′′(t) =

⟨
12t2,−12t, 2

⟩
.

Thus

κ(t) =
|| r⃗ ′(t)× r⃗ ′′(t) ||

|| r⃗ ′(t) ||3

=
||
⟨
12t2,−12t, 2

⟩
||

|| ⟨1, 2t, 6t2⟩ ||3

=

√
144t4 + 144t2 + 4(√
1+ 4t2 + 36t4

)3
While this is not a parƟcularly “nice” formula, it does explictly tell us what the
curvature is at a given t value. To maximize κ(t), we should solve κ′(t) = 0 for
t. This is doable, but very Ɵme consuming. Instead, consider the graph of κ(t)
as given in Figure 11.33 (a). We see that κ is maximized at two t values; using a
numerical solver, we find these values are t ≈ ±0.189. In part (b) of the figure
we graph r⃗(t) and indicate the points where curvature is maximized. ..

Curvature and MoƟon

Let r⃗(t) be a posiƟon funcƟon of an object, with velocity v⃗(t) = r⃗ ′(t) and
acceleraƟon a⃗(t) = r⃗ ′′(t). In SecƟon 11.4 we established that acceleraƟon is in
the plane formed by T⃗(t) and N⃗(t), and that we can find scalars aT and aN such
that

a⃗(t) = aTT⃗(t) + aNN⃗(t).

Theorem 98 gives formulas for aT and aN:

aT =
d
dt

(
|| v⃗(t) ||

)
and aN =

|| v⃗(t)× a⃗(t) ||
|| v⃗(t) ||

.

We understood that the amount of acceleraƟon in the direcƟon of T⃗ relates only
to how the speed of the object is changing, and that the amount of acceleraƟon
in the direcƟon of N⃗ relates to how the direcƟon of travel of the object is chang-
ing. (That is, if the object travels at constant speed, aT = 0; if the object travels
in a constant direcƟon, aN = 0.)

Notes:
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OperaƟng
Speed (mph)

Minimum
Radius (Ō)

35 310
40 430
45 540

Figure 11.34: OperaƟng speed and mini-
mum radius in highway cloverleaf design.

11.5 The Arc Length Parameter and Curvature

In EquaƟon (11.2) at the beginning of this secƟon, we found s ′(t) = || v⃗(t) ||.
We can combine this fact with the above formula for aT to write

aT =
d
dt

(
|| v⃗(t) ||

)
=

d
dt
(
s ′(t)

)
= s ′′(t).

Since s ′(t) is speed, s ′′(t) is the rate at which speed is changing with respect to
Ɵme. We see once more that the component of acceleraƟon in the direcƟon of
travel relates only to speed, not to a change in direcƟon.

Now compare the formula for aN above to the formula for curvature in The-
orem 100:

aN =
|| v⃗(t)× a⃗(t) ||

|| v⃗(t) ||
and κ =

|| r⃗ ′(t)× r⃗ ′′(t) ||
|| r⃗ ′(t) ||3

=
|| v⃗(t)× a⃗(t) ||

|| v⃗(t) ||3
.

Thus

aN = κ|| v⃗(t) ||2 (11.5)

= κ
(
s ′(t)

)2
This last equaƟon shows that the component of acceleraƟon that changes

the object’s direcƟon is dependent on two things: the curvature of the path and
the speed of the object.

Imagine driving a car in a clockwise circle. Youwill naturally feel a force push-
ing you towards the door (more accurately, the door is pushing you as the car
is turning and you want to travel in a straight line). If you keep the radius of
the circle constant but speed up, the door pushes harder against you (aN has
increased). If you keep your speed constant but Ɵghten the turn, once again the
door will push harder against you.

Puƫng our new formulas for aT and aN together, we have

a⃗(t) = s ′′(t)⃗T(t) + κ|| v⃗(t) ||2N⃗(t).

This is not a parƟcularly pracƟcal way of finding aT and aN, but it reveals some
great concepts about how acceleraƟon interacts with speed and the shape of a
curve.

.. Example 388 ..Curvature and road design
The minimum radius of the curve in a highway cloverleaf is determined by the
operaƟng speed, as given in the table in Figure 11.34. For each curve and speed,
compute aN.

SÊ½çã®ÊÄ Using EquaƟon (11.5), we can compute the acceleraƟon
normal to the curve in each case. We start by converƟng each speed from “miles
per hour” to “feet per second” by mulƟplying by 5280/3600.

Notes:
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35mph, 310Ō ⇒ 51.33Ō/s, κ = 1/310

aN = κ || v⃗(t) ||2

=
1

310
(
51.33

)2
= 8.50Ō/s2.

40mph, 430Ō ⇒ 58.67Ō/s, κ = 1/430

aN =
1

430
(
58.67

)2
= 8.00Ō/s2.

45mph,540Ō ⇒ 66Ō/s, κ = 1/540

aN =
1

540
(
66
)2

= 8.07Ō/s2.

Note that each acceleraƟon is similar; this is by design. Considering the classic
“Force=mass× acceleraƟon” formula, this acceleraƟon must be kept small in
order for the Ɵres of a vehicle to keep a “grip” on the road. If one travels on a
turn of radius 310Ō at a rate of 50mph, the acceleraƟon is double, at 17.35Ō/s2.
If the acceleraƟon is too high, the fricƟonal force created by the Ɵresmay not be
enough to keep the car from sliding. Civil engineers rouƟnely compute a “safe”
design speed, then subtract 5-10mph to create the posted speed limit for addi-
Ɵonal safety. ...

We end this chapter with a reflecƟon on what we’ve covered. We started
with vector–valued funcƟons, which may have seemed at the Ɵme to be just
another way of wriƟng parametric equaƟons. However, we have seen that the
vector perspecƟve has given us great insight into the behavior of funcƟons and
the study of moƟon. Vector–valued posiƟon funcƟons convey displacement,
distance traveled, speed, velocity, acceleraƟon and curvature informaƟon, each
of which has great importance in science and engineering.

Notes:
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Exercises 11.5
Terms and Concepts
1. It is common to describe posiƟon in terms of both

and/or .

2. A measure of the “curviness” of a curve is .

3. Give two shapes with constant curvature.

4. Describe in your own words what an “osculaƟng circle” is.

5. Complete the idenƟty: T⃗ ′(s) = N⃗(s).

6. Given a posiƟon funcƟon r⃗(t), how are aT and aN affected
by the curvature?

Problems
In Exercises 7 – 10 , a posiƟon funcƟon r⃗(t) is given, where
t = 0 corresponds to the iniƟal posiƟon. Find the arc length
parameter s, and rewrite r⃗(t) in terms of s; that is, find r⃗(s).

7. r⃗(t) = ⟨2t, t,−2t⟩

8. r⃗(t) = ⟨7 cos t, 7 sin t⟩

9. r⃗(t) = ⟨3 cos t, 3 sin t, 2t⟩

10. r⃗(t) = ⟨5 cos t, 13 sin t, 12 cos t⟩

In Exercises 11 – 22 , a curve C is described alongwith 2 points
on C. Using a sketch, determine at which of these points the
curvature is greater. Find the curvature κ of C.

11. C is defined by y = x3 − x; points given at x = 0 and
x = 1/2.

12. C is defined by y =
1

x2 + 1
; points given at x = 0 and

x = 2.

13. C is defined by y = cos x; points given at x = 0 and
x = π/2.

14. C is defined by y =
√
1− x2 on (−1, 1); points given at

x = 0 and x = 1/2.

15. C is defined by r⃗(t) = ⟨cos t, sin(2t)⟩; points given at t = 0
and t = π/4.

16. C is defined by r⃗(t) =
⟨
cos2 t, sin t cos t

⟩
; points given at

t = 0 and t = π/3.

17. C is defined by r⃗(t) =
⟨
t2 − 1, t3 − t

⟩
; points given at t = 0

and t = 5.

18. C is defined by r⃗(t) = ⟨tan t, sec t⟩; points given at t = 0
and t = π/6.

19. C is defined by r⃗(t) = ⟨4t+ 2, 3t− 1, 2t+ 5⟩; points given
at t = 0 and t = 1.

20. C is defined by r⃗(t) =
⟨
t3 − t, t3 − 4, t2 − 1

⟩
; points given

at t = 0 and t = 1.

21. C is defined by r⃗(t) = ⟨3 cos t, 3 sin t, 2t⟩; points given at
t = 0 and t = π/2.

22. C is defined by r⃗(t) = ⟨5 cos t, 13 sin t, 12 cos t⟩; points
given at t = 0 and t = π/2.

In Exercises 23 – 26 , find the value of x or t where curvature
is maximized.

23. y =
1
6
x3

24. y = sin x

25. r⃗(t) =
⟨
t2 + 2t, 3t− t2

⟩
26. r⃗(t) = ⟨t, 4/t, 3/t⟩

In Exercises 27 – 30 , find the radius of curvature at the indi-
cated value.

27. y = tan x, at x = π/4

28. y = x2 + x− 3, at x = π/4

29. r⃗(t) = ⟨cos t, sin(3t)⟩, at t = 0

30. r⃗(t) = ⟨5 cos(3t), t⟩, at t = 0

In Exercises 31 – 34 , find the equaƟon of the osculaƟng circle
to the curve at the indicated t-value.

31. r⃗(t) =
⟨
t, t2
⟩
, at t = 0

32. r⃗(t) = ⟨3 cos t, sin t⟩, at t = 0

33. r⃗(t) = ⟨3 cos t, sin t⟩, at t = π/2

34. r⃗(t) =
⟨
t2 − t, t2 + t

⟩
, at t = 0
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A funcƟon of the form y = f(x) is a funcƟon of a single variable; given a value
of x, we can find a value y. Even the vector–valued funcƟons of Chapter 11 are
single–variable funcƟons; the input is a single variable though the output is a
vector.

There are many situaƟons where a desired quanƟty is a funcƟon of two or
more variables. For instance, wind chill ismeasuredby knowing the temperature
and wind speed; the volume of a gas can be computed knowing the pressure
and temperature of the gas; to compute a baseball player’s baƫng average, one
needs to know the number of hits and the number of at–bats.

This chapter studies mulƟvariable funcƟons, that is, funcƟons with more
than one input.

12.1 IntroducƟon to MulƟvariable FuncƟons

.

.

.
DefiniƟon 77 FuncƟon of Two Variables

LetD be a subset ofR2. A funcƟon f of two variables is a rule that assigns
each pair (x, y) in D a value z = f(x, y) in R. D is the domain of f; the set
of all outputs of f is the range.

.. Example 389 ..Understanding a funcƟon of two variables
Let z = f(x, y) = x2 − y. Evaluate f(1, 2), f(2, 1), and f(−2, 4); find the domain
and range of f.

SÊ½çã®ÊÄ Using the definiƟon f(x, y) = x2 − y, we have:

f(1, 2) = 12 − 2 = −1

f(2, 1) = 22 − 1 = 3

f(−2, 4) = (−2)2 − 4 = 0

The domain is not specified, so we take it to be all possible pairs in R2 for which
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Figure 12.2: Graphing a funcƟon of two
variables.

Chapter 12 FuncƟons of Several Variables

f is defined. In this example, f is defined for all pairs (x, y), so the domain D of f
is R2.

The output of f can be made as large or small as possible; any real number r
can be the output. (In fact, given any real number r, f(0,−r) = r.) So the range
R of f is R. ...

.. Example 390 Understanding a funcƟon of two variables

Let f(x, y) =

√
1− x2

9
− y2

4
. Find the domain and range of f.

SÊ½çã®ÊÄ The domain is all pairs (x, y) allowable as input in f. Because
of the square–root, we need (x, y) such that 0 ≤ 1− x2

9 − y2
4 :

0 ≤ 1− x2

9
− y2

4
x2

9
+

y2

4
≤ 1

The above equaƟon describes the interior of an ellipse as shown in Figure 12.1.
We can represent the domain D graphically with the figure; in set notaƟon, we
can write D = {(x, y) : x2

9 + y2
4 ≤ 1}.

The range is the set of all possible output values. The square–root ensures
that all output is ≥ 0. Since the x and y terms are squared, then subtracted, in-
side the square–root, the largest output value comes at x = 0, y = 0: f(0, 0) =
1. Thus the range R is the interval [0, 1]. ..

Graphing FuncƟons of Two Variables

The graph of a funcƟon f of two variables is the set of all points
(
x, y, f(x, y)

)
where (x, y) is in the domain of f. This creates a surface in space.

One can begin sketching a graph by ploƫng points, but this has limitaƟons.

Consider Figure 12.2awhere 25points havebeenploƩedof f(x, y) =
1

x2 + y2 + 1
.

More points have been ploƩed than one would reasonably want to do by hand,
yet it is not clear at all what the graph of the funcƟon looks like. Technology al-
lows us to plot lots of points, connect adjacent points with lines and add shading
to create a graph like Figure 12.2b which does a far beƩer job of illustraƟng the
behavior of f.

While technology is readily available to help us graph funcƟons of two vari-
ables, there is sƟll a paper–and–pencil approach that is useful to understand and
master as it, combined with high–quality graphics, gives one great insight into
the behavior of a funcƟon. This technique is known as sketching level curves.

Notes:
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Figure 12.3: A topographicalmap displays
elevaƟon by drawing contour lines, along
with the elevaƟon is constant.
Sample taken from the public domain USGS Digital Raster Graphics,
http://topmaps.usgs.gove/drg/.

12.1 IntroducƟon to MulƟvariable FuncƟons

Level Curves

It may be surprising to find that the problem of represenƟng a three dimen-
sional surface on paper is familiar to most people (they just don’t realize it).
Topographical maps, like the one shown in Figure 12.3, represent the surface
of Earth by indicaƟng points with the same elevaƟon with contour lines. The
elevaƟons marked are equally spaced; in this example, each thin line indicates
an elevaƟon change in 50Ō increments and each thick line indicates a change
of 200Ō. When lines are drawn close together, elevaƟon changes rapidly (as
one does not have to travel far to rise 50Ō). When lines are far apart, such as
near “Aspen Campground,” elevaƟon changesmore gradually as one has to walk
farther to rise 50Ō.

Given a funcƟon z = f(x, y), we can draw a “topographical map” of f by
drawing level curves (or, contour lines). A level curve at z = c is a curve in the
x-y plane such that for all points (x, y) on the curve, f(x, y) = c.

Whendrawing level curves, it is important that the c values are spaced equally
apart as that gives the best insight to how quickly the “elevaƟon” is changing.
Examples will help one understand this concept.

.. Example 391 ..Drawing Level Curves

Let f(x, y) =

√
1− x2

9
− y2

4
. Find the level curves of f for c = 0, 0.2, 0.4, 0.6,

0.8 and 1.

SÊ½çã®ÊÄ Consider first c = 0. The level curve for c = 0 is the set of
all points (x, y) such that 0 =

√
1− x2

9 − y2
4 . Squaring both sides quickly gives

us
x2

9
+

y2

4
= 1,

an ellipse centered at (0, 0)with horizontal major axis of length 6 andminor axis
of length 4. Thus for any point (x, y) on this curve, f(x, y) = 0.

Now consider the level curve for c = 0.2

0.2 =

√
1− x2

9
− y2

4

0.04 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 0.96

x2

8.64
+

y2

3.84
= 1.

Notes:
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Figure 12.4: Graphing the level curves in
Example 391.
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This is also an ellipse, where a =
√
8.64 ≈ 2.94 and b =

√
3.84 ≈ 1.96.

In general, for z = c, the level curve is:

c =

√
1− x2

9
− y2

4

c2 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 1− c2

x2

9(1− c2)
+

y2

4(1− c2)
= 1,

ellipses that are decreasing in size as c increases. A special case is when c = 1;
there the ellipse is just the point (0, 0).

The level curves are shown in Figure 12.4(a). Note how the level curves for
c = 0 and c = 0.2 are very, very close together: this indicates that f is growing
rapidly along those curves.

In Figure 12.4(b), the curves are drawn on a graph of f in space. Note how
the elevaƟons are evenly spaced. Near the level curves of c = 0 and c = 0.2 we
can see that f indeed is growing quickly. ...

.. Example 392 ..Analyzing Level Curves
Let f(x, y) =

x+ y
x2 + y2 + 1

. Find the level curves for z = c.

SÊ½çã®ÊÄ We begin by seƫng f(x, y) = c for an arbitrary c and seeing
if algebraic manipulaƟon of the equaƟon reveals anything significant.

x+ y
x2 + y2 + 1

= c

x+ y = c(x2 + y2 + 1).

We recognize this as a circle, though the center and radius are not yet clear. By
compleƟng the square, we can obtain:(

x− 1
2c

)2

+

(
y− 1

2c

)2

=
1
2c2

− 1,

a circle centered at
(
1/(2c), 1/(2c)

)
with radius

√
1/(2c2)− 1, where |c| <

1/
√
2. The level curves for c = ±0.2, 0.4 and 0.6 are sketched in Figure 12.5(a).

To help illustrate “elevaƟon,” we use thicker lines for c values near 0, and dashed
lines indicate where c < 0.

Notes:
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Figure 12.5: Graphing the level curves in
Example 392.

12.1 IntroducƟon to MulƟvariable FuncƟons

There is one special level curve, when c = 0. The level curve in this situaƟon
is x+ y = 0, the line y = −x.

In Figure 12.5(b) we see a graph of the surface. Note how the y-axis is point-
ing away from the viewer to more closely resemble the orientaƟon of the level
curves in (a).

Seeing the level curves helps us understand the graph. For instance, the
graph does not make it clear that one can “walk” along the line y = −x without
elevaƟon change, though the level curve does. ...

FuncƟons of Three Variables

We extend our study of mulƟvariable funcƟons to funcƟons of three vari-
ables. (One can make a funcƟon of as many variables as one likes; we limit our
study to three variables.)

.

.

.
DefiniƟon 78 FuncƟon of Three Variables

Let D be a subset of R3. A funcƟon f of three variables is a rule that
assigns each triple (x, y, z) inD a valuew = f(x, y, z) inR. D is thedomain
of f; the set of all outputs of f is the range.

Note how this definiƟon closely resembles that of DefiniƟon 77.

.. Example 393 Understanding a funcƟon of three variables

Let f(x, y, z) =
x2 + z+ 3 sin y
x+ 2y− z

. Evaluate f at the point (3, 0, 2) and find the

domain and range of f.

SÊ½çã®ÊÄ f(3, 0, 2) =
32 + 2+ 3 sin 0
3+ 2(0)− 2

= 11.

As the domain of f is not specified, we take it to be the set of all triples (x, y, z)
for which f(x, y, z) is defined. As we cannot divide by 0, we find the domain D is

D = {(x, y, z) | x+ 2y− z ̸= 0}.

We recognize that the set of all points in R3 that are not in D form a plane in
space that passes through the origin (with normal vector ⟨1, 2,−1⟩).

We determine the range R isR; that is, all real numbers are possible outputs
of f. There is no set way of establishing this. Rather, to get numbers near 0 we
can let y = 0 and choose z ≈ −x2. To get numbers of arbitrarily large magni-
tude, we can let z ≈ x+ 2y. ..

Notes:
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c r
16. 0.25
8. 0.35
4. 0.5
2. 0.71
1. 1.
0.5 1.41
0.25 2.
0.125 2.83
0.0625 4.

Figure 12.6: A table of c values and the
corresponding radius r of the spheres of
constant value in Example 394.
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Level Surfaces

It is very difficult to produce a meaningful graph of a funcƟon of three vari-
ables. A funcƟon of one variable is a curve drawn in 2 dimensions; a funcƟon of
two variables is a surface drawn in 3 dimensions; a funcƟon of three variables is
a hypersurface drawn in 4 dimensions.

There are a few techniques one can employ to try to “picture” a graph of
three variables. One is an analogue of level curves: level surfaces. Given w =
f(x, y, z), the level surface at w = c is the surface in space formed by all points
(x, y, z) where f(x, y, z) = c.

.. Example 394 Finding level surfaces
If a point source S is radiaƟng energy, the intensity I at a given point P in space
is inversely proporƟonal to the square of the distance between S and P. That is,

when S = (0, 0, 0), I(x, y, z) =
k

x2 + y2 + z2
for some constant k.

Let k = 1; find the level surfaces of I.

SÊ½çã®ÊÄ Wecan (mostly) answer this quesƟonusing “common sense.”
If energy (say, in the form of light) is emanaƟng from the origin, its intensity will
be the same all a points equidistant from the origin. That is, at any point on
the surface of a sphere centered at the origin, the intensity should be the same.
Therefore, the level surfaces are spheres.

We now find this mathemaƟcally. The level surface at I = c is defined by

c =
1

x2 + y2 + z2
.

A small amount of algebra reveals

x2 + y2 + z2 =
1
c
.

Given an intensity c, the level surface I = c is a sphere of radius 1/
√
c, centered

at the origin.
Figure 12.6 gives a table of the radii of the spheres for given c values. Nor-

mally onewould use equally spaced c values, but these values have been chosen
purposefully. At a distance of 0.25 from the point source, the intensity is 16; to
move to a point of half that intensity, one just moves out 0.1 to 0.35 – not much
at all. To again halve the intensity, one moves 0.15, a liƩle more than before.

Note how each Ɵme the intensity if halved, the distance required to move
away grows. We conclude that the closer one is to the source, the more rapidly
the intensity changes. ..

Notes:
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Exercises 12.1
Terms and Concepts
1. Give two examples (other than those given in the text) of

“real world” funcƟons that require more than one input.

2. The graph of a funcƟon of two variables is a .

3. Most people are familiar with the concept of level curves in
the context of maps.

4. T/F: Along a level curve, the output of a funcƟon does not
change.

5. The analogue of a level curve for funcƟons of three vari-
ables is a level .

6. What does it mean when level curves are close together?
Far apart?

Problems
Exercises 7 – 14, give the domain and range of the mulƟvari-
able funcƟon.

7. f(x, y) = x2 + y2 + 2

8. f(x, y) = x+ 2y

9. f(x, y) = x− 2y

10. f(x, y) =
1

x+ 2y

11. f(x, y) =
1

x2 + y2 + 1

12. f(x, y) = sin x cos y

13. f(x, y) =
√

9− x2 − y2

14. f(x, y) =
1√

x2 + y2 − 9
Exercises 15 – 22, describe in words and sketch the level
curves for the funcƟon and given c values.

15. f(x, y) = 3x− 2y; c = −2, 0, 2

16. f(x, y) = x2 − y2; c = −1, 0, 1

17. f(x, y) = x− y2; c = −2, 0, 2

18. f(x, y) =
1− x2 − y2

2y− 2x
; c = −2, 0, 2

19. f(x, y) =
2x− 2y

x2 + y2 + 1
; c = −1, 0, 1

20. f(x, y) =
y− x3 − 1

x
; c = −3,−1, 0, 1, 3

21. f(x, y) =
√

x2 + 4y2; c = 1, 2, 3, 4

22. f(x, y) = x2 + 4y2; c = 1, 2, 3, 4

Exercises 23 – 26, give the domain and range of the funcƟons
of three variables.

23. f(x, y, z) =
x

x+ 2y− 4z

24. f(x, y, z) =
1

1− x2 − y2 − z2

25. f(x, y, z) =
√

z− x2 + y2

26. f(x, y, z) = z2 sin x cos y

Exercises 27 – 30, describe the level surfaces of the given func-
Ɵons of three variables.

27. f(x, y, z) = x2 + y2 + z2

28. f(x, y, z) = z− x2 + y2

29. f(x, y, z) =
x2 + y2

z

30. f(x, y, z) =
z

x− y

31. Compare the level curves of Exercises 21 and 22. How are
they similar, and how are they different? Each surface is a
quadric surface; describe how the level curves are consis-
tent with what we know about each surface.
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Figure 12.7: IllustraƟng open and closed
sets in the x-y plane.
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12.2 Limits andConƟnuity ofMulƟvariable FuncƟons
We conƟnue with the paƩern we have established in this text: aŌer defining a
new kind of funcƟon, we apply calculus ideas to it. The previous secƟon defined
funcƟons of two and three variables; this secƟon invesƟgates what it means for
these funcƟons to be “conƟnuous.”

We begin with a series of definiƟons. We are used to “open intervals” such
as (1, 3), which represents the set of all x such that 1 < x < 3, and “closed
intervals” such as [1, 3], which represents the set of all x such that 1 ≤ x ≤ 3.
We need analogous definiƟons for open and closed sets in the x-y plane.

.

.

.
DefiniƟon 79 Open Disk, Boundary and Interior Points, Open and
Closed Sets, Bounded Sets

An open disk B in R2 centered at (x0, y0) with radius r is the set of all
points (x, y) such that

√
(x− x0)2 + (y− y0)2 < r.

Let S be a set of points in R2. A point P in R2 is a boundary point of S
if all open disks centered at P contain both points in S and points not in S.

A point P in S is an interior point of S if there is an open disk centered at
P that contains only points in S.

A set S is open if every point in S is an interior point.

A set S is closed if it contains all of its boundary points.

A set S is bounded if there is an M > 0 such that the open disk, cen-
tered at the origin, with radius M contains S. A set that is not bounded
is unbounded.

Figure 12.7 shows several sets in the x-y plane. In each set, point P1 lies on
the boundary of the set as all open disks centered there contain both points in,
and not in, the set. In contrast, point P2 is an interior point for there is an open
disk centered there that lies enƟrely within the set.

The set depicted in Figure 12.7(a) is a closed set as it contains all of its bound-
ary points. The set in (b) is open, for all of its points are interior points (or, equiv-
alently, it does not contain any of its boundary points). The set in (c) is neither
open nor closed as it contains just some of its boundary points.

Notes:
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.. Example 395 Determining open/closed, bounded/unbounded
Determine if the domain of the funcƟon f(x, y) =

√
1− x2

9 − y2
4 is open, closed,

or neither, and if it is bounded.

SÊ½çã®ÊÄ This domain of this funcƟonwas found in Example 390 to be
D = {(x, y) | x2

9 + y2
4 ≤ 1}, the region bounded by the ellipse x2

9 + y2
4 = 1. Since

the region includes the boundary (indicated by the use of “≤”), the set contains
all of its boundary points and hence is closed. The region is bounded as a disk
of radius 4, centered at the origin, contains D. ..

.. Example 396 Determining open/closed, bounded/unbounded
Determine if the domain of f(x, y) = 1

x−y is open, closed, or neither.

SÊ½çã®ÊÄ As we cannot divide by 0, we find the domain to be D =
{(x, y) | x− y ̸= 0}. In other words, the domain is the set of all points (x, y) not
on the line y = x.

The domain is sketched in Figure 12.8. Note how we can draw an open disk
around any point in the domain that lies enƟrely inside the domain, and also
note how the only boundary points of the domain are the points on the line
y = x. We conclude the domain is an open set. The set is unbounded. ..

Limits

Recall a pseudo–definiƟonof the limit of a funcƟonof one variable: “lim
x→c

f(x) =
L” means that if x is “really close” to c, then f(x) is “really close” to L. A similar
pseudo–definiƟon holds for funcƟons of two variables. We’ll say that

“ lim
(x,y)→(x0,y0)

f(x, y) = L”

means “if the point (x, y) is really close to the point (x0, y0), then f(x, y) is really
close to L.” The formal definiƟon is given below.

.

.

.
DefiniƟon 80 Limit of a FuncƟon of Two Variables

Let f(x, y) be a funcƟon of two variables and let (x0, y0) be a point in the
domain of f. The limit of f(x, y) as (x, y) approaches (x0, y0) is L, denoted

lim
(x,y)→(x0,y0)

f(x, y) = L,

if, for every ε > 0 there is a δ > 0 such that if (x, y) is in the open disk
centered at (x0, y0) with radius δ, then |f(x, y)− L| < ε.

Notes:
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Figure 12.9: IllustraƟng the definiƟon of
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disk; f(x, y) is within ε of L.
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The concept behind DefiniƟon 80 is sketched in Figure 12.9. Given ε > 0,
find δ > 0 such that if (x, y) is any point in the open disk centered at (x0, y0) in
the x-y plane with radius δ, then f(x, y) should be within ε of L.

CompuƟng limits using this definiƟon is rather cumbersome. The following
theorem allows us to evaluate limits much more easily.

.

.

.
Theorem 101 Basic Limit ProperƟes of FuncƟons of Two Variables

Let b, x0, y0, L and K be real numbers, let n be a posiƟve integer, and let
f and g be funcƟons with the following limits:

lim
(x,y)→(x0,y0)

f(x, y) = L and lim
(x,y)→(x0,y0)

g(x, y) = K.

The following limits hold.

1. Constants: lim
(x,y)→(x0,y0)

b = b

2. IdenƟty lim
(x,y)→(x0,y0)

x = x0; lim
(x,y)→(x0,y0)

y = y0

3. Sums/Differences: lim
(x,y)→(x0,y0)

(
f(x, y)± g(x, y)

)
= L± K

4. Scalar MulƟples: lim
(x,y)→(x0,y0)

b · f(x, y) = bL

5. Products: lim
(x,y)→(x0,y0)

f(x, y) · g(x, y) = LK

6. QuoƟents: lim
(x,y)→(x0,y0)

f(x, y)/g(x, y) = L/K, (K ̸= 0)

7. Powers: lim
(x,y)→(x0,y0)

f(x, y)n = Ln

This theorem, combined with Theorems 2 and 3 of SecƟon 1.3, allows us to
evaluate many limits.

.. Example 397 ..EvaluaƟng a limit
Evaluate the following limits:

1. lim
(x,y)→(1,π)

y
x
+ cos(xy) 2. lim

(x,y)→(0,0)

3xy
x2 + y2

SÊ½çã®ÊÄ

Notes:
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1. The aforemenƟoned theorems allow us to simply evaluate y/x+ cos(xy)
when x = 1 and y = π. If an indeterminate form is returned, we must do
more work to evaluate the limit; otherwise, the result is the limit. There-
fore

lim
(x,y)→(1,π)

y
x
+ cos(xy) =

π

1
+ cos π

= π − 1.

2. We aƩempt to evaluate the limit by subsƟtuƟng 0 in for x and y, but the
result is the indeterminate form “0/0.” To evaluate this limit, we must
“do more work,” but we have not yet learned what “kind” of work to do.
Therefore we cannot yet evaluate this limit....

When dealing with funcƟons of a single variable we also considered one–
sided limits and stated

lim
x→c

f(x) = L if, and only if, lim
x→c+

f(x) = L and lim
x→c−

f(x) = L.

That is, the limit is L if and only if f(x) approaches L when x approaches c from
either direcƟon, the leŌ or the right.

In the plane, there are infinite direcƟons from which (x, y) might approach
(x0, y0). In fact, we do not have to restrict ourselves to approaching (x0, y0) from
a parƟcular direcƟon, but rather we can approach that point along a path that is
not a straight line. It is possible to arrive at different limiƟng values by approach-
ing (x0, y0) along different paths. If this happens, we say that lim

(x,y)→(x0,y0)
f(x, y)

does not exist (this is analogous to the leŌ and right hand limits of single variable
funcƟons not being equal).

Our theorems tell us that we can evaluate most limits quite simply, without
worrying about paths. When indeterminate forms arise, the limit may or may
not exist. If it does exist, it can be difficult to prove this as we need to show the
same limiƟng value is obtained regardless of the path chosen. The case where
the limit does not exist is oŌen easier to deal with, for we can oŌen pick two
paths along which the limit is different.

.. Example 398 ..Showing limits do not exist

1. Show lim
(x,y)→(0,0)

3xy
x2 + y2

does not exist by finding the limits along the lines
y = mx.

2. Show lim
(x,y)→(0,0)

sin(xy)
x+ y

does not exist by finding the limit along the path

y = − sin x.

Notes:
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SÊ½çã®ÊÄ

1. EvaluaƟng lim
(x,y)→(0,0)

3xy
x2 + y2

along the lines y = mxmeans replace all y’s

withmx and evaluaƟng the resulƟng limit:

lim
(x,mx)→(0,0)

3x(mx)
x2 + (mx)2

= lim
x→0

3mx2

x2(m2 + 1)

= lim
x→0

3m
m2 + 1

=
3m

m2 + 1
.

While the limit exists for each choice ofm, we get a different limit for each
choice of m. That is, along different lines we get differing limiƟng values,
meaning the limit does not exist.

2. Let f(x, y) = sin(xy)
x+y . We are to show that lim

(x,y)→(0,0)
f(x, y) does not exist

by finding the limit along the path y = − sin x. First, however, consider
the limits found along the lines y = mx as done above.

lim
(x,mx)→(0,0)

sin
(
x(mx)

)
x+mx

= lim
x→0

sin(mx2)
x(m+ 1)

= lim
x→0

sin(mx2)
x

· 1
m+ 1

.

By applying L’Hôpital’s Rule, we can show this limit is 0 except whenm =
−1, that is, along the line y = −x. This line is not in the domain of f, so
we have found the following fact: along every line y = mx in the domain
of f, lim

(x,y)→(0,0)
f(x, y) = 0. ..

Now consider the limit along the path y = − sin x:

lim
(x,− sin x)→(0,0)

sin
(
− x sin x

)
x− sin x

= lim
x→0

sin
(
− x sin x

)
x− sin x

Now apply L’Hôpital’s Rule twice:

= lim
x→0

cos
(
− x sin x

)
(− sin x− x cos x)

1− cos x
(“ = 0/0”)

= lim
x→0

− sin
(
− x sin x

)
(− sin x− x cos x)2 + cos

(
− x sin x

)
(−2 cos x+ x sin x)

sin x
= “2/0” ⇒ the limit does not exist.

Step back and consider what we have just discovered. Along any line y =
mx in the domain of the f(x, y), the limit is 0. However, along the path

Notes:
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y = − sin x, which lies in the domain of the f(x, y) for all x ̸= 0, the limit
does not exist. Since the limit is not the same along every path to (0, 0),

we say lim
(x,y)→(0,0)

sin(xy)
x+ y

does not exist.
...

.. Example 399 Finding a limit

Let f(x, y) =
5x2y2

x2 + y2
. Find lim

(x,y)→(0,0)
f(x, y).

SÊ½çã®ÊÄ It is relaƟvely easy to show that along any line y = mx, the
limit is 0. This is not enough to prove that the limit exists, as demonstrated in
the previous example, but it tells us that if the limit does exist then it must be 0.

To prove the limit is 0, we apply DefiniƟon 80. Let ε > 0 be given. We want
to find δ > 0 such that if

√
(x− 0)2 + (y− 0)2 < δ, then |f(x, y)− 0| < ε.

Set δ <
√

ε/5. Note that
∣∣∣∣ 5y2

x2 + y2

∣∣∣∣ < 5 for all (x, y) ̸= (0, 0), and that if√
x2 + y2 < δ, then x2 < δ2.

Let
√
(x− 0)2 + (y− 0)2 < δ. Consider |f(x, y)− 0|:

|f(x, y)− 0| =
∣∣∣∣ 5x2y2x2 + y2

− 0
∣∣∣∣

=

∣∣∣∣x2 · 5y2

x2 + y2

∣∣∣∣
< δ2 · 5

<
ε

5
· 5

= ε.

Thus if
√
(x− 0)2 + (y− 0)2 < δ then |f(x, y) − 0| < ε, which is what we

wanted to show. Thus lim
(x,y)→(0,0)

5x2y2

x2 + y2
= 0. ..

ConƟnuity

DefiniƟon 3 defines what it means for a funcƟon of one variable to be con-
Ɵnuous. In brief, it meant that the graph of the funcƟon did not have breaks,
holes, jumps, etc. We define conƟnuity for funcƟons of two variables in a similar
way.

Notes:
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.

.

.
DefiniƟon 81 ConƟnuous

Let a funcƟon f(x, y) be defined on an open disk B containing the point
(x0, y0).

1. f is conƟnuous at (x0, y0) if lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0).

2. f is conƟnuous on B if f is conƟnuous at all points in B. If f is conƟn-
uous at all points in R2, we say that f is conƟnuous everywhere.

.. Example 400 ..ConƟnuity of a funcƟon of two variables

Let f(x, y) =

{ cos y sin x
x x ̸= 0
cos y x = 0 . Is f conƟnuous at (0, 0)? Is f conƟnuous

everywhere?

SÊ½çã®ÊÄ To determine if f is conƟnuous at (0, 0), we need to compare
lim

(x,y)→(0,0)
f(x, y) to f(0, 0).

Applying the definiƟon of f, we see that f(0, 0) = cos 0 = 1.
We now consider the limit lim

(x,y)→(0,0)
f(x, y). SubsƟtuƟng 0 for x and y in

(cos y sin x)/x returns the indeterminate form “0/0”, so we need to do more
work to evaluate this limit.

Consider two related limits: lim
(x,y)→(0,0)

cos y and lim
(x,y)→(0,0)

sin x
x

. The first

limit does not contain x, and since cos y is conƟnuous,

lim
(x,y)→(0,0)

cos y = lim
y→0

cos y = cos 0 = 1.

The second limit does not contain y. By Theorem 5 we can say

lim
(x,y)→(0,0)

sin x
x

= lim
x→0

sin x
x

= 1.

Finally, Theorem 101 of this secƟon states that we can combine these two limits
as follows:

lim
(x,y)→(0,0)

cos y sin x
x

= lim
(x,y)→(0,0)

(cos y)
(
sin x
x

)
=

(
lim

(x,y)→(0,0)
cos y

)(
lim

(x,y)→(0,0)

sin x
x

)
= (1)(1)
= 1.

Notes:
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Figure 12.10: A graph of f(x, y) in Example
400.

12.2 Limits and ConƟnuity of MulƟvariable FuncƟons

We have found that lim
(x,y)→(0,0)

cos y sin x
x

= f(0, 0), so f is conƟnuous at

(0, 0).
A similar analysis shows that f is conƟnuous at all points in R2. As long as

x ̸= 0, we can evaluate the limit directly; when x = 0, a similar analysis shows
that the limit is cos y. Thus we can say that f is conƟnuous everywhere. A graph
of f is given in Figure 12.10. NoƟce how it has no breaks, jumps, etc. ...

The following theorem is very similar to Theorem 8, giving us ways to com-
bine conƟnuous funcƟons to create other conƟnuous funcƟons.

.

.

.
Theorem 102 ProperƟes of ConƟnuous FuncƟons

Let f and g be conƟnuous on an open disk B, let c be a real number, and
let n be a posiƟve integer. The following funcƟons are conƟnuous on B.

1. Sums/Differences: f± g

2. Constant MulƟples: c · f

3. Products: f · g

4. QuoƟents: f/g (as longs as g ̸= 0 on I)

5. Powers: f n

6. Roots: n
√
f (if n is even then f ≥ 0 on I; if n is odd,

then true for all values of f on I.)

7. ComposiƟons: Adjust the definiƟons of f and g to: Let f be
conƟnuous on B, where the range of f on B is
J, and let g be a single variable funcƟon that is
conƟnuous on J. Then g ◦ f, i.e., g(f(x, y)), is
conƟnuous on B.

.. Example 401 Establishing conƟnuity of a funcƟon
Let f(x, y) = sin(x2 cos y). Show f is conƟnuous everywhere.

SÊ½çã®ÊÄ We will apply both Theorems 8 and 102. Let f1(x, y) = x2.
Since y is not actually used in the funcƟon, and polynomials are conƟnuous (by
Theorem 8), we conclude f1 is conƟnuous everywhere. A similar statement can
be made about f2(x, y) = cos y. Part 3 of Theorem 102 states that f3 = f1 · f2
is conƟnuous everywhere, and Part 7 of the theorem states the composiƟon of
sine with f3 is conƟnuous: that is, sin(f3) = sin(x2 cos y) is conƟnuous every-
where. ..

Notes:
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Chapter 12 FuncƟons of Several Variables

FuncƟons of Three Variables

The definiƟons and theorems given in this secƟon can be extended in a natu-
ral way to definiƟons and theorems about funcƟons of three (ormore) variables.
We cover the key concepts here; some terms from DefiniƟons 79 and 81 are not
redefined but their analogous meanings should be clear to the reader.

.

.

.
DefiniƟon 82 Open Balls, Limit, ConƟnuous

1. An open ball in R3 centered at (x0, y0, z0) with radius r is the set of all
points (x, y, z) such that

√
(x− x0)2 + (y− y0)2 + (z− z0)2 = r.

2. Let f(x, y, z) be a funcƟon of three variables and let (x0, y0, z0) be a
point in the domain of f. The limit of f(x, y, z) as (x, y, z) approaches
(x0, y0, z0) is L, denoted

lim
(x,y,z)→(x0,y0,z0)

f(x, y, z) = L,

if, for every ε > 0 there is a δ > 0 such that if (x, y, z) is in the open
ball centered at (x0, y0, z0) with radius δ, then |f(x, y, z)− L| < ε.

3. Let f(x, y, z) be defined on an open ball B containing (x0, y0, z0). f is
conƟnuous at (x0, y0, z0) if lim

(x,y,z)→(x0,y0,z0)
f(x, y, z) = f(x0, y0, z0).

These definiƟons can also be extended naturally to apply to funcƟons of four
or more variables. Theorem 102 also applies to funcƟon of three or more vari-
ables, allowing us to say that the funcƟon

f(x, y, z) =
ex

2+y
√

y2 + z2 + 3
sin(xyz) + 5

is conƟnuous everywhere.

Notes:
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Exercises 12.2
Terms and Concepts
1. Describe in your ownwords the difference between bound-

ary and interior point of a set.

2. Use your own words to describe (informally) what
lim

(x,y)→(1,2)
f(x, y) = 17 means.

3. Give an example of a closed, bounded set.

4. Give an example of a closed, unbounded set.

5. Give an example of a open, bounded set.

6. Give an example of a open, unbounded set.

Problems
Exercises 7 – 10, give one boundary point and one interior
point, when possible, of the given set S. State whether S is an
open or a closed set.

7. S =
{
(x, y)

∣∣∣∣ (x− 1)2

4
+

(y− 3)2

9
≤ 1

}
8. S =

{
(x, y) | y ̸= x2

}
9. S =

{
(x, y) | x2 + y2 = 1

}
10. S = {(x, y)|y > sin x}

Exercises 11 – 14, give the domain of the given funcƟon and
state whether it is an open or closed set.

11. f(x, y) =
x2 + y
y− 2x

12. f(x, y) =
√

y− x2

13. f(x, y) =
1√

y− x2

14. f(x, y) =
x2 − y2

x2 + y2

Exercises 15 – 20, a limit is given. Evaluate the limit along the
paths given, then state why these results showwhy the given
limit does not exist.

15. lim
(x,y)→(0,0)

x2 − y2

x2 + y2

(a) Along the path y = 0.

(b) Along the path x = 0.

16. lim
(x,y)→(0,0)

x+ y
x− y

(a) Along the path y = mx.

17. lim
(x,y)→(0,0)

xy− y2

y2 + x

(a) Along the path y = mx.

(b) Along the path x = 0.

18. lim
(x,y)→(0,0)

sin(x2)
y

(a) Along the path y = mx.

(b) Along the path y = x2.

19. lim
(x,y)→(1,2)

x+ y− 3
x2 − 1

(a) Along the path y = 2.

(b) Along the path y = x+ 1.

20. lim
(x,y)→(π,π/2)

sin x
cos y

(a) Along the path x = π.

(b) Along the path y = x− π/2.
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Figure 12.11: By fixing y = 2, the surface
f(x, y) = x2 + 2y2 is a curve in space.

Alternate notaƟons for fx(x, y) include:

∂

∂x
f(x, y),

∂f
∂x

,
∂z
∂x

, and zx,

with similar notaƟons for fy(x, y). For
ease of notaƟon, fx(x, y) is oŌen abbre-
viated fx.

Chapter 12 FuncƟons of Several Variables

12.3 ParƟal DerivaƟves

Let y be a funcƟon of x. We have studied in great detail the derivaƟve of y with
respect to x, that is, dy

dx , whichmeasures the rate at which y changes with respect
to x. Consider now z = f(x, y). It makes sense to want to know how z changes
with respect to x and/or y. This secƟon begins our invesƟgaƟon into these rates
of change.

Consider the funcƟon z = f(x, y) = x2 + 2y2, as graphed in Figure 12.11(a).
By fixing y = 2, we focus our aƩenƟon to all points on the surface where the
y-value is 2, shown in both parts (a) and (b) of the figure. These points form a
curve in space: z = f(x, 2) = x2 + 8 which is a funcƟon of just one variable. We
can take the derivaƟve of zwith respect to x along this curve and find equaƟons
of tangent lines, etc.

The key noƟon to extract from this example is: by treaƟng y as constant (it
does not vary) we can consider how z changes with respect to x. In a similar
fashion, we can hold x constant and consider how z changes with respect to
y. This is the underlying principle of parƟal derivaƟves. We state the formal,
limit–based definiƟon first, then show how to compute these parƟal derivaƟves
without directly taking limits.

.

.

.
DefiniƟon 83 ParƟal DerivaƟve

Let z = f(x, y) be a conƟnuous funcƟon on an open set S in R2.

1. The parƟal derivaƟve of f with respect to x is:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)
h

.

2. The parƟal derivaƟve of f with respect to y is:

fy(x, y) = lim
h→0

f(x, y+ h)− f(x, y)
h

.

.. Example 402 ..CompuƟng parƟal derivaƟves with the limit definiƟon
Let f(x, y) = x2y+ 2x+ y3. Find fx(x, y) using the limit definiƟon.

Notes:
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12.3 ParƟal DerivaƟves

SÊ½çã®ÊÄ Using DefiniƟon 83, we have:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)
h

= lim
h→0

(x+ h)2y+ 2(x+ h) + y3 − (x2y+ 2x+ y3)
h

= lim
h→0

(x2y+ 2xhy+ h2y+ 2x+ 2h+ y3 − (x2y+ 2x+ y3)
h

= lim
h→0

2xhy+ h2y+ 2h
h

= lim
h→0

2xy+ hy+ 2

= 2xy+ 2.

We have found fx(x, y) = 2xy+ 2. ...

Example 402 found a parƟal derivaƟve using the formal, limit–based defi-
niƟon. Using limits is not necessary, though, as we can rely on our previous
knowledge of derivaƟves to compute parƟal derivaƟves easily. When comput-
ing fx(x, y), we hold y fixed – it does not vary. Therefore we can compute the
derivaƟve with respect to x by treaƟng y as a constant or coefficient.

Just as d
dx

(
5x2
)
= 10x, we compute ∂

∂x

(
x2y
)
= 2xy. Here we are treaƟng y

as a coefficient.
Just as d

dx

(
53
)
= 0, we compute ∂

∂x

(
y3
)
= 0. Here we are treaƟng y as a

constant. More examples will help make this clear.

.. Example 403 ..Finding parƟal derivaƟves
Find fx(x, y) and fy(x, y) in each of the following.

1. f(x, y) = x3y2 + 5y2 − x+ 7

2. f(x, y) = cos(xy2) + sin x

3. f(x, y) = ex
2y3
√
x2 + 1

SÊ½çã®ÊÄ

1. We have f(x, y) = x3y2 + 5y2 − x+ 7.
Begin with fx(x, y). Keep y fixed, treaƟng it as a constant or coefficient, as
appropriate:

fx(x, y) = 3x2y2 − 1.

Note how the 5y2 and 7 terms go to zero.

Notes:
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Chapter 12 FuncƟons of Several Variables

To compute fy(x, y), we hold x fixed:

fy(x, y) = 2x3y+ 10y.

Note how the−x and 7 terms go to zero.

2. We have f(x, y) = cos(xy2) + sin x.
Begin with fx(x, y). We need to apply the Chain Rule with the cosine term;
y2 is the coefficient of the x-term inside the cosine funcƟon.

fx(x, y) = − sin(xy2)(y2) + cos x = −y2 sin(xy2) + cos x.

To find fy(x, y), note that x is the coefficient of the y2 term inside of the
cosine term; also note that since x is fixed, sin x is also fixed, and we treat
it as a constant.

fy(x, y) = − sin(xy2)(2xy) = −2xy sin(xy2).

3. We have f(x, y) = ex
2y3
√
x2 + 1.

Beginning with fx(x, y), note how we need to apply the Product Rule.

fx(x, y) = ex
2y3(2xy3)

√
x2 + 1+ ex

2y3 1
2
(
x2 + 1

)−1/2

= 2xy3ex
2y3 +

ex
2y3

2
√
x2 + 1

.

Note that when finding fy(x, y)we do not have to apply the Product Rule;
since

√
x2 + 1 does not contain y, we treat it as fixed and hence becomes

a coefficient of the ex
2y3 term.

fy(x, y) = ex
2y3(3x2y2)

√
x2 + 1 = 3x2y2ex

2y3
√

x2 + 1.
...

We have shown how to compute a parƟal derivaƟve, but it may sƟll not be
clear what a parƟal derivaƟve means. Given z = f(x, y), fx(x, y) measures the
rate at which z changes as only x varies: y is held constant.

Imagine standing in a rolling meadow, then beginning to walk due east. De-
pending on your locaƟon, you might walk up, sharply down, or perhaps not
change elevaƟon at all. This is similar to measuring zx: you are moving only east
(in the “x”-direcƟon) and not north/south at all. Going back to your original lo-
caƟon, imagine now walking due north (in the “y”-direcƟon). Perhaps walking
due north does not change your elevaƟon at all. This is analogous to zy = 0: z
does not change with respect to y. We can see that zx and zy do not have to be
the same, or even similar, as it is easy to imagine circumstances where walking
east means you walk downhill, though walking north makes you walk uphill.

Notes:
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Figure 12.12: IllustraƟng the meaning of
parƟal derivaƟves.

12.3 ParƟal DerivaƟves

The following example helps us visualize this more.

.. Example 404 EvaluaƟng parƟal derivaƟves
Let z = f(x, y) = −x2 − 1

2y
2 + xy + 10. Find fx(2, 1) and fy(2, 1) and interpret

their meaning.

SÊ½çã®ÊÄ We begin by compuƟng fx(x, y) = −2x + y and fy(x, y) =
−y+ x. Thus

fx(2, 1) = −3 and fy(2, 1) = 1.

It is also useful to note that f(2, 1) = 7.5. What does each of these numbers
mean?

Consider fx(2, 1) = −3, along with Figure 12.12(a). If one “stands” on the
surface at the point (2, 1, 7.5) and moves parallel to the x-axis (i.e., only the x-
value changes, not the y-value), then the instantaneous rate of change is −3.
Increasing the x-value will decrease the z-value; decreasing the x-value will in-
crease the z-value.

Now consider fy(2, 1) = 1, illustrated in Figure 12.12(b). Moving along the
curve drawn on the surface, i.e., parallel to the y-axis and not changing the x-
values, increases the z-value instantaneously at a rate of 1. Increasing the y-
value by 1 would increase the z-value by approximately 1.

Since the magnitude of fx is greater than the magnitude of fy at (2, 1), it is
“steeper” in the x-direcƟon than in the y-direcƟon. ..

Second ParƟal DerivaƟves

Let z = f(x, y). We have learned to find the parƟal derivaƟves fx(x, y) and
fy(x, y), which are each funcƟons of x and y. Thereforewe can take parƟal deriva-
Ɵves of them, each with respect to x and y. We define these “second parƟals”
along with the notaƟon, give examples, then discuss their meaning.

Notes:
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Note: The terms in DefiniƟon 84 all de-
pend on limits, so each definiƟon comes
with the caveat “where the limit exists.”

Chapter 12 FuncƟons of Several Variables

.

.

.
DefiniƟon 84 Second ParƟal DerivaƟve, Mixed ParƟal DerivaƟve

Let z = f(x, y) be conƟnuous on an open set S.

1. The second parƟal derivaƟve of f with respect to x then x is

∂

∂x

(
∂f
∂x

)
=

∂2f
∂x2

=
(
fx
)
x = fxx

2. The second parƟal derivaƟve of f with respect to x then y is

∂

∂y

(
∂f
∂x

)
=

∂2f
∂y∂x

=
(
fx
)
y = fxy

Similar definiƟons hold for
∂2f
∂y2

= fyy and
∂2f
∂x∂y

= fyx.

The second parƟal derivaƟves fxy and fyx aremixed parƟal derivaƟves.

The notaƟon of second parƟal derivaƟves gives some insight into the nota-
Ɵon of the second derivaƟve of a funcƟon of a single variable. If y = f(x), then

f ′′(x) =
d2y
dx2

. The “d2y” porƟon means “take the derivaƟve of y twice,” while
“dx2” means “with respect to x both Ɵmes.” When we only know of funcƟons of
a single variable, this laƩer phrase seems silly: there is only one variable to take
the derivaƟve with respect to. Now that we understand funcƟons of mulƟple
variables, we see the importance of specifying which variables we are referring
to.

.. Example 405 ..Second parƟal derivaƟves
For each of the following, find all six first and second parƟal derivaƟves. That is,
find

fx, fy, fxx, fyy, fxy and fyx .

1. f(x, y) = x3y2 + 2xy3 + cos x

2. f(x, y) =
x3

y2

3. f(x, y) = ex sin(x2y)

SÊ½çã®ÊÄ In each, we give fx and fy immediately and then spend Ɵme de-
riving the second parƟal derivaƟves.

Notes:
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12.3 ParƟal DerivaƟves

1. f(x, y) = x3y2 + 2xy3 + cos x
fx(x, y) = 3x2y2 + 2y3 − sin x
fy(x, y) = 2x3y+ 6xy2

fxx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(
3x2y2 + 2y3 − sin x

)
= 6xy2 − cos x

fyy(x, y) =
∂

∂y
(
fy
)
=

∂

∂y
(
2x3y+ 6xy2

)
= 2x3 + 12xy

fxy(x, y) =
∂

∂y
(
fx
)
=

∂

∂y
(
3x2y2 + 2y3 − sin x

)
= 6x2y+ 6y2

fyx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(
2x3y+ 6xy2

)
= 6x2y+ 6y2

2. f(x, y) =
x3

y2
= x3y−2

fx(x, y) =
3x2

y2

fy(x, y) = −2x3

y3

fxx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(3x2
y2
)
=

6x
y2

fyy(x, y) =
∂

∂y
(
fy
)
=

∂

∂y
(
− 2x3

y3
)
=

6x3

y4

fxy(x, y) =
∂

∂y
(
fx
)
=

∂

∂y
(3x2
y2
)
= −6x2

y3

fyx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(
− 2x3

y3
)
= −6x2

y3

3. f(x, y) = ex sin(x2y)
Because the following parƟal derivaƟves get rather long, weomit the extra
notaƟon and just give the results. In several cases, mulƟple applicaƟons
of the Product and Chain Rules will be necessary, followed by some basic
combinaƟon of like terms.

fx(x, y) = ex sin(x2y) + 2xyex cos(x2y)
fy(x, y) = x2ex cos(x2y)
fxx(x, y) = ex sin(x2y)+ 4xyex cos(x2y)+ 2yex cos(x2y)− 4x2y2ex sin(x2y)
fyy(x, y) = −x4ex sin(x2y)
fxy(x, y) = x2ex cos(x2y) + 2xex cos(x2y)− 2x3yex sin(x2y)
fyx(x, y) = x2ex cos(x2y) + 2xex cos(x2y)− 2x3yex sin(x2y)...

Notes:
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Chapter 12 FuncƟons of Several Variables

NoƟce how in each of the three funcƟons in Example 405, fxy = fyx. Due to
the complexity of the examples, this likely is not a coincidence. The following
theorem states that it is not.

.

.

.
Theorem 103 Mixed ParƟal DerivaƟves

Let f be defined such that fxy and fyx are conƟnuous on an open set S.
Then for each point (x, y) in S, fxy(x, y) = fyx(x, y).

Finding fxy and fyx independently and comparing the results provides a con-
venient way of checking our work.

Understanding Second ParƟal DerivaƟves

Now that we know how to find second parƟals, we invesƟgatewhat they tell
us.

Again we refer back to a funcƟon y = f(x) of a single variable. The second
derivaƟve of f is “the derivaƟve of the derivaƟve,” or “the rate of change of the
rate of change.” The second derivaƟve measures how much the derivaƟve is
changing. If f ′′(x) < 0, then the derivaƟve is geƫng smaller (so the graph of f is
concave down); if f ′′(x) > 0, then the derivaƟve is growing, making the graph
of f concave up.

Now consider z = f(x, y). Similar statements can be made about fxx and fyy
as could be made about f ′′(x) above. When taking derivaƟves with respect to
x twice, we measure how much fx changes with respect to x. If fxx(x, y) < 0,
it means that as x increases, fx decreases, and the graph of f will be concave
down in the x-direcƟon. Using the analogy of standing in the rolling meadow
used earlier in this secƟon, fxx measures whether one’s path is concave up/down
when walking due east.

Similarly, fyy measures the concavity in the y-direcƟon. If fyy(x, y) > 0, then
fy is increasing with respect to y and the graph of f will be concave up in the y-
direcƟon. Appealing to the rollingmeadow analogy again, fyy measures whether
one’s path is concave up/down when walking due north.

We now consider the mixed parƟals fxy and fyx. The mixed parƟal fxy mea-
sures howmuch fx changeswith respect to y. Once again using the rollingmeadow
analogy, fx measures the slope if one walks due east. Looking east, begin walk-
ing north (side–stepping). Is the path towards the east geƫng steeper? If so,
fxy > 0. Is the path towards the east not changing in steepness? If so, then
fxy = 0. A similar thing can be said about fyx: consider the steepness of paths
heading north while side–stepping to the east.

The following example examines these ideas with concrete numbers and

Notes:
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Figure 12.13: Understanding the second
parƟal derivaƟves in Example 406.

12.3 ParƟal DerivaƟves

graphs.

.. Example 406 Understanding second parƟal derivaƟves
Let z = x2 − y2 + xy. Evaluate the 6 first and second parƟal derivaƟves at
(−1/2, 1/2) and interpret what each of these numbers mean.

SÊ½çã®ÊÄ We find that:
fx(x, y) = 2x+ y, fy(x, y) = −2y+ x, fxx(x, y) = 2, fyy(x, y) = −2 and

fxy(x, y) = fyx(x, y) = 1. Thus at (−1/2, 1/2) we have

fx(−1/2, 1/2) = −1/2, fy(−1/2, 1/2) = −3/2.

The slope of the tangent line at (−1/2, 1/2,−1/4) in the direcƟon of x is−1/2:
if one moves from that point parallel to the x-axis, the instantaneous rate of
change will be−1/2. The slope of the tangent line at this point in the direcƟon
of y is−3/2: if onemoves from this point parallel to the y-axis, the instantaneous
rate of change will be−3/2. These tangents lines are graphed in Figure 12.13(a)
and (b), respecƟvely, where the tangent lines are drawn in a solid line.

Now consider only Figure 12.13(a). Three directed tangent lines are drawn
(two are dashed), each in the direcƟon of x; that is, each has a slope determined
by fx. Note how as y increases, the slope of these lines get closer to 0. Since the
slopes are all negaƟve, geƫng closer to 0 means the slopes are increasing. The
slopes given by fx are increasing as y increases, meaning fxy must be posiƟve.

Since fxy = fyx, we also expect fy to increase as x increases. Consider Figure
12.13(b) where again three directed tangent lines are drawn, this Ɵme each in
the direcƟon of y with slopes determined by fy. As x increases, the slopes be-
come less steep (closer to 0). Since these are negaƟve slopes, this means the
slopes are increasing.

Thus far we have a visual understanding of fx, fy, and fxy = fyx. We now inter-
pret fxx and fyy. In Figure 12.13(a), we see a curve drawnwhere x is held constant
at x = −1/2: only y varies. This curve is clearly concave down, corresponding
to the fact that fyy < 0. In part (b) of the figure, we see a similar curve where y
is constant and only x varies. This curve is concave up, corresponding to the fact
that fxx > 0. ..

ParƟal DerivaƟves and FuncƟons of Three Variables

The concepts underlying parƟal derivaƟves can be easily extend to more
than two variables. We give some definiƟons and examples in the case of three
variables and trust the reader can extend these definiƟons to more variables if
needed.

Notes:
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.

.

.
DefiniƟon 85 ParƟal DerivaƟves with Three Variables

Let w = f(x, y, z) be a conƟnuous funcƟon on an open set S in R3.
The parƟal derivaƟve of f with respect to x is:

fx(x, y, z) = lim
h→0

f(x+ h, y, z)− f(x, y, z)
h

.

Similar definiƟons hold for fy(x, y, z) and fz(x, y, z).

By taking parƟal derivaƟves of parƟal derivaƟves, we can find second parƟal
derivaƟves of f with respect to z then y, for instance, just as before.

.. Example 407 ParƟal derivaƟves of funcƟons of three variables
For each of the following, find fx, fy, fz, fxz, fyz, and fzz.

1. f(x, y, z) = x2y3z4 + x2y2 + x3z3 + y4z4

2. f(x, y, z) = x sin(yz)

SÊ½çã®ÊÄ

1. fx = 2xy3z4 + 2xy2 + 3x2z3; fy = 3x2y2z4 + 2x2y+ 4y3z4;
fz = 4x2y3z3 + 3x3z2 + 4y4z3; fxz = 8xy3z3 + 9x2z2;
fyz = 12x2y2z3 + 16y3z3; fzz = 12x2y3z2 + 6x3z+ 12y4z2

2. fx = sin(yz); fy = xz cos(yz); fz = xy cos(yz);
fxz = y cos(yz); fyz = x cos(yz)− xyz sin(yz); fzz = −xy2 sin(xy)..

Higher Order ParƟal DerivaƟves

We can conƟnue taking parƟal derivaƟves of parƟal derivaƟves of parƟal
derivaƟves of …; we do not have to stop with second parƟal derivaƟves. These
higher order parƟal derivaƟves do not have a Ɵdy graphical interpretaƟon; nev-
ertheless they are not hard to compute and worthy of some pracƟce.

We do not formally define each higher order derivaƟve, but rather give just
a few examples of the notaƟon.

fxyx(x, y) =
∂

∂x

(
∂

∂y

(
∂f
∂x

))
and

fxyz(x, y, z) =
∂

∂z

(
∂

∂y

(
∂f
∂x

))
.
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12.3 ParƟal DerivaƟves

.. Example 408 Higher order parƟal derivaƟves

1. Let f(x, y) = x2y2 + sin(xy). Find fxxy and fyxx.

2. Let f(x, y, z) = x3exy + cos(z). Find fxyz.

SÊ½çã®ÊÄ

1. To find fxxy, we first find fx, then fxx, then fxxy:

fx = 2xy2 + y cos(xy) fxx = 2y2 − y2 sin(xy)

fxxy = 4y− 2y sin(xy)− xy2 cos(xy).

To find fyxx, we first find fy, then fyx, then fyxx:

fy = 2x2y+ x cos(xy) fyx = 4xy+ cos(xy)− xy sin(xy)

fyxx = 4y− y sin(xy)−
(
y sin(xy) + xy2 cos(xy)

)
= 4y− 2y sin(xy)− xy2 cos(xy).

Note how fxxy = fyxx.

2. To find fxyz, we find fx, then fxy, then fxyz:

fx = 3x2exy + x3yexy fxy = 3x3exy + x3exy + x4yexy = 4x3exy + x4yexy

fxyz = 0.
..

In the previous example we saw that fxxy = fyxx; this is not a coincidence.
While we do not state this as a formal theorem, as long as each parƟal derivaƟve
is conƟnuous, it does not maƩer the order in which the parƟal derivaƟves are
taken. For instance, fxxy = fxyx = fyxx.

This can be useful at Ɵmes. Had we known this, the second part of Exam-
ple 408 would have been much simpler to compute. Instead of compuƟng fxyz
in the x, y then z orders, we could have applied the z, then x then y order (as
fxyz = fzxy). It is easy to see that fz = − sin z; then fzx and fzxy are clearly 0 as fz
does not contain an x or y.

Notes:
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A brief review of this secƟon: parƟal derivaƟves measure the instantaneous
rate of change of a mulƟvariable funcƟon with respect to one variable. With
z = f(x, y), the parƟal derivaƟves fx and fy measure the instantaneous rate of
change of z when moving parallel to the x- and y-axes, respecƟvely. How do we
measure the rate of change at a point when we do not move parallel to one of
these axes? What if we move in the direƟon given by the vector ⟨2, 1⟩? Can
we measure that rate of change? The answer is, of course, yes, we can. This is
the topic of the secƟon aŌer next. First, we need to define what it means for a
funcƟon of two variables to be differenƟable.

Notes:
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Exercises 12.3
Terms and Concepts
1. What is the difference between a constant and a coeffi-

cient?

2. Given a funcƟon z = f(x, y), explain in your ownwords how
to compute fx.

3. In the mixed parƟal fracƟon fxy, which is computed first, fx
or fy?

4. In the mixed parƟal fracƟon
∂2f
∂x∂y

, which is computed first,

fx or fy?

Problems
Exercises 5 – 8, evaluate fx(x, y) and fy(x, y) at the indicated
point.

5. f(x, y) = x2y− x+ 2y+ 3 at (1, 2)

6. f(x, y) = x3 − 3x+ y2 − 6y at (−1, 3)

7. f(x, y) = sin y cos x at (π/3, π/3)

8. f(x, y) = ln(xy) at (−2,−3)

Exercises 9 – 26, find fx, fy, fxx, fyy, fxy and fyx.

9. f(x, y) = x2y+ 3x2 + 4y− 5

10. f(x, y) = y3 + 3xy2 + 3x2y+ x3

11. f(x, y) =
x
y

12. f(x, y) =
4
xy

13. f(x, y) = ex
2+y2

14. f(x, y) = ex+2y

15. f(x, y) = sin x cos y

16. f(x, y) = (x+ y)3

17. f(x, y) = cos(5xy3)

18. f(x, y) = sin(5x2 + 2y3)

19. f(x, y) =
√

4xy2 + 1

20. f(x, y) = (2x+ 5y)
√
y

21. f(x, y) =
1

x2 + y2 + 1

22. f(x, y) = 5x− 17y

23. f(x, y) = 3x2 + 1

24. f(x, y) = ln(x2 + y)

25. f(x, y) =
ln x
4y

26. f(x, y) = 5ex sin y+ 9

Exercises 27 – 30, form a funcƟon z = f(x, y) such that fx and
fy match those given.

27. fx = sin y+ 1, fy = x cos y

28. fx = x+ y, fy = x+ y

29. fx = 6xy− 4y2, fy = 3x2 − 8xy+ 2

30. fx =
2x

x2 + y2
, fy =

2y
x2 + y2

Exercises 31 – 34, find fx, fy, fz, fyz and fzy.

31. f(x, y, z) = x2e2y−3z

32. f(x, y, z) = x3y2 + x3z+ y2z

33. f(x, y, z) =
3x
7y2z

34. f(x, y, z) = ln(xyz)
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Chapter 12 FuncƟons of Several Variables

12.4 DifferenƟability and the Total DifferenƟal
WestudieddifferenƟals in SecƟon 4.4, whereDefiniƟon 18 states that if y = f(x)
and f is differenƟable, then, dy = f ′(x)dx. One important use of this differenƟal
is in IntegraƟon by SubsƟtuƟon. Another important applicaƟon is approxima-
Ɵon. Let ∆x = dx represent a change in x. When dx is small, dy ≈ ∆y, the
change in y resulƟng from the change in x. Fundamental in this understanding
is this: as dx gets small, the difference between ∆y and dy goes to 0. Another
way of staƟng this: as dx goes to 0, the error in approximaƟng∆y with dy goes
to 0.

We extend this idea to funcƟons of two variables. Let z = f(x, y), and let
∆x = dx and ∆y = dy represent changes in x and y, respecƟvely. Let ∆z =
f(x+dx, y+dy)− f(x, y) be the change in z over the change in x and y. Recalling
that fx and fy give the instantaneous rates of z-change in the x- and y-direcƟons,
respecƟvely, we can approximate∆z with dz = fxdx + fydy; in words, the total
change in z is approximately the change caused by changing x plus the change
caused by changing y. In a moment we give an indicaƟon of whether or not this
approximaƟon is any good. First we give a name to dz.

.

.

.
DefiniƟon 86 Total DifferenƟal

Let z = f(x, y) be conƟnuous on an open set S. Let dx and dy represent
changes in x and y, respecƟvely. Where the parƟal derivaƟves fx and fy
exist, the total differenƟal of z is

dz = fx(x, y)dx+ fy(x, y)dy.

.. Example 409 Finding the total differenƟal
Let z = x4e3y. Find dz.

SÊ½çã®ÊÄ We compute the parƟal derivaƟves: fx = 4x3e3y and fy =
3x4e3y. Following DefiniƟon 86, we have

dz = 4x3e3ydx+ 3x4e3ydy...

We can approximate ∆z with dz, but as with all approximaƟons, there is
error involved. A good approximaƟon is one in which the error is small. At a
given point (x0, y0), let Ex and Ey be funcƟons of dx and dy such that Exdx+Eydy
describes this error. Then

∆z = dz+ Exdx+ Eydy
= fx(x0, y0)dx+ fy(x0, y0)dy+ Exdx+ Eydy.

Notes:
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12.4 DifferenƟability and the Total DifferenƟal

If the approximaƟon of ∆z by dz is good, then as dx and dy get small, so does
Exdx+ Eydy. The approximaƟon of∆z by dz is even beƩer if, as dx and dy go to
0, so do Ex and Ey. This leads us to our definiƟon of differenƟability.

.

.

.
DefiniƟon 87 MulƟvariable DifferenƟability

Let z = f(x, y) be defined on an open set S containing (x0, y0) where
fx(x0, y0) and fy(x0, y0) exist. Let dzbe the total differenƟal of z at (x0, y0),
let∆z = f(x0 + dx, y0 + dy)− f(x0, y0), and let Ex and Ey be funcƟons of
dx and dy such that

∆z = dz+ Exdx+ Eydy.

1. f is differenƟable at (x0, y0) if, given ε > 0, there is a δ > 0 such
that if || ⟨dx, dy⟩ || < δ, then || ⟨Ex, Ey⟩ || < ε. That is, as dx and dy
go to 0, so do Ex and Ey.

2. f is differenƟable on S if f is differenƟable at every point in S. If f is
differenƟable on R2, we say that f is differenƟable everywhere.

.. Example 410 ..Showing a funcƟon is differenƟable
Show f(x, y) = xy+ 3y2 is differenƟable using DefiniƟon 87.

SÊ½çã®ÊÄ We begin by finding f(x+ dx, y+ dy),∆z, fx and fy.

f(x+ dx, y+ dy) = (x+ dx)(y+ dy) + 3(y+ dy)2

= xy+ xdy+ ydx+ dxdy+ 3y2 + 6ydy+ 3dy2.

∆z = f(x+ dx, y+ dy)− f(x, y), so

∆z = xdy+ ydx+ dxdy+ 6ydy+ 3dy2.

It is straighƞorward to compute fx = y and fy = x+6y. Consider once more∆z:

∆z = xdy+ ydx+ dxdy+ 6ydy+ 3dy2 (now reorder)

= ydx+ xdy+ 6ydy+ dxdy+ 3dy2

= (y)︸︷︷︸
fx

dx+ (x+ 6y)︸ ︷︷ ︸
fy

dy+ (dy)︸︷︷︸
Ex

dx+ (3dy)︸ ︷︷ ︸
Ey

dy

= fxdx+ fydy+ Exdx+ Eydy.

With Ex = dy and Ey = 3dy, it is clear that as dx and dy go to 0, Ex and Ey also go
to 0. Since this did not depend on a specific point (x0, y0), we can say that f(x, y)

Notes:
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is differenƟable for all pairs (x, y) in R2, or, equivalently, that f is differenƟable
everywhere. ...

Our intuiƟve understanding of differenƟability of funcƟons y = f(x) of one
variable was that the graph of f was “smooth.” A similar intuiƟve understand-
ing of funcƟons z = f(x, y) of two variables is that the surface defined by f is
also “smooth,” not containing cusps, edges, breaks, etc. The following theorem
states that differenƟable funcƟons are conƟnuous, followed by another theo-
rem that provides a more tangible way of determining whether a great number
of funcƟon are differenƟable or not.

.

.

.
Theorem 104 ConƟnuity and DifferenƟability of MulƟvariable
FuncƟons

Let z = f(x, y) be defined on an open set S containing (x0, y0). If f is
differenƟable at (x0, y0), then f is conƟnuous at (x0, y0).

.

.

.
Theorem 105 DifferenƟability of MulƟvariable FuncƟons

Let z = f(x, y) be defined on an open set S containing (x0, y0). If fx and
fy are both conƟnuous on S, then f is differenƟable on S.

The theorems assure us that essenƟally all funcƟons thatwe see in the course
of our studies here are differenƟable (and hence conƟnuous) on their natural do-
mains. There is a difference between DefiniƟon 87 and Theorem 105, though: it
is possible for a funcƟon f to be differenƟable yet fx and/or fy is not conƟnuous.
Such strange behavior of funcƟons is a source of delight for many mathemaƟ-
cians.

When fx and fy exist at a point but are not conƟnuous at that point, we need
to use other methods to determine whether or not f is differenƟable at that
point.

For instance, consider the funcƟon

f(x, y) =
{ xy

x2+y2 (x, y) ̸= (0, 0)
0 (x, y) = (0, 0)

Notes:
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12.4 DifferenƟability and the Total DifferenƟal

We can find fx(0, 0) and fy(0, 0) using DefiniƟon 83:

fx(0, 0) = lim
h→0

f(0+ h, 0)− f(0, 0)
h

= lim
h→0

0
h2

= 0;

fy(0, 0) = lim
h→0

f(0, 0+ h)− f(0, 0)
h

= lim
h→0

0
h2

= 0.

Both fx and fy exist at (0, 0), but they are not conƟnuous at (0, 0), as

fx(x, y) =
y(y2 − x2)
(x2 + y2)2

and fy(x, y) =
x(x2 − y2)
(x2 + y2)2

are not conƟnuous at (0, 0). (Take the limit of fx as (x, y) → (0, 0) along the
x- and y-axes; they give different results.) So even though fx and fy exist at ev-
ery point in the x-y plane, they are not conƟnuous. Therefore it is possible, by
Theorem 105, for f to not be differenƟable.

Indeed, it is not. One can show that f is not conƟnuous at (0, 0) (see Exam-
ple 398), and by Theorem 104, this means f is not differenƟable at (0, 0).

ApproximaƟng with the Total DifferenƟal

By the definiƟon, when f is differenƟable dz is a good approximaƟon for∆z
when dx and dy are small. We give some simple examples of how this is used
here.

.. Example 411 ..ApproximaƟng with the total differenƟal
Let z =

√
x sin y. Approximate f(4.1, 0.8).

SÊ½çã®ÊÄ Recognizing that π/4 ≈ 0.785 ≈ 0.8, we can approximate
f(4.1, 0.8) using f(4, π/4). We can easily compute f(4, π/4) =

√
4 sin(π/4) =

2
(√

2
2

)
=

√
2 ≈ 1.414. Without calculus, this is the best approximaƟon we

could reasonably come up with. The total differenƟal gives us a way of adjusƟng
this iniƟal approximaƟon to hopefully get a more accurate answer.

We let∆z = f(4.1, 0.8)−f(4, π/4). The total differenƟal dz is approximately
equal to∆z, so

f(4.1, 0.8)− f(4, π/4) ≈ dz ⇒ f(4.1, 0.8) ≈ dz+ f(4, π/4). (12.1)

To find dz, we need fx and fy.

Notes:
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fx(x, y) =
sin y
2
√
x

⇒ fx(4, π/4) =
sin π/4
2
√
4

=

√
2/2
4

=
√
2/8.

fy(x, y) =
√
x cos y ⇒ fy(4, π/4) =

√
4
√
2
2

=
√
2.

ApproximaƟng 4.1 with 4 gives dx = 0.1; approximaƟng 0.8 with π/4 gives
dy ≈ 0.015. Thus

dz(4, π/4) = fx(4, π/4)(0.1) + fy(4, π/4)(0.015)

=

√
2
8

(0.1) +
√
2(0.015)

≈ 0.039.

Returning to EquaƟon (12.1), we have

f(4.1, 0.8) ≈ 0.039+ 1.414 = 1.4531.

We, of course, can compute the actual value of f(4.1, 0.8)with a calculator; the
actual value, accurate to 5 places aŌer the decimal, is 1.45254. Obviously our
approximaƟon is quite good. ...

The point of the previous example was not to develop an approximaƟon
method for known funcƟons. AŌer all, we can very easily compute f(4.1, 0.8)
using readily available technology. Rather, it serves to illustrate how well this
method of approximaƟon works, and to reinforce the following concept:

“New posiƟon = old posiƟon+ amount of change,” so
“New posiƟon≈ old posiƟon + approximate amount of change.”

In the previous example, we could easily compute f(4, π/4) and could ap-
proximate the amount of z-change when compuƟng f(4.1, 0.8), leƫng us ap-
proximate the new z-value.

It may be surprising to learn that it is not uncommon to know the values of
f, fx and fy at a parƟcular point without actually knowing f. The total differenƟal
gives a good method of approximaƟng f at nearby points.

.. Example 412 ..ApproximaƟng an unknown funcƟon
Given that f(2,−3) = 6, fx(2,−3) = 1.3 and fy(2,−3) = −0.6, approximate
f(2.1,−3.03).

Notes:
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SÊ½çã®ÊÄ The total differenƟal approximates howmuch f changes from
the point (2,−3) to the point (2.1,−3.03). With dx = 0.1 and dy = −0.03, we
have

dz = fx(2,−3)dx+ fy(2,−3)dy
= 1.3(0.1) + (−0.6)(−0.03)
= 0.148.

The change in z is approximately 0.148, so we approximate f(2.1,−3.03) ≈
6.148. ...

Error/SensiƟvity Analysis

The total differenƟal gives an approximaƟon of the change in z given small
changes in x and y. We can use this to approximate error propagaƟon; that is,
if the input is a liƩle off from what it should be, how far from correct will the
output be? We demonstrate this in an example.

.. Example 413 SensiƟvity analysis
A cylindrical steel storage tank is to be built that is 10Ō tall and 4Ō across in diam-
eter. It is known that the steel will expand/contract with temperature changes;
is the overall volume of the tank more sensiƟve to changes in the diameter or in
the height of the tank?

SÊ½çã®ÊÄ A cylindrical solid with height h and radius r has volume V =
πr2h. We can view V as a funcƟon of two variables, r and h. We can compute
parƟal derivaƟves of V:

∂V
∂r

= Vr(r, h) = 2πrh and
∂V
∂h

= Vh(r, h) = πr2.

The total differenƟal is dV = (2πrh)dr + (πr2)dh.When h = 10 and r = 2, we
have dV = 40πdr + 4πdh. Note that the coefficient of dr is 40π ≈ 125.7; the
coefficient of dh is a tenth of that, approximately 12.57. A small change in radius
will be mulƟplied by 125.7, whereas a small change in height will be mulƟplied
by 12.57. Thus the volume of the tank is more sensiƟve to changes in radius
than in height. ..

The previous example showed that the volume of a parƟcular tank wasmore
sensiƟve to changes in radius than in height. Keep in mind that this analysis only
applies to a tank of those dimensions. A tank with a height of 1Ō and radius of
5Ō would be more sensiƟve to changes in height than in radius.

Notes:
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One could make a chart of small changes in radius and height and find exact
changes in volume given specific changes. While this provides exact numbers, it
does not give as much insight as the error analysis using the total differenƟal.

DifferenƟability of FuncƟons of Three Variables

The definiƟon of differenƟability for funcƟons of three variables is very simi-
lar to that of funcƟons of two variables. We again start with the total differenƟal.

.

.

.
DefiniƟon 88 Total DifferenƟal

Let w = f(x, y, z) be conƟnuous on an open set S. Let dx, dy and dz rep-
resent changes in x, y and z, respecƟvely. Where the parƟal derivaƟves
fx, fy and fz exist, the total differenƟal of w is

dz = fx(x, y, z)dx+ fy(x, y, z)dy+ fz(x, y, z)dz.

This differenƟal can be a good approximaƟon of the change in w when w =
f(x, y, z) is differenƟable.

.

.

.
DefiniƟon 89 MulƟvariable DifferenƟability

Let w = f(x, y, z) be defined on an open ball B containing (x0, y0, z0)
where fx(x0, y0, z0), fy(x0, y0, z0) and fz(x0, y0, z0) exist. Let dw be the
total differenƟal of w at (x0, y0, z0), let ∆w = f(x0 + dx, y0 + dy, z0 +
dz)− f(x0, y0, z0), and let Ex, Ey and Ez be funcƟons of dx, dy and dz such
that

∆w = dw+ Exdx+ Eydy+ Ezdz.

1. f is differenƟable at (x0, y0, z0) if, given ε > 0, there is a δ > 0
such that if || ⟨dx, dy, dz⟩ || < δ, then || ⟨Ex, Ey, Ez⟩ || < ε.

2. f is differenƟable on B if f is differenƟable at every point in B. If f
is differenƟable onR3, we say that f is differenƟable everywhere.

Just as before, this definiƟon gives a rigorous statement about what it means
to be differenƟable that is not very intuiƟve. We follow it with a theorem similar
to Theorem 105.

Notes:
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.

.

.
Theorem 106 ConƟnuity and DifferenƟability of FuncƟons of Three
Variables

Let w = f(x, y, z) be defined on an open ball B containing (x0, y0, z0).

1. If f is differenƟable at (x0, y0, z0), then f is conƟnuous at (x0, y0, z0).

2. If fx, fy and fz are conƟnuous on B, then f is differenƟable on B.

This set of definiƟon and theorem extends to funcƟons of any number of
variables. The theorem again gives us a simple way of verifying that most func-
Ɵons that we enounter are differenƟable on their natural domains.

Summary

This secƟon has given us a formal definiƟon of what it means for a funcƟons
to be “differenƟable,” along with a theorem that gives a more accessible un-
derstanding. The following secƟons return to noƟons prompted by our study of
parƟal derivaƟves that make use of the fact that most funcƟons we encounter
are differenƟable.

Notes:
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Exercises 12.4
Terms and Concepts
1. T/F: If f(x, y) is differenƟable on S, the f is conƟnuous on S.

2. T/F: If fx and fy are conƟnuous on S, then f is differenƟable
on S.

3. T/F: If z = f(x, y) is differenƟable, then the change in z over
small changes dx and dy in x and y is approximately dz.

4. Finish the sentence: “The new z-value is approximately the
old z-value plus the approximate .”

Problems
Exercises 5 – 8, find the total differenƟal dz.

5. z = x sin y+ x2

6. z = (2x2 + 3y)2

7. z = 5x− 7y

8. z = xex+y

Exercises 9 – 12, a funcƟon z = f(x, y) is given. Give the indi-
cated approximaƟon using the total differenƟal.

9. f(x, y) =
√
x2 + y. Approximate f(2.95, 7.1) knowing

f(3, 7) = 4.

10. f(x, y) = sin x cos y. Approximate f(0.1,−0.1) knowing
f(0, 0) = 0.

11. f(x, y) = x2y − xy2. Approximate f(2.04, 3.06) knowing
f(2, 3) = −6.

12. f(x, y) = ln(x − y). Approximate f(5.1, 3.98) knowing
f(5, 4) = 0.

Exercises 13 – 16 ask a variety of quesƟons dealing with ap-
proximaƟng error and sensiƟvity analysis.

13. A cylindrical storage tank is to be 2Ō tall with a radius of 1Ō.
Is the volume of the tank more sensiƟve to changes in the
radius or the height?

14. ProjecƟle MoƟon: The x-value of an object moving un-
der the principles of projecƟle moƟon is x(θ, v0, t) =
(v0 cos θ)t. A parƟcular projecƟle is fired with an iniƟal ve-
locity of v0 = 250Ō/s and an angle of elevaƟon of θ = 60◦.
It travels a distance of 375Ō in 3 seconds.

Is the projecƟle more sensiƟve to errors in iniƟal speed or
angle of elevaƟon?

15. The length ℓ of a long wall is to be approximated. The angle
θ, as shown in the diagram (not to scale), is measured to
be 85◦, and the distance x is measured to be 30’. Assume
that the triangle formed is a right triangle.

Is the measurement of the length of ℓmore sensiƟve to er-
rors in the measurement of x or in θ?

.. ℓ =?.

θ

.

x

16. It is “common sense” that it is far beƩer to measure a long
distance with a long measuring tape rather than a short
one. A measured distance D can be viewed as the prod-
uct of the length ℓ of a measuring tape Ɵmes the number
n of Ɵmes it was used. For instance, using a 3’ tape 10
Ɵmes gives a length of 30’. To measure the same distance
with a 12’ tape, we would use the tape 2.5 Ɵmes. (I.e.,
30 = 12× 2.5.) Thus D = nℓ.

Suppose each Ɵme a measurement is taken with the tape,
the recorded distance is within 1/16” of the actual distance.
(I.e., dℓ = 1/16′′ ≈ 0.005Ō). Using differenƟals, show
why common sense proves correct in that it is beƩer to use
a long tape to measure long distances.

Exercises 17 – 18, find the total differenƟal dw.

17. w = x2yz3

18. w = ex sin y ln z

Exercises 19 – 22, use the informaƟon provided and the total
differenƟal to make the given approximaƟon.

19. f(3, 1) = 7, fx(3, 1) = 9, fy(3, 1) = −2. Approximate
f(3.05, 0.9).

20. f(−4, 2) = 13, fx(−4, 2) = 2.6, fy(−4, 2) = 5.1. Ap-
proximate f(−4.12, 2.07).

21. f(2, 4, 5) = −1, fx(2, 4, 5) = 2, fy(2, 4, 5) = −3,
fz(2, 4, 5) = 3.7. Approximate f(2.5, 4.1, 4.8).

22. f(3, 3, 3) = 5, fx(3, 3, 3) = 2, fy(3, 3, 3) = 0, fz(3, 3, 3) =
−2. Approximate f(3.1, 3.1, 3.1).
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Figure 12.14: Understanding the applica-
Ɵon of the MulƟvariable Chain Rule.

12.5 The MulƟvariable Chain Rule

12.5 The MulƟvariable Chain Rule

TheChain Rule, as learned in SecƟon 2.5, states that
d
dx

(
f
(
g(x)

))
= f ′

(
g(x)

)
g′(x).

If t = g(x), we can express the Chain Rule as
df
dx

=
df
dt

dt
dx

.

In this secƟon we extend the Chain Rule to funcƟons of more than one variable.

.

.

.
Theorem 107 MulƟvariable Chain Rule, Part I

Let z = f(x, y), x = g(t) and y = h(t), where f, g and h are differenƟable
funcƟons. Then z = f(x, y) = f

(
g(t), h(t)

)
is a funcƟon of t, and

dz
dt

=
df
dt

= fx(x, y)
dx
dt

+ fy(x, y)
dy
dt

=
∂f
∂x

dx
dt

+
∂f
∂y

dy
dt

.

It is good to understand what the situaƟon of z = f(x, y), x = g(t) and
y = h(t) describes. We know that z = f(x, y) describes a surface; we also
recognize that x = g(t) and y = h(t) are parametric equaƟons for a curve in
the x-y plane. Combining these together, we are describing a curve that lies on
the surface described by f. The parametric equaƟons for this curve are x = g(t),
y = h(t) and z = f

(
g(t), h(t)

)
.

Consider Figure 12.14 in which a surface is drawn, along with a dashed curve
in the x-y plane. RestricƟng f to just the points on this circle gives the curve
shown on the surface. The derivaƟve df

dt gives the instantaneous rate of change
of f with respect to t.

We now pracƟce applying the MulƟvariable Chain Rule.

.. Example 414 ..Using the MulƟvariable Chain Rule

Let z = x2y+ x, where x = sin t and y = e5t. Find
dz
dt

using the Chain Rule.

SÊ½çã®ÊÄ Following Theorem 107, we find

fx(x, y) = 2xy+ 1 fy(x, y) = x2
dx
dt

= cos t
dy
dt

= 5e5t.

Applying the theorem, we have
dz
dt

= (2xy+ 1) cos t+ 5x2e5t.

Notes:
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Figure 12.15: Ploƫng the path of a parƟ-
cle on a surface in Example 415.

Chapter 12 FuncƟons of Several Variables

This may look odd, as it seems that dz
dt is a funcƟon of x, y and t. Since x and y

are funcƟons of t, dz
dt is really just a funcƟon of t, and we can replace x with sin t

and y with e5t:

dz
dt

= (2xy+ 1) cos t+ 5x2e5t = (2 sin(t)e5t + 1) cos t+ 5e5t sin2 t....

The previous example can make us wonder: if we subsƟtuted for x and y at
the end to show that dz

dt is really just a funcƟon of t, why not subsƟtute before
differenƟaƟng, showing clearly that z is a funcƟon of t?

That is, z = x2y + x = (sin t)2e5t + sin t. Applying the Chain and Product
Rules, we have

dz
dt

= 2 sin t cos t e5t + 5 sin2 t e5t + cos t,

which matches the result from the example.
This may nowmake one wonder “What’s the point? If we could already find

the derivaƟve, why learn another way of finding it?” In some cases, applying
this rule makes deriving simpler, but this is hardly the power of the Chain Rule.
Rather, in the case where z = f(x, y), x = g(t) and y = h(t), the Chain Rule is
extremely powerful whenwe do not knowwhat f, g and/or h are. It may be hard
to believe, but oŌen in “the real world” we know rate–of–change informaƟon
(i.e., informaƟon about derivaƟves) without explicitly knowing the underlying
funcƟons. The Chain Rule allows us to combine several rates of change to find
another rate of change. The Chain Rule also as theoreƟc use, giving us insight
into the behavior of certain construcƟons (as we’ll see in the next secƟon).

We apply the Chain Rule once more to solve a max/min problem.

.. Example 415 ..Applying the MulƟvariable Chain Rule
Consider the surface z = x2 + y2 − xy, on which a parƟcle moves with x and y
coordinates given by x = cos t and y = sin t. Find dz

dt when t = 0, and findwhere
the parƟcle reaches its maximum/minimum z-values.

SÊ½çã®ÊÄ It is straighƞorward to compute

fx(x, y) = 2x− y fy(x, y) = 2y− x
dx
dt

= − sin t
dy
dt

= cos t.

Combining these according to the Chain Rule gives:

dz
dt

= −(2x− y) sin t+ (2y− x) cos t.

Notes:
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12.5 The MulƟvariable Chain Rule

When t = 0, x = 1 and y = 0. Thus
dz
dt

= −(2)(0) + (−1)(1) = −1. When
t = 0, the parƟcle is moving down, as shown in Figure 12.15.

To find where z-value is maximized/minimized on the parƟcle’s path, we set
dz
dt = 0 and solve for t:

dz
dt

= 0 = −(2x− y) sin t+ (2y− x) cos t

0 = −(2 cos t− sin t) sin t+ (2 sin t− cos t) cos t

0 = sin2 t− cos2 t

cos2 t = sin2 t

t = n
π

4
(for odd n)

We can use the First DerivaƟve Test to find that on [0, 2π], z has reaches its
absolute maximum at t = π/4 and 5π/4; it reaches its absolute minimum at
t = 3π/4 and 7π/4, as shown in Figure 12.15. ...

We can extend the Chain Rule to include the situaƟon where z is a funcƟon
of more than one variable, and each of these variables is also a funcƟon of more
than one variable. The basic case of this is where z = f(x, y), and x and y are
funcƟons of two variables, say s and t.

.

.

.
Theorem 108 MulƟvariable Chain Rule, Part II

1. Let z = f(x, y), x = g(s, t) and y = h(s, t), where f, g and h are
differenƟable funcƟons. Then z is a funcƟon of s and t, and

•
∂z
∂s

=
∂f
∂x

∂x
∂s

+
∂f
∂y

∂y
∂s

, and

•
∂z
∂t

=
∂f
∂x

∂x
∂t

+
∂f
∂y

∂y
∂t

.

2. Let z = f(x1, x2, . . . , xm)be a differenƟable funcƟonofm variables,
where each of the xi is a differenƟable funcƟon of the variables
t1, t2, . . . , tn. Then z is a funcƟon of the ti, and

∂z
∂ti

=
∂f
∂x1

∂x1
∂ti

+
∂f
∂x2

∂x2
∂ti

+ · · ·+ ∂f
∂xm

∂xm
∂ti

.

Notes:
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.. Example 416 Using the MulƟvarible Chain Rule, Part II
Let z = x2y+ x, x = s2 + 3t and y = 2s− t. Find ∂z

∂s and
∂z
∂t , and evaluate each

when s = 1 and t = 2.

SÊ½çã®ÊÄ Following Theorem 108, we compute the following parƟal
derivaƟves:

∂f
∂x

= 2xy+ 1
∂f
∂y

= x2,

∂x
∂s

= 2s
∂x
∂t

= 3
∂y
∂s

= 2
∂y
∂t

= −1.

Thus
∂z
∂s

= (2xy+ 1)(2s) + (x2)(2) = 4xys+ 2s+ 2x2, and

∂z
∂t

= (2xy+ 1)(3) + (x2)(−1) = 6xy− x2 + 3.

When s = 1 and t = 2, x = 7 and y = 0, so

∂z
∂s

= 100 and
∂z
∂t

= −46...

.. Example 417 Using the MulƟvarible Chain Rule, Part II
Letw = xy+ z2, where x = t2es, y = t cos s, and z = s sin t. Find ∂w

∂t when s = 0
and t = π.

SÊ½çã®ÊÄ Following Theorem 108, we compute the following parƟal
derivaƟves:

∂f
∂x

= y
∂f
∂y

= x
∂f
∂z

= 2z,

∂x
∂t

= 2tes
∂y
∂t

= cos s
∂z
∂t

= s cos t.

Thus
∂w
∂t

= y(2tes) + x(cos s) + 2z(s cos t).

When s = 0 and t = π, we have x = π2, y = π and z = 0. Thus

∂w
∂t

= π(2π) + π2 = 3π2...

Implicit DifferenƟaƟon

We studied finding dy
dx when y is given as an implicit funcƟon of x in detail

in SecƟon 2.6. We find here that the MulƟvariable Chain Rule gives a simpler
method of finding dy

dx .

Notes:
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12.5 The MulƟvariable Chain Rule

For instance, consider the implicit funcƟon x2y−xy3 = 3.We learned to use
the following steps to find dy

dx :

d
dx

(
x2y− xy3

)
=

d
dx

(
3
)

2xy+ x2
dy
dx

− y3 − 3xy2
dy
dx

= 0

dy
dx

= − 2xy− y3

x2 − 3xy2
. (12.2)

Instead of using this method, consider z = x2y − xy3. The implicit funcƟon
above describes the level curve z = 3. Considering x and y as funcƟons of x, the
MulƟvariable Chain Rule states that

dz
dx

=
∂z
∂x

dx
dx

+
∂z
∂y

dy
dx

. (12.3)

Since z is constant (in our example, z = 3), dz
dx = 0. We also know dx

dx = 1.
EquaƟon (12.3) becomes

0 =
∂z
∂x

(1) +
∂z
∂y

dy
dx

⇒

dy
dx

= −∂z
∂x

/∂z
∂y

= − fx
fy
.

Note how our soluƟon for dy
dx in EquaƟon (12.2) is just the parƟal derivaƟve

of z, with respect to x, divided by the parƟal derivaƟve of z with respect to y.
We state the above as a theorem.

.

.

.
Theorem 109 Implicit DifferenƟaƟon

Let f be a differenƟable funcƟon of x and y, where f(x, y) = c defines y
as an implicit funcƟon of x, for some constant c. Then

dy
dx

= − fx(x, y)
fy(x, y)

.

WepracƟce using Theorem 109 by applying it to a problem from SecƟon 2.6.

Notes:
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.. Example 418 Implicit DifferenƟaƟon
Given the implicitly defined funcƟon sin(x2y2) + y3 = x + y, find y′. Note: this
is the same problem as given in Example 68 of SecƟon 2.6, where the soluƟon
took about a full page to find.

SÊ½çã®ÊÄ Let f(x, y) = sin(x2y2) + y3 − x − y; the implicitly defined
funcƟon above is equivalent to f(x, y) = 0. We find dy

dx by applying Theorem 109.
We find

fx(x, y) = 2xy2 cos(x2y2)− 1 and fy(x, y) = 2x2y cos(x2y2)− 1,

so
dy
dx

= −2xy2 cos(x2y2)− 1
2x2y cos(x2y2)− 1

,

which matches our soluƟon from Example 68. ..

Notes:
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Exercises 12.5
Terms and Concepts
1. Let a level curve of z = f(x, y) be described by x = g(t),

y = h(t). Explain why dz
dt = 0.

2. Fill in the blank: The single variable Chain Rule states
d
dx

(
f
(
g(x)

))
= f ′

(
g(x)

)
· .

3. Fill in the blank: The MulƟvariable Chain Rule states
df
dt

=
∂f
∂x

· + · dy
dt

.

4. If z = f(x, y), where x = g(t) and y = h(t), we can subsƟ-
tute and write z as an explicit funcƟon of t.
T/F: Using the MulƟvariable Chain Rule to find dz

dt is some-
Ɵmes easier than first subsƟtuƟng and then taking the
derivaƟve.

5. T/F: TheMulƟvariable Chain Rule is only useful when all the
related funcƟons are known explicitly.

6. The MulƟvariable Chain Rule allows us to compute im-
plicit derivaƟves by easily by just compuƟng two
derivaƟves.

Problems
In Exercises 7 – 12, funcƟons z = f(x, y), x = g(t) and
y = h(t) are given.

(a) Use the MulƟvariable Chain Rule to compute
dz
dt

.

(b) Evaluate
dz
dt

at the indicated t-value.

7. z = 3x+ 4y, x = t2, y = 2t; t = 1

8. z = x2 − y2, x = t, y = t2 − 1; t = 1

9. z = 5x + 2y, x = 2 cos t + 1, y = sin t − 3;
t = π/4

10. z =
x

y2 + 1
, x = cos t, y = sin t; t = π/2

11. z = x2 + 2y2, x = sin t, y = 3 sin t; t = π/4

12. z = cos x sin y, x = πt, y = 2πt+ π/2; t = 3

In Exercises 13 – 18, funcƟons z = f(x, y), x = g(t) and
y = h(t) are given. Find the values of t where dz

dt = 0. Note:
these are the same surfaces/curves as found in Exercises 7 –
12.

13. z = 3x+ 4y, x = t2, y = 2t

14. z = x2 − y2, x = t, y = t2 − 1

15. z = 5x+ 2y, x = 2 cos t+ 1, y = sin t− 3

16. z =
x

y2 + 1
, x = cos t, y = sin t

17. z = x2 + 2y2, x = sin t, y = 3 sin t

18. z = cos x sin y, x = πt, y = 2πt+ π/2

In Exercises 19 – 22, funcƟons z = f(x, y), x = g(s, t) and
y = h(s, t) are given.

(a) Use the MulƟvariable Chain Rule to compute
∂z
∂s

and
∂z
∂t

.

(b) Evaluate
∂z
∂s

and
∂z
∂t

at the indicated s and t values.

19. z = x2y, x = s− t, y = 2s+ 4t; s = 1, t = 0

20. z = cos
(
πx+

π

2
y
)
, x = st2, y = s2t; s = 1, t = 1

21. z = x2 + y2, x = s cos t, y = s sin t; s = 2, t = π/4

22. z = e−(x2+y2), x = t, y = st2; s = 1, t = 1

In Exercises 23 – 26, find
dy
dx

using Implicit DifferenƟaƟon and
Theorem 109.

23. x2 tan y = 50

24. (3x2 + 2y3)4 = 2

25.
x2 + y
x+ y2

= 17

26. ln(x2 + xy+ y2) = 1
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12.6 DirecƟonal DerivaƟves
ParƟal derivaƟves give us an understanding of how a surface changes when we
move in the x and y direcƟons. Wemade the comparison to standing in a rolling
meadow and heading due east: the amount of rise/fall in doing so is comparable
to fx. Likewise, the rise/fall in moving due north is comparable to fy. The steeper
the slope, the greater in magnitude fy.

But what if we didn’t move due north or east? What if we needed to move
northeast and wanted to measure the amount of rise/fall? Our parƟal deriva-
Ɵves alone cannot measure this. This secƟon invesƟgates direcƟonal deriva-
Ɵves, which are a measure of this.

We begin with a definiƟon.

.

.

.
DefiniƟon 90 DirecƟonal DerivaƟves

Let z = f(x, y) be conƟnuous on an open set S and let u⃗ = ⟨u1, u2⟩ be a
unit vector. For all points (x, y), the direcƟonal derivaƟve of f at (x, y) in
the direcƟon of u⃗ is

Du⃗ f(x, y) = lim
h→0

f(x+ hu1, y+ hu2)− f(x, y)
h

.

The parƟal derivaƟves fx and fy are defined with similar limits, but only x or
y varies with h, not both. Here both x and y vary with a weighted h, determined
by a parƟcular unit vector u⃗. This may look a bit inƟmidaƟng but in reality it is
not too difficult to deal with; it oŌen just requires extra algebra. However, the
following theorem reduces this algebraic load.

.

.

.
Theorem 110 DirecƟonal DerivaƟves

Let z = f(x, y) be differenƟable on an open set S containing (x0, y0), and
let u⃗ = ⟨u1, u2⟩ be a unit vector. The direcƟonal derivaƟve of f at (x0, y0)
in the direcƟon of u⃗ is

Du⃗ f(x0, y0) = fx(x0, y0)u1 + fy(x0, y0)u2.

.. Example 419 ..CompuƟng direcƟonal derivaƟves
Let z = 14− x2 − y2 and let P = (1, 2). Find the direcƟonal derivaƟve of f, at P,
in the following direcƟons:

1. toward the point Q = (3, 4),

2. in the direcƟon of ⟨2,−1⟩, and
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Figure 12.16: Understanding the direc-
Ɵonal derivaƟve in Example 419.

12.6 DirecƟonal DerivaƟves

3. toward the origin.

SÊ½çã®ÊÄ The surface is ploƩed in Figure 12.16, where the point P =
(1, 2) is indicated in the x, y-plane as well as the point (1, 2, 9)which lies on the
surface of f. We find that fx(x, y) = −2x and fx(1, 2) = −2; fy(x, y) = −2y and
fy(1, 2) = −4.

1. Let u⃗1 be the unit vector that points from the point (1, 2) to the point
Q = (3, 4), as shown in the figure. The vector #  ‰PQ = ⟨2, 2⟩; the unit vector
in this direcƟon is u⃗1 =

⟨
1/

√
2, 1/

√
2
⟩
. Thus the direcƟonal derivaƟve of

f at (1, 2) in the direcƟon of u⃗1 is

Du⃗1 f(1, 2) = −2(1/
√
2) + (−4)(1/

√
2) = −6/

√
2 ≈ −4.24.

Thus the instantaneous rate of change in moving from the point (1, 2, 9)
on the surface in the direcƟon of u⃗1 (which points toward the point Q) is
about−4.24. Moving in this direcƟon moves one steeply downward.

2. We seek the direcƟonal derivaƟve in the direcƟon of ⟨2,−1⟩. The unit
vector in this direcƟon is u⃗2 =

⟨
2/

√
5,−1/

√
5
⟩
. Thus the direcƟonal

derivaƟve of f at (1, 2) in the direcƟon of u⃗2 is

Du⃗2 f(1, 2) = −2(2/
√
5) + (−4)(−1/

√
5) = 0.

StarƟng on the surface of f at (1, 2) andmoving in the direcƟon of ⟨2,−1⟩
(or u⃗2) results in no instantaneous change in z-value. This is analogous to
standing on the side of a hill and choosing a direcƟon towalk that does not
change the elevaƟon. One neither walks up nor down, rather just “along
the side” of the hill.
Finding these direcƟons of “no elevaƟon change” is important.

3. At P = (1, 2), the direcƟon towards the origin is given by the vector
⟨−1,−2⟩; the unit vector in this direcƟon is u⃗3 =

⟨
−1/

√
5,−2/

√
5
⟩
.

The direcƟonal derivaƟve of f at P in the direcƟon of the origin is

Du⃗3 f(1, 2) = −2(−1/
√
5) + (−4)(−2/

√
5) = 10/

√
5 ≈ 4.47.

Moving towards the origin means “walking uphill” quite steeply, with an
iniƟal slope of about 4.47....

As we study direcƟonal derivaƟves, it will help to make an important con-
necƟon between the unit vector u⃗ = ⟨u1, u2⟩ that describes the direcƟon and
the parƟal derivaƟves fx and fy. We start with a definiƟon and follow this with a
Key Idea.

Notes:

697



Note: The symbol “∇” is named “nabla,”
derived from the Greek name of a Jewish
harp. Oddly enough, in mathemaƟcs the
expression∇f is pronounced “del f.”

Chapter 12 FuncƟons of Several Variables

.

.

.
DefiniƟon 91 Gradient

Let z = f(x, y) be differenƟable on an open set S that contains the point
(x0, y0).

1. The gradient of f is∇f(x, y) = ⟨fx(x, y), fy(x, y)⟩.

2. The gradient of f at (x0, y0) is∇f(x0, y0) = ⟨fx(x0, y0), fy(x0, y0)⟩.

To simplify notaƟon, we oŌen express the gradient as ∇f = ⟨fx, fy⟩. The
gradient allows us to compute direcƟonal derivaƟves in terms of a dot product.

.

.

.
Key Idea 55 The Gradient and DirecƟonal DerivaƟves

The direcƟonal derivaƟve of z = f(x, y) in the direcƟon of u⃗ is

Du⃗ f = ∇f · u⃗.

The properƟes of the dot product previously studied allow us to invesƟgate
the properƟes of the direcƟonal derivaƟve. Given that the direcƟonal derivaƟve
gives the instantaneous rate of change of z when moving in the direcƟon of u⃗,
three quesƟons naturally arise:

1. In what direcƟon(s) is the change in z the greatest (i.e., the “steepest up-
hill”)?

2. In what direcƟon(s) is the change in z the least (i.e., the “steepest down-
hill”)?

3. In what direcƟon(s) is there no change in z?

Using the key property of the dot product, we have

∇f · u⃗ = || ∇f || || u⃗ || cos θ = || ∇f || cos θ, (12.4)

where θ is the angle between the gradient and u⃗. (Since u⃗ is a unit vector, || u⃗ || =
1.) This equaƟon allows us to answer the three quesƟons stated previously.

1. EquaƟon 12.4 is maximized when cos θ = 1, i.e., when the gradient and u⃗
have the same direcƟon; the gradient points in the direcƟon of greatest z
change.
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12.6 DirecƟonal DerivaƟves

2. EquaƟon 12.4 is minimized when cos θ = −1, i.e., when the gradient and
u⃗ have opposite direcƟons; the gradient points in the opposite direcƟon
of the least z change.

3. EquaƟon 12.4 is 0 when cos θ = 0, i.e., when the gradient and u⃗ are or-
thogonal to each other; the gradient is orthogonal to direcƟons of no z
change.

This result is rather amazing. Once again imagine standing in a rollingmeadow
and face the direcƟon that leads you steepest uphill. Then the direcƟon that
leads steepest downhill is directly behind you, and side–stepping either leŌ or
right (i.e., moving perpendicularly to the direcƟon you face) does not change
your elevaƟon at all.

Recall that a level curve is defined by a path in the x-y plane along which the
z-values of a funcƟon do not change; the direcƟonal derivaƟve in the direcƟon of
a level curve is 0. This is analogous towalking along a path in the rollingmeadow
alongwhich the elevaƟon does not change. The gradient at a point is orthogonal
to the direcƟon where the z does not change; i.e., the gradient is orthogonal to
level curves.

We restate these ideas in a theorem, then use them in an example.

.

.

.
Theorem 111 The Gradient and DirecƟonal DerivaƟves

Let z = f(x, y) be differenƟable on an open set S with gradient ∇f and
let u⃗ be a unit vector.

1. The maximum value of Du⃗ f is || ∇f ||, obtained when the angle
between ∇f and u⃗ is 0, i.e., the direcƟon of maximal increase is
∇f.

2. The minimum value of Du⃗ f is −|| ∇f ||, obtained when the angle
between ∇f and u⃗ is π, i.e., the direcƟon of minimal increase is
−∇f.

3. Du⃗ f = 0 when∇f and u⃗ are orthogonal.

.. Example 420 ..Finding direcƟons of maximal and minimal increase
Let f(x, y) = sin x cos y and let P = (π/3, π/3). Find the direcƟons of max-
imal/minimal increase, and find a direcƟon where the instantaneous rate of z
change is 0.

SÊ½çã®ÊÄ We begin by finding the gradient. fx = cos x cos y and fy =

Notes:
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Figure 12.17: Graphing the surface and
important direcƟons in Example 420.
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Figure 12.18: At the top of a paraboloid,
all direcƟonal derivaƟves are 0.

Chapter 12 FuncƟons of Several Variables

− sin x sin y, thus

∇f = ⟨cos x cos y,− sin x sin y⟩ and, at P, ∇f
(π
3
,
π

3

)
=

⟨
1
4
,−3

4

⟩
.

Thus the direcƟon of maximal increase is ⟨1/4,−3/4⟩. In this direcƟon, the
instantaneous rate of z change is || ⟨1/4,−3/4⟩ || =

√
10/4 ≈ 0.79.

Figure 12.17 shows the surface ploƩed from two different perspecƟves. In
each, the gradient is drawn at P with a dashed line (because of the nature of
this surface, the gradient points “into” the surface). Let u⃗ = ⟨u1, u2⟩ be the
unit vector in the direcƟon of ∇f at P. Each graph of the figure also contains
the vector ⟨u1, u2, ||∇f ||⟩. This vector has a “run” of 1 (because in the x-y plane
it moves 1 unit) and a “rise” of ||∇f ||, hence we can think of it as a vector with
slope of ||∇f || in the direcƟonof∇f, helping us visualize how “steep” the surface
is in its steepest direcƟon.

The direcƟon ofminimal increase is ⟨−1/4, 3/4⟩; in this direcƟon the instan-
taneous rate of z change is−

√
10/4 ≈ −0.79.

Any direcƟon orthogonal to ∇f is a direcƟon of no z change. We have two
choices: the direcƟon of ⟨3, 1⟩ and the direcƟon of ⟨−3,−1⟩. The unit vector
in the direcƟon of ⟨3, 1⟩ is shown in each graph of the figure as well. The level
curve at z =

√
3/4 is drawn: recall that along this curve the z-values do not

change. Since ⟨3, 1⟩ is a direcƟon of no z-change, this vector is tangent to the
level curve at P. ...

.. Example 421 Understanding when∇f = 0⃗
Let f(x, y) = −x2 + 2x− y2 + 2y+ 1. Find the direcƟonal derivaƟve of f in any
direcƟon at P = (1, 1).

SÊ½çã®ÊÄ Wefind∇f = ⟨−2x+ 2,−2y+ 2⟩. AtP, wehave∇f(1, 1) =
⟨0, 0⟩. According to Theorem 111, this is the direcƟon of maximal increase.
However, ⟨0, 0⟩ is direcƟonless; it has no displacement. And regardless of the
unit vector u⃗ chosen, Du⃗ f = 0.

Figure 12.18 helps us understand what this means. We can see that P lies at
the top of a paraboloid. In all direcƟons, the instantaneous rate of change is 0.

So what is the direcƟon of maximal increase? It is fine to give an answer of
0⃗ = ⟨0, 0⟩, as this indicates that all direcƟonal derivaƟves are 0. ..

The fact that the gradient of a surface always points in the direcƟon of steep-
est increase/decrease is very useful, as illustrated in the following example.

.. Example 422 ..The flow of water downhill
Consider the surface given by f(x, y) = 20 − x2 − 2y2. Water is poured on the
surface at (1, 1/4). What path does it take as it flows downhill?

Notes:
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Figure 12.19: A graph of the surface de-
scribed in Example 422 along with the
path in the x-y planewith the level curves.

12.6 DirecƟonal DerivaƟves

SÊ½çã®ÊÄ Let r⃗(t) = ⟨x(t), y(t)⟩ be the vector–valued funcƟon de-
scribing the path of the water in the x-y plane; we seek x(t) and y(t). We know
that water will always flow downhill in the steepest direcƟon; therefore, at any
point on its path, it will be moving in the direcƟon of−∇f. (We ignore the phys-
ical effects of momentum on the water.) Thus r⃗ ′(t) will be parallel to ∇f, and
there is some constant c such that c∇f = r⃗ ′(t) = ⟨x′(t), y′(t)⟩.

We find∇f = ⟨−2x,−4y⟩ and write x′(t) as dx
dt and y′(t) as dy

dt . Then

c∇f = ⟨x′(t), y′(t)⟩

⟨−2cx,−4cy⟩ =
⟨
dx
dt

,
dy
dt

⟩
.

This implies

−2cx =
dx
dt

and − 4cy =
dy
dt

, i.e.,

c = − 1
2x

dx
dt

and c = − 1
4y

dy
dt

.

As c equals both expressions, we have ..

1
2x

dx
dt

=
1
4y

dy
dt

.

To find an explicit relaƟonship between x and y, we can integrate both sides with

respect to t. Recall from our study of differenƟals that
dx
dt

dt = dx. Thus:∫
1
2x

dx
dt

dt =
∫

1
4y

dy
dt

dt∫
1
2x

dx =
∫

1
4y

dy

1
2
ln |x|+ C =

1
4
ln |y|

2 ln |x|+ C = ln |y|
Cx2 = y,

where we skip some algebra in the last step. As the water started at the point
(1, 1/4), we can solve for C:

C(1)2 =
1
4

⇒ C =
1
4
.

Thus the water follows the curve y = x2/4 in the x-y plane. The surface and
the path of the water is graphed in Figure 12.19(a). In part (b) of the figure,

Notes:
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the level curves of the surface are ploƩed in the x-y plane, along with the curve
y = x2/4. NoƟce how the path intersects the level curves at right angles. As the
path follows the gradient downhill, this reinforces the fact that the gradient is
orthogonal to level curves. ...

FuncƟons of Three Variables

The concepts of direcƟonal derivaƟves and the gradient are easily extended
to three (and more) variables. We combine the concepts behind DefiniƟons 90
and 91 and Theorem 110 into one set of definiƟons.

.

.

.
DefiniƟon 92 DirecƟonal DerivaƟves and Gradient with Three Vari-
ables

Let w = F(x, y, z) be differenƟable on an open ball B and let u⃗ be a unit
vector in R3.

1. The gradient of F is∇F = ⟨Fx, Fy, Fz⟩.

2. The direcƟonal derivaƟve of F in the direcƟon of u⃗ is

Du⃗ F = ∇F · u⃗.

The same properƟes of the gradient given in Theorem 111, when f is a func-
Ɵon of two variables, hold for F, a funcƟon of three variables.

.

.

.
Theorem 112 The Gradient and DirecƟonal DerivaƟves with Three
Variables

Let w = F(x, y, z) be differenƟable on an open ball B, let∇F be the gra-
dient of F, and let u⃗ be a unit vector.

1. The maximum value of Du⃗ F is || ∇F ||, obtained when the angle
between ∇F and u⃗ is 0, i.e., the direcƟon of maximal increase is
∇F.

2. The minimum value of Du⃗ F is −|| ∇F ||, obtained when the angle
between ∇F and u⃗ is π, i.e., the direcƟon of minimal increase is
−∇F.

3. Du⃗ F = 0 when∇F and u⃗ are orthogonal.
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We interpret the third statement of the theorem as “the gradient is orthog-
onal to level surfaces,” the three–variable analogue to level curves.

.. Example 423 Finding direcƟonal derivaƟves with funcƟons of three vari-
ables
If a point source S is radiaƟng energy, the intensity I at a given point P in space
is inversely proporƟonal to the square of the distance between S and P. That is,

when S = (0, 0, 0), I(x, y, z) =
k

x2 + y2 + z2
for some constant k.

Let k = 1, let u⃗ = ⟨2/3, 2/3, 1/3⟩ be a unit vector, and let P = (2, 5, 3).
Measure distances in inches. Find the direcƟonal derivaƟve of I at P in the di-
recƟon of u⃗, and find the direcƟon of greatest intensity increase at P.

SÊ½çã®ÊÄ Weneed the gradient∇I, meaningweneed Ix, Iy and Iz. Each
parƟal derivaƟve requires a simple applicaƟon of the QuoƟent Rule, giving

∇I =
⟨

−2x
(x2 + y2 + z2)2

,
−2y

(x2 + y2 + z2)2
,

−2z
(x2 + y2 + z2)2

⟩
∇I(2, 5, 3) =

⟨
−4
1444

,
−10
1444

,
−6
1444

⟩
≈ ⟨−0.003,−0.007,−0.004⟩

Du⃗ I = ∇I(2, 5, 3) · u⃗

= − 17
2166

≈ −0.0078.

The direcƟonal derivaƟve tells us that moving in the direcƟon of u⃗ from P re-
sults in a decrease in intensity of about −0.008 units per inch. (The intensity is
decreasing as u⃗moves one farther from the origin than P.)

The gradient gives the direcƟon of greatest intensity increase. NoƟce that

∇I(2, 5, 3) =
⟨

−4
1444

,
−10
1444

,
−6
1444

⟩
=

2
1444

⟨−2,−5,−3⟩ .

That is, the gradient at (2, 5, 3) is poinƟng in the direcƟon of ⟨−2,−5,−3⟩, that
is, towards the origin. That should make intuiƟve sense: the greatest increase
in intensity is found by moving towards to source of the energy. ..
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Exercises 12.6
Terms and Concepts
1. What is the difference between a direcƟonal derivaƟve and

a parƟal derivaƟve?

2. For what u⃗ is D⃗u f = fx?

3. For what u⃗ is D⃗u f = fy?

4. The gradient is to level curves.

5. The gradient points in the direcƟon of increase.

6. It is generally more informaƟve to view the direcƟonal
derivaƟve not as the result of a limit, but rather as the result
of a product.

Problems
Exercises 7 – 12, a funcƟon z = f(x, y). Find∇f.

7. f(x, y) = −x2y+ xy2 + xy

8. f(x, y) = sin x cos y

9. f(x, y) =
1

x2 + y2 + 1

10. f(x, y) = −4x+ 3y

11. f(x, y) = x2 + 2y2 − xy− 7x

12. f(x, y) = x2y3 − 2x

Exercises 13 – 18, a funcƟon z = f(x, y) and a point P are
given. Find the direcƟonal derivaƟve of f in the indicated di-
recƟons. Note: these are the same funcƟons as in Exercises
7 through 12.

13. f(x, y) = −x2y+ xy2 + xy, P = (2, 1)

(a) In the direcƟon of v⃗ = ⟨3, 4⟩
(b) In the direcƟon toward the point Q = (1,−1).

14. f(x, y) = sin x cos y, P =
(π
4
,
π

3

)
(a) In the direcƟon of v⃗ = ⟨1, 1⟩.
(b) In the direcƟon toward the point Q = (0, 0).

15. f(x, y) =
1

x2 + y2 + 1
, P = (1, 1).

(a) In the direcƟon of v⃗ = ⟨1,−1⟩.
(b) In the direcƟon toward the point Q = (−2,−2).

16. f(x, y) = −4x+ 3y, P = (5, 2)

(a) In the direcƟon of v⃗ = ⟨3, 1⟩ .
(b) In the direcƟon toward the point Q = (2, 7).

17. f(x, y) = x2 + 2y2 − xy− 7x, P = (4, 1)

(a) In the direcƟon of v⃗ = ⟨−2, 5⟩
(b) In the direcƟon toward the point Q = (4, 0).

18. f(x, y) = x2y3 − 2x, P = (1, 1)

(a) In the direcƟon of v⃗ = ⟨3, 3⟩
(b) In the direcƟon toward the point Q = (1, 2).

Exercises 19 – 24, a funcƟon z = f(x, y) and a point P are
given.

(a) Find the direcƟon of maximal increase of f at P.

(b) What is the maximal value of D⃗u f at P?

(c) Find the direcƟon of minimal increase of f at P.

(d) Give a direcƟon u⃗ such that D⃗u f = 0 at P.

Note: these are the same funcƟons and points as in Exercises
13 through 18.

19. f(x, y) = −x2y+ xy2 + xy, P = (2, 1)

20. f(x, y) = sin x cos y, P =
(π
4
,
π

3

)
21. f(x, y) =

1
x2 + y2 + 1

, P = (1, 1).

22. f(x, y) = −4x+ 3y, P = (5, 4).

23. f(x, y) = x2 + 2y2 − xy− 7x, P = (4, 1)

24. f(x, y) = x2y3 − 2x, P = (1, 1)

Exercises 25 – 28, a funcƟon w = F(x, y, z), a vector v⃗ and a
point P are given.

(a) Find∇F(x, y, z).

(b) Find D⃗u F at P.

25. F(x, y, z) = 3x2z3 + 4xy− 3z2, v⃗ = ⟨1, 1, 1⟩, P = (3, 2, 1)

26. F(x, y, z) = sin(x) cos(y)ez, v⃗ = ⟨2, 2, 1⟩, P = (0, 0, 0)

27. F(x, y, z) = x2y2 − y2z2, v⃗ = ⟨−1, 7, 3⟩, P = (1, 0,−1)

28. F(x, y, z) =
2

x2 + y2 + z2
, v⃗ = ⟨1, 1,−2⟩, P = (1, 1, 1)
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Figure 12.20: Showing various lines tan-
gent to a surface.

12.7 Tangent Lines, Normal Lines, and Tangent Planes

12.7 Tangent Lines, Normal Lines, and Tangent Planes
DerivaƟves and tangent lines go hand–in–hand. Given y = f(x), the line tangent
to the graph of f at x = x0 is the line through

(
x0, f(x0)

)
with slope f ′(x0); that

is, the slope of the tangent line is the instantaneous rate of change of f at x0.
When dealing with funcƟons of two variables, the graph is no longer a curve

but a surface. At a given point on the surface, it seems there are many lines that
fit our intuiƟon of being “tangent” to the surface.

In Figures 12.20 we see lines that are tangent to curves in space. Since each
curve lies on a surface, it makes sense to say that the lines are also tangent to
the surface. The next definiƟon formally defines what it means to be “tangent
to a surface.”

.

.

.
DefiniƟon 93 DirecƟonal Tangent Line

Let z = f(x, y) be differenƟable on an open set S containing (x0, y0) and let
u⃗ = ⟨u1, u2⟩ be a unit vector.

1. The line ℓx through
(
x0, y0, f(x0, y0)

)
parallel to ⟨1, 0, fx(x0, y0)⟩ is the

tangent line to f in the direcƟon of x at (x0, y0).

2. The line ℓy through
(
x0, y0, f(x0, y0)

)
parallel to ⟨0, 1, fy(x0, y0)⟩ is the

tangent line to f in the direcƟon of y at (x0, y0).

3. The line ℓ⃗u through
(
x0, y0, f(x0, y0)

)
parallel to ⟨u1, u2,Du⃗ f(x0, y0)⟩

is the tangent line to f in the direcƟon of u⃗ at (x0, y0).

It is instrucƟve to consider each of three direcƟons given in the definiƟon in
terms of “slope.” The direcƟon of ℓx is ⟨1, 0, fx(x0, y0)⟩; that is, the “run” is one
unit in the x-direcƟon and the “rise” is fx(x0, y0) units in the z-direcƟon. Note
how the slope is just the parƟal derivaƟve with respect to x. A similar statement
can be made for ℓy. The direcƟon of ℓ⃗u is ⟨u1, u2,Du⃗ f(x0, y0)⟩; the “run” is one
unit in the u⃗ direcƟon (where u⃗ is a unit vector) and the “rise” is the direcƟonal
derivaƟve of z in that direcƟon.

DefiniƟon 93 leads to the following parametric equaƟons of direcƟonal tan-
gent lines:

ℓx(t) =

 x = x0 + t
y = y0
z = z0 + fx(x0, y0)t

, ℓy(t) =

 x = x0
y = y0 + t
z = z0 + fy(x0, y0)t

and ℓ⃗u(t) =

 x = x0 + u1t
y = y0 + u2t
z = z0 + Du⃗ f(x0, y0)t

.

Notes:

705



...

..2 .4 . 2.
4

.
−1

.

1

.x .
y

.

z

(a)

...

..2 .4 . 2.
4

.
−1

.

1

.x .
y

.

z

(b)

Figure 12.21: A surface and direcƟonal
tangent lines in Example 424.
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.. Example 424 Finding direcƟonal tangent lines
Find the lines tangent to the surface z = sin x cos y at (π/2, π/2) in the x and y
direcƟons and also in the direcƟon of v⃗ = ⟨−1, 1⟩ .

SÊ½çã®ÊÄ The parƟal derivaƟves with respect to x and y are:

fx(x, y) = cos x cos y ⇒ fx(π/2, π/2) = 0
fy(x, y) = − sin x sin y ⇒ fy(π/2, π/2) = −1.

At (π/2, π/2), the z-value is 0.
Thus the parametric equaƟons of the line tangent to f at (π/2, π/2) in the

direcƟons of x and y are:

ℓx(t) =

 x = π/2+ t
y = π/2
z = 0

and ℓy(t) =

 x = π/2
y = π/2+ t
z = −t

.

The two lines are shown with the surface in Figure 12.21(a). To find the equa-
Ɵon of the tangent line in the direcƟon of v⃗, we first find the unit vector in the
direcƟon of v⃗: u⃗ =

⟨
−1/

√
2, 1/

√
2
⟩
. The direcƟonal derivaƟve at (π/2, π, 2) in

the direcƟon of u⃗ is

Du⃗ f(π/2, π, 2) = ⟨0,−1⟩ ·
⟨
−1/

√
2, 1/

√
2
⟩
= −1/

√
2.

Thus the direcƟonal tangent line is

ℓ⃗u(t) =


x = π/2− t/

√
2

y = π/2+ t/
√
2

z = −t/
√
2

.

The curve through (π/2, π/2, 0) in the direcƟon of v⃗ is shown in Figure 12.21(b)
along with ℓ⃗u(t). ..

.. Example 425 ..Finding direcƟonal tangent lines
Let f(x, y) = 4xy− x4 − y4. Find the equaƟons of all direcƟonal tangent lines to
f at (1, 1).

SÊ½çã®ÊÄ First note that f(1, 1) = 2. We need to compute direcƟonal
derivaƟves, so we need∇f. We begin by compuƟng parƟal derivaƟves.

fx = 4y− 4x3 ⇒ fx(1, 1) = 0; fy = 4x− 4y3 ⇒ fy(1, 1) = 0.

Thus ∇f(1, 1) = ⟨0, 0⟩. Let u⃗ = ⟨u1, u2⟩ be any unit vector. The direcƟonal
derivaƟve of f at (1, 1)will beDu⃗ f(1, 1) = ⟨0, 0⟩·⟨u1, u2⟩ = 0. It does notmaƩer
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Figure 12.22: Graphing f in Example 425.
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what direcƟon we choose; the direcƟonal derivaƟve is always 0. Therefore

ℓ⃗u(t) =

 x = 1+ u1t
y = 1+ u2t
z = 2

.

Figure 12.22 shows a graph of f and the point (1, 1, 2). Note that this point
comes at the top of a “hill,” and therefore every tangent line through this point
will have a “slope” of 0.

That is, consider any curve on the surface that goes through this point. Each
curve will have a relaƟve maximum at this point, hence its tangent line will have
a slope of 0. The following secƟon invesƟgates the points on surfaces where all
tangent lines have a slope of 0. ...

Normal Lines

When dealing with a funcƟon y = f(x) of one variable, we stated that a line
through (c, f(c))was tangent to f if the line had a slope of f ′(c) and was normal
(or, perpendicular, orthogonal) to f if it had a slope of −1/f ′(c). We extend the
concept of normal, or orthogonal, to funcƟons of two variables.

Let z = f(x, y) be a differenƟable funcƟon of two variables. By DefiniƟon 93,
at (x0, y0), ℓx(t) is a line parallel to the vector d⃗x = ⟨1, 0, fx(x0, y0)⟩ and ℓy(t) is
a line parallel to d⃗y = ⟨0, 1, fy(x0, y0)⟩. Since lines in these direcƟons through(
x0, y0, f(x0, y0)

)
are tangent to the surface, a line through this point and orthog-

onal to these direcƟons would be orthogonal, or normal, to the surface. We can
use this direcƟon to create a normal line.

The direcƟon of the normal line is orthogonal to d⃗x and d⃗y, hence the direc-
Ɵon is parallel to d⃗n = d⃗x × d⃗y. It turns out this cross product has a very simple
form:

d⃗x × d⃗y = ⟨1, 0, fx⟩ × ⟨0, 1, fy⟩ = ⟨−fx,−fy, 1⟩ .

It is oŌen more convenient to refer to the opposite of this direcƟon, namely
⟨fx, fy,−1⟩. This leads to a definiƟon.

Notes:
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.

.

.
DefiniƟon 94 Normal Line

Let z = f(x, y) be differenƟable on an open set S containing (x0, y0)
where

a = fx(x0, y0) and b = fy(x0, y0)

are defined.

1. A nonzero vector parallel to n⃗ = ⟨a, b,−1⟩ is orthogonal to f at
P =

(
x0, y0, f(x0, y0)

)
.

2. The line ℓn through Pwith direcƟon parallel to n⃗ is the normal line
to f at P.

Thus the parametric equaƟons of the normal line to a surface f at
(
x0, y0, f(x0, y0)

)
is:

ℓn(t) =

 x = x0 + at
y = y0 + bt
z = f(x0, y0)− t

.

.. Example 426 Finding a normal line
Find the equaƟon of the normal line to z = −x2 − y2 + 2 at (0, 1).

SÊ½çã®ÊÄ We find zx(x, y) = −2x and zy(x, y) = −2y; at (0, 1), we
have zx = 0 and zy = −2. We take the direcƟon of the normal line, following
DefiniƟon 94, to be n⃗ = ⟨0,−2,−1⟩. The line with this direcƟon going through
the point (0, 1, 1) is

ℓn(t) =

 x = 0
y = −2t+ 1
z = −t+ 1

or ℓn(t) = ⟨0,−2,−1⟩ t+ ⟨0, 1, 1⟩ .

The surface z = −x2 + y2, along with the found normal line, is graphed in
Figure 12.23. ..

The direcƟon of the normal line has many uses, one of which is the defini-
Ɵon of the tangent plane which we define shortly. Another use is in measuring
distances from the surface to a point. Given a point Q in space, it is general geo-
metric concept to define the distance from Q to the surface as being the length
of the shortest line segment PQ over all points P on the surface. This, in turn,
implies that #  ‰PQ will be orthogonal to the surface at P. Therefore we can mea-
sure the distance fromQ to the surface f by finding a point P on the surface such

Notes:
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that #  ‰PQ is parallel to the normal line to f at P.

.. Example 427 Finding the distance from a point to a surface
Let f(x, y) = 2 − x2 − y2 and let Q = (2, 2, 2). Find the distance from Q to the
surface defined by f.

SÊ½çã®ÊÄ This surface used in Example 425, so we know that at (x, y),
the direcƟon of the normal line will be d⃗n = ⟨−2x,−2y,−1⟩. A point P on the
surface will have coordinates (x, y, 2−x2−y2), so #  ‰PQ =

⟨
2− x, 2− y, x2 + y2

⟩
.

To find where #  ‰PQ is parallel to d⃗n, we need to find x, y and c such that c
#  ‰PQ = d⃗n.

c #  ‰PQ = d⃗n
c
⟨
2− x, 2− y, x2 + y2

⟩
= ⟨−2x,−2y,−1⟩ .

This implies

c(2− x) = −2x
c(2− y) = −2y

c(x2 + y2) = −1

In each equaƟon, we can solve for c:

c =
−2x
2− x

=
−2y
2− y

=
−1

x2 + y2
.

The first two fracƟons imply x = y, and so the last fracƟon can be rewriƩen as
c = −1/(2x2). Then

−2x
2− x

=
−1
2x2

−2x(2x2) = −1(2− x)

4x3 = 2− x

4x3 + x− 2 = 0.

This last equaƟon is a cubic, which is not difficult to solve with a numeric solver.
We find that x = 0.689, hence P = (0.689, 0.689, 1.051). We find the distance
from Q to the surface of f is

|| #  ‰PQ || =
√
(2− 0.689)2 + (2− 0.689)2 + (2− 1.051)2 = 2.083...

We can take the concept of measuring the distance from a point to a surface
to find a point Q a parƟcular distance from a surface at a given point P on the

Notes:
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surface.

.. Example 428 Finding a point a set distance from a surface
Let f(x, y) = x−y2+3. Let P =

(
2, 1, f(2, 1)

)
= (2, 1, 4). Find pointsQ in space

that is 4 units from the surface of f at P. That is, find Q such that || #  ‰PQ || = 4 and
#  ‰PQ is orthogonal to f at P.

SÊ½çã®ÊÄ We begin by finding parƟal derivaƟves:

fx(x, y) = 1 ⇒ fx(2, 1) = 1
fy(x, y) = −2y ⇒ fy(2, 1) = −2

The vector n⃗ = ⟨1,−2,−1⟩ is orthogonal to f at P. For reasons that will become
more clear in a moment, we find the unit vector in the direcƟon of n⃗:

u⃗ =
n⃗

|| n⃗ ||
=
⟨
1/

√
6,−2/

√
6,−1/

√
6
⟩
≈ ⟨0.408,−0.816,−0.408⟩ .

Thus a the normal line to f at P can be wriƩen as

ℓn(t) = ⟨2, 1, 4⟩+ t ⟨0.408,−0.816,−0.408⟩ .

An advantage of this parametrizaƟon of the line is that leƫng t = t0 gives a
point on the line that is |t0| units from P. (This is because the direcƟon of the
line is given in terms of a unit vector.) There are thus two points in space 4 units
from P:

Q1 = ℓn(4) Q2 = ℓn(−4)
≈ ⟨3.63,−2.27, 2.37⟩ ≈ ⟨0.37, 4.27, 5.63⟩

The surface is graphed along with points P, Q1, Q2 and a porƟon of the normal
line to f at P. ..

Tangent Planes

Wecan the direcƟonof the normal line to define a plane. With a = fx(x0, y0),
b = fy(x0, y0) and P =

(
x0, y0, f(x0, y0)

)
, the vector n⃗ = ⟨a, b,−1⟩ is orthogonal

to f at P. The plane through P with normal vector n⃗ is therefore tangent to f at
P.

Notes:
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.

.

.
DefiniƟon 95 Tangent Plane

Let z = f(x, y) be differenƟable on an open set S containing
(x0, y0), where a = fx(x0, y0), b = fy(x0, y0), n⃗ = ⟨a, b,−1⟩ and
P =

(
x0, y0, f(x0, y0)

)
.

The plane through P with normal vector n⃗ is the tangent plane to f at P.
The standard form of this plane is

a(x− x0) + b(y− y0)−
(
z− f(x0, y0)

)
= 0.

.. Example 429 Finding tangent planes
Find the equaƟon tangent plane to z = −x2 − y2 + 2 at (0, 1).

SÊ½çã®ÊÄ Note that this is the same surface and point used in Example
426. There we found n⃗ = ⟨0,−2,−1⟩ and P = (0, 1, 1). Therefore the equaƟon
of the tangent plane is

−2(y− 1)− (z− 1) = 0.

The surface z = −x2 + y2 and tangent plane are graphed in Figure 12.25. ..

.. Example 430 ..Using the tangent plane to approximate funcƟon values
The point (3,−1, 4) lies on the surface of an unknown differenƟable funcƟon f
where fx(3,−1) = 2 and fy(3,−1) = −1/2. Find the equaƟon of the tangent
plane to f at P, and use this to approximate the value of f(2.9,−0.8).

SÊ½çã®ÊÄ Knowing the parƟal derivaƟves at (3,−1) allows us to form
the normal vector to the tangent plane, n⃗ = ⟨2,−1/2,−1⟩. Thus the equaƟon
of the tangent line to f at P is:

2(x−3)−1/2(y+1)−(z−4) = 0 ⇒ z = 2(x−3)−1/2(y+1)+4. (12.5)

Just as tangent lines provide excellent approximaƟons of curves near their point
of intersecƟon, tangent planes provide excellent approximaƟons of surfaces near
their point of intersecƟon. So f(2.9,−0.8) ≈ z(2.9,−0.8) = 3.7.

This is not a newmethod of approximaƟon. Compare the right hand expres-
sion for z in EquaƟon (12.5) to the total differenƟal:

dz = fxdx+ fydy and z = 2︸︷︷︸
fx

(x− 3)︸ ︷︷ ︸
dx

+−1/2︸ ︷︷ ︸
fy

(y+ 1)︸ ︷︷ ︸
dy︸ ︷︷ ︸

dz

+4.

Notes:
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Thus the “new z-value” is the sum of the change in z (i.e., dz) and the old z-
value (4). AsmenƟonedwhen studying the total differenƟal, it is not uncommon
to know parƟal derivaƟve informaƟon about a unknown funcƟon, and tangent
planes are used to give accurate approximaƟons of the funcƟon. ...

The Gradient and Normal Lines, Tangent Planes

The methods developed in this secƟon so far give a straighƞorward method
of finding equaƟons of normal lines and tangent planes for surfaces with explicit
equaƟons of the form z = f(x, y). However, they do not handle implicit equa-
Ɵons well, such as x2 + y2 + z2 = 1. There is a technique that allows us to find
vectors orthogonal to these surfaces based on the gradient.

.

.

.
DefiniƟon 96 Gradient

Let w = F(x, y, z) be differenƟable on an open ball B that contains the
point (x0, y0, z0).

1. The gradient of F is∇F(x, y, z) = ⟨fx(x, y, z), fy(x, y, z), fz(x, y, z)⟩.

2. The gradient of F at (x0, y0, z0) is

∇F(x0, y0, z0) = ⟨fx(x0, y0, z0), fy(x0, y0, z0), fz(x0, y0, z0)⟩ .

Recall that when z = f(x, y), the gradient∇f = ⟨fx, fy⟩ is orthogonal to level
curves of f. An analogous statement can bemade about the gradient∇F, where
w = F(x, y, z). Given a point (x0, y0, z0), let c = F(x0, y0, z0). Then F(x, y, z) =
c is a level surface that contains the point (x0, y0, z0). The following theorem
states that∇F(x0, y0, z0) is orthogonal to this level surface.

.

.

.
Theorem 113 The Gradient and Level Surfaces

Let w = F(x, y, z) be differenƟable on an open ball B containing
(x0, y0, z0) with gradient∇F, where F(x0, y0, z0) = c.

The vector∇F(x0, y0, z0) is orthogonal to the level surface F(x, y, z) = c
at (x0, y0, z0).

The gradient at a point gives a vector orthogonal to the surface at that point.
This direcƟon can be used to find tangent planes and normal lines.

Notes:
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.. Example 431 Using the gradient to find a tangent plane

Find the equaƟon of the plane tangent to the ellipsoid
x2

12
+

y2

6
+

z2

4
= 1 at

P = (1, 2, 1).

SÊ½çã®ÊÄ We consider the equaƟon of the ellipsoid as a level surface
of a funcƟon F of three variables, where F(x, y, z) = x2

12 +
y2
6 + z2

4 . The gradient
is:

∇F(x, y, z) = ⟨Fx, Fy, Fz⟩

=
⟨ x
6
,
y
3
,
z
2

⟩
.

At P, the gradient is ∇F(1, 2, 1) = ⟨1/6, 2/3, 1/2⟩. Thus the equaƟon of the
plane tangent to the ellipsoid at P is

1
6
(x− 1) +

2
3
(y− 2) +

1
2
(z− 1) = 0.

The ellipsoid and tangent plane are graphed in Figure 12.26. ..

Tangent lines and planes to surfaces have many uses, including the study of
instantaneous rates of changes and making approximaƟons. Normal lines also
have many uses. In this secƟon we focused on using them to measure distances
from a surface. Another interesƟng applicaƟon is in computer graphics, where
the effects of light on a surface are determined using normal vectors.

The next secƟon invesƟgates another use of parƟal derivaƟves: determining
relaƟve extrema. When dealing with funcƟons of the form y = f(x), we found
relaƟve extrema by finding x where f ′(x) = 0. We can start finding relaƟve
extrema of z = f(x, y) by seƫng fx and fy to 0, but it turns out that there is more
to consider.
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Exercises 12.7
Terms and Concepts
1. Explain how the vector v⃗ = ⟨1, 0, 3⟩ can be thought of as

having a “slope” of 3.

2. Explain how the vector v⃗ = ⟨0.6, 0.8,−2⟩ can be thought
of as having a “slope” of−2.

3. T/F: Let z = f(x, y) be differenƟable at P. If n⃗ is a normal
vector to the tangent plane of f at P, then n⃗ is orthogonal
to fx and fy at P.

4. Explain in your own words why we do not refer to the tan-
gent line to a surface at a point, but rather to direcƟonal
tangent lines to a surface at a point.

Problems
Exercises 5 – 8, a funcƟon z = f(x, y), a vector v⃗ and a point
P are given. Give the parametric equaƟons of the following
direcƟonal tangent lines to f at P:

(a) ℓx(t)

(b) ℓy(t)

(c) ℓ⃗u (t), where u⃗ is the unit vector in the direcƟon of v⃗.

5. f(x, y) = 2x2y− 4xy2, v⃗ = ⟨1, 3⟩, P = (2, 3).

6. f(x, y) = 3 cos x sin y, v⃗ = ⟨1, 2⟩, P = (π/3, π/6).

7. f(x, y) = 3x− 5y, v⃗ = ⟨1, 1⟩, P = (4, 2).

8. f(x, y) = x2 − 2x− y2 + 4y, v⃗ = ⟨1, 1⟩, P = (1, 2).

Exercises 9 – 12, a funcƟon z = f(x, y), a vector v⃗ and a point
P are given. Find the equaƟon of the normal line to f at P.
Note: these are the same funcƟons as in Exercises 5 – 8.

9. f(x, y) = 2x2y− 4xy2, v⃗ = ⟨1, 3⟩, P = (2, 3).

10. f(x, y) = 3 cos x sin y, v⃗ = ⟨1, 2⟩, P = (π/3, π/6).

11. f(x, y) = 3x− 5y, v⃗ = ⟨1, 1⟩, P = (4, 2).

12. f(x, y) = x2 − 2x− y2 + 4y, v⃗ = ⟨1, 1⟩, P = (1, 2).

Exercises 13 – 16, a funcƟon z = f(x, y), a vector v⃗ and a point
P are given. Find the two points that are 2 units from the sur-
face f at P. Note: these are the same funcƟons as in Exercises
5 – 8.

13. f(x, y) = 2x2y− 4xy2, v⃗ = ⟨1, 3⟩, P = (2, 3).

14. f(x, y) = 3 cos x sin y, v⃗ = ⟨1, 2⟩, P = (π/3, π/6).

15. f(x, y) = 3x− 5y, v⃗ = ⟨1, 1⟩, P = (4, 2).

16. f(x, y) = x2 − 2x− y2 + 4y, v⃗ = ⟨1, 1⟩, P = (1, 2).

Exercises 17 – 20, a funcƟon z = f(x, y), a point P is given.
Find the equaƟon of the tangent plane to f at P. Note: these
are the same funcƟons as in Exercises 5 – 8.

17. f(x, y) = 2x2y− 4xy2, v⃗ = ⟨1, 3⟩, P = (2, 3).

18. f(x, y) = 3 cos x sin y, v⃗ = ⟨1, 2⟩, P = (π/3, π/6).

19. f(x, y) = 3x− 5y, v⃗ = ⟨1, 1⟩, P = (4, 2).

20. f(x, y) = x2 − 2x− y2 + 4y, v⃗ = ⟨1, 1⟩, P = (1, 2).

Exercises 21 – 24, an implicitly defined funcƟon of x, y and z
is given along with a point P that lies on the surface. Use the
gradient∇F to:

(a) find the equaƟon of the normal line to the surface at
P, and

(b) find the equaƟon of the plane tangent to the surface
at P.

21.
x2

8
+

y2

4
+

z2

16
= 1, at P = (1,

√
2,
√
6)

22. z2 − x2

4
− y2

9
= 0, at P = (4,−3,

√
5)

23. xy2 − xz2 = 0, at P = (2, 1,−1)

24. sin(xy) + cos(yz) = 0, at P = (2, π/12, 4)
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12.8 Extreme Values

Given a funcƟon z = f(x, y), we are oŌen interested in points where z takes on
the largest or smallest values. For instance, if z represents a cost funcƟon, we
would likely want to know what (x, y) values minimize the cost. If z represents
the raƟo of a volume to surface area, we would likely want to know where z is
greatest. This leads to the following definiƟon.

.

.

.
DefiniƟon 97 RelaƟve and Absolute Extrema

Let z = f(x, y) be defined on a set S containing the point P = (x0, y0).

1. If there is an open disk D containing P such that f(x0, y0) ≥ f(x, y)
for all (x, y) in D, then f has a relaƟve maximum at P; if f(x0, y0) ≤
f(x, y) for all (x, y) in D, then f has a relaƟve minimum at P.

2. If f(x0, y0) ≥ f(x, y) for all (x, y) in S, then f has an absolute max-
imum at P; if f(x0, y0) ≤ f(x, y) for all (x, y) in S, then f has an
absolute minimum at P.

3. If f has a relaƟve maximum or minimum at P, then f has a relaƟve
extrema at P; if f has an absolutemaximum orminimum at P, then
f has a absolute extrema at P.

If f has a relaƟve or absolute maximum at P = (x0, y0), it means every curve
on the surface of f through Pwill also have a relaƟve or absolute maximum at P.
Recalling what we learned in SecƟon 3.1, the slopes of the tangent lines to these
curves at Pmust be 0 or undefined. Since direcƟonal derivaƟves are computed
using fx and fy, we are led to the following definiƟon and theorem.

.

.

.
DefiniƟon 98 CriƟcal Point

Let z = f(x, y) be conƟnuous on an open set S. A criƟcal point P =
(x0, y0) of f is a point in S such that

• fx(x0, y0) = 0 and fy(x0, y0) = 0, or

• fx(x0, y0) and/or fy(x0, y0) is undefined.

Notes:
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Figure 12.27: The surface in Example 432
with its absolute minimum indicated.
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Figure 12.28: The surface in Example 433
with its absolute maximum indicated.
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.

.

.
Theorem 114 CriƟcal Points and RelaƟve Extrema

Let z = f(x, y) be defined on an open set S containing P = (x0, y0). If f
has a relaƟve extrema at P, then P is a criƟcal point of f.

Therefore, to find relaƟve extrema, we find the criƟcal points of f and de-
termine which correspond to relaƟve maxima, relaƟve minima, or neither. The
following examples demonstrate this process.

.. Example 432 Finding criƟcal points and relaƟve extrema
Let f(x, y) = x2 + y2 − xy− x− 2. Find the relaƟve extrema of f.

SÊ½çã®ÊÄ We start by compuƟng the parƟal derivaƟves of f:

fx(x, y) = 2x− y− 1 and fy(x, y) = 2y− x.

Each is never undefined. A criƟcal point occurswhen fx and fy are simultaneously
0, leading us to solve the following system of linear equaƟons:

2x− y− 1 = 0 and − x+ 2y = 0.

This soluƟon to this system is x = 2/3, y = 1/3. (Check that at (2/3, 1/3), both
fx and fy are 0.)

The graph in Figure 12.27 shows f alongwith this criƟcal point. It is clear from
the graph that this is a relaƟve minimum; further consideraƟon of the funcƟon
shows that this is actually the absolute minimum. ..

.. Example 433 Finding criƟcal points and relaƟve extrema
Let f(x, y) = −

√
x2 + y2 + 2. Find the relaƟve extrema of f.

SÊ½çã®ÊÄ We start by compuƟng the parƟal derivaƟves of f:

fx(x, y) =
−x√
x2 + y2

and fy(x, y) =
−y√
x2 + y2

.

It is clear that fx = 0 when x = 0 and that fy = 0 when y = 0. At (0, 0), both
fx and fy are not 0, but rather undefined. The point (0, 0) is sƟll a criƟcal point,
though, because the parƟal derivaƟves are undefined.

The surface of f is graphed in Figure 12.28 along with the point (0, 0, 2). The
graph shows that this point is the absolute maximum of f. ..

In each of the previous two examples, we found a criƟcal point of f and then
determinedwhether or not it was a relaƟve (or absolute)maximumorminimum

Notes:
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Figure 12.29: The surface in Example 434
with both criƟcal points marked.

12.8 Extreme Values

by graphing. It would be nice to be able to determine whether a criƟcal point
corresponded to amax or amin without a graph. Before we develop such a test,
we do one more example that sheds more light on the issues our test needs to
consider.

.. Example 434 Finding criƟcal points and relaƟve extrema
Let f(x, y) = x3 − 3x− y2 + 4y. Find the relaƟve extrema of f.

SÊ½çã®ÊÄ Once again we start by finding the parƟal derivaƟves of f:

fx(x, y) = 3x2 − 3 and fy(x, y) = −2y+ 4.

Each is always defined. Seƫng each equal to 0 and solving for x and y, we find

fx(x, y) = 0 ⇒ x = ±1
fy(x, y) = 0 ⇒ y = 2.

We have two criƟcal points: (−1, 2) and (1, 2). To determine if they correspond
to a relaƟve maximum or minimum, we consider the graph of f in Figure 12.29.

The criƟcal point (−1, 2) clearly corresponds to a relaƟve maximum. How-
ever, the criƟcal point at (1, 2) is neither a maximum nor a minimum, displaying
a different, interesƟng characterisƟc.

If one walks parallel to the y-axis towards this criƟcal point, then this point
becomes a relaƟvemaximumalong this path. But if onewalks towards this point
parallel to the x-axis, this point becomes a relaƟve minimum along this path. A
point that seems to act as both a max and a min is a saddle point. A formal
definiƟon follows. ..

.

.

.
DefiniƟon 99 Saddle Point

Let P = (x0, y0) be in the domain of f where fx = 0 and fy = 0 at
P. P is a saddle point of f if, for every open disk D containing P, there
are points (x1, y1) and (x2, y2) in D such that f(x0, y0) > f(x1, y1) and
f(x0, y0) < f(x2, y2).

At a saddle point, the instantaneous rate of change in all direcƟons is 0 and
there are points nearbywith z-values both less than and greater than the z-value
of the saddle point.

Before Example 434 we menƟoned the need for a test to differenƟate be-
tween relaƟve maxima and minima. We now recognize that our test also needs

Notes:

717



Chapter 12 FuncƟons of Several Variables

to account for saddle points. To do so, we consider the second parƟal derivaƟves
of f.

Recall that with single variable funcƟons, such as y = f(x), if f ′′(c) > 0, then
f is concave up at c, and if f ′(c) = 0, then f has a relaƟveminimum at x = c. (We
called this the Second DerivaƟve Test.) Note that at a saddle point, it seems the
graph is “both” concave up and concave down, depending on which direcƟon
you are considering.

It would be nice if the following were true:

fxx and fyy > 0 ⇒ relaƟve minimum
fxx and fyy < 0 ⇒ relaƟve maximum

fxx and fyy have opposite signs ⇒ saddle point.

However, this is not the case. FuncƟons f exist where fxx and fyy are both
posiƟve but a saddle point sƟll exists. In such a case, while the concavity in the
x-direcƟon is up (i.e., fxx > 0) and the concavity in the y-direcƟon is also up (i.e.,
fyy > 0), the concavity switches somewhere in between the x- and y-direcƟons.

To account for this, consider D = fxxfyy − fxyfyx. Since fxy and fyx are equal
when conƟnuous (refer back to Theorem103), we can rewrite this asD = fxxfyy−
f2xy. D can be used to test whether the concavity at a point changes depending on
direcƟon. If D > 0, the concavity does not switch (i.e., at that point, the graph
is concave up or down in all direcƟons). If D < 0, the concavity does switch. If
D = 0, our test fails to determine whether concavity switches or not. We state
the use of D in the following theorem.

.

.

.
Theorem 115 Second DerivaƟve Test

Let z = f(x, y) be differenƟable on an open set containing P = (x0, y0),
and let

D = fxx(x0, y0)fyy(x0, y0)− f2xy(x0, y0).

1. If D > 0 and fxx(x0, y0) > 0, then P is a relaƟve minimum of f.

2. If D > 0 and fxx(x0, y0) < 0, then P is a relaƟve maximum of f.

3. If D < 0, then P is a saddle point of f.

4. If D = 0, the test is inconclusive.

We first pracƟce using this test with the funcƟon in the previous example,
where we visually determined we had a relaƟve maximum and a saddle point.

Notes:
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.. Example 435 Using the Second DerivaƟve Test
Let f(x, y) = x3−3x−y2+4y as in Example 434. Determinewhether the funcƟon
has a relaƟve minimum, maximum, or saddle point at each criƟcal point.

SÊ½çã®ÊÄ We determined previously that the criƟcal points of f are
(−1, 2) and (1, 2). To use the Second DerivaƟve Test, we must find the second
parƟal derivaƟves of f:

fxx = 6x; fyy = −2; fxy = 0.

Thus D(x, y) = −12x.
At (−1, 2): D(−1, 2) = 12 > 0, and fxx(−1, 2) = −6. By the Second Deriva-

Ɵve Test, f has a relaƟve maximum at (−1, 2).
At (1, 2): D(1, 2) = −12 < 0. The Second DerivaƟve Test states that f has a

saddle point at (1, 2).
The Second DerivaƟve Test confirmed what we determined visually. ..

.. Example 436 ..Using the Second DerivaƟve Test
Find the relaƟve extrema of f(x, y) = x2y+ y2 + xy.

SÊ½çã®ÊÄ We start by finding the first and second parƟal derivaƟves of
f:

fx = 2xy+ y fy = x2 + 2y+ x
fxx = 2y fyy = 2

fxy = 2x+ 1 fyx = 2x+ 1.

We find the criƟcal points by finding where fx and fy are simultaneously 0 (they
are both never undefined). Seƫng fx = 0, we have:

fx = 0 ⇒ 2xy+ y = 0 ⇒ y(2x+ 1) = 0.

This implies that for fx = 0, either y = 0 or 2x+ 1 = 0.
Assume y = 0 then consider fy = 0:

fy = 0

x2 + 2y+ x = 0, and since y = 0, we have

x2 + x = 0
x(x+ 1) = 0.

Thus if y = 0, we have either x = 0 or x = −1, giving two criƟcal points: (−1, 0)
and (0, 0).

Notes:
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Figure 12.30: Graphing f from Example
436 and its relaƟve extrema.

Chapter 12 FuncƟons of Several Variables

Going back to fx, now assume 2x+1 = 0, i.e., that x = −1/2, then consider
fy = 0:

fy = 0

x2 + 2y+ x = 0, and since x = −1/2, we have
1/4+ 2y− 1/2 = 0

y = 1/8.

Thus if x = −1/2, y = 1/8 giving the criƟcal point (−1/2, 1/8).
With D = 4y−(2x+1)2, we apply the Second DerivaƟve Test to each criƟcal

point.
At (−1, 0), D < 0, so (−1, 0) is a saddle point.
At (0, 0), D < 0, so (0, 0) is also a saddle point.
At (−1/2, 1/8), D > 0 and fxx > 0, so (−1/2, 1/8) is a relaƟve minimum.
Figure 12.30 shows a graph of f and the three criƟcal points. Note how this

funcƟon does not vary much near the criƟcal points – that is, visually it is diffi-
cult to determinewhether a point is a saddle point or relaƟveminimum (or even
a criƟcal point at all!). This is one reason why the Second DerivaƟve Test is so
important to have. ...

Constrained OpƟmizaƟon

When opƟmizing funcƟons of one variable such as y = f(x), we made use
of Theorem 25, the Extreme Value Theorem, that said that over a closed inter-
val I, a conƟnuous funcƟon has both a maximum and minimum value. To find
these maximum and minimum values, we evaluated f at all criƟcal points in the
interval, as well as at the endpoints (the “boundary”) of the interval.

A similar theorem and procedure applies to funcƟons of two variables. A
conƟnuous funcƟon over a closed set also aƩains a maximum and minimum
value (see the following theorem). We can find these values by evaluaƟng the
funcƟon at the criƟcal values in the set and over the boundary of the set. AŌer
formally staƟng this extreme value theorem, we give examples.

.

.

.
Theorem 116 Extreme Value Theorem

Let z = f(x, y) be a conƟnuous funcƟon on a closed, bounded set S. Then
f has a maximum and minimum value on S.

.. Example 437 ..Finding extrema on a closed set
Let f(x, y) = x2 − y2 + 5 and let S be the triangle with verƟces (−1,−2), (0, 1)
and (2,−2). Find the maximum and minimum values of f on S.

Notes:
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Figure 12.31: Ploƫng the surface of f
along with the restricted domain S.

12.8 Extreme Values

SÊ½çã®ÊÄ It can help to see a graph of f along with the set S. In Figure
12.31(a) the triangle defining S is shown in the x-y plane in a dashed line. Above
it is the surface of f; we are only concerned with the porƟon of f enclosed by the
“triangle” on its surface.

We begin by finding the criƟcal points of f. With fx = 2x and fy = −2y, we
find only one criƟcal point, at (0, 0).

We now find the maximum and minimum values that f aƩains along the
boundary of S, that is, along the edges of the triangle. In Figure 12.31(b) we
see the triangle sketched in the plane with the equaƟons of the lines forming its
edges labeled.

Start with the boƩom edge, along the line y = −2. If y is −2, then on
the surface, we are considering points f(x,−2); that is, our funcƟon reduces to
f(x,−2) = x2 − (−2)2 + 5 = x2 + 1 = f1(x). We want to maximize/minimize
f1(x) = x2 + 1 on the interval [−1, 2]. To do so, we evaluate f1(x) at its criƟcal
points and at the endpoints. ..

The criƟcal points of f1 are found by seƫng its derivaƟve equal to 0:

f ′1(x) = 0 ⇒ x = 0.

EvaluaƟng f1 at this criƟcal point, and at the endpoints of [−1, 1] gives:

f1(−1) = 2 ⇒ f(−1,−2) = 2
f1(0) = 1 ⇒ f(0,−2) = 1
f1(2) = 5 ⇒ f(2,−2) = 5.

NoƟce how evaluaƟng f1 at a point is the same as evaluaƟng f at its correspond-
ing point.

We need to do this process twice more, for the other two edges of the tri-
angle.

Along the leŌ edge, along the line y = 3x + 1, we subsƟtute 3x + 1 in for y
in f(x, y):

f(x, y) = f(x, 3x+ 1) = x2 − (3x+ 1)2 + 5 = −8x2 − 6x+ 4 = f2(x).

We want the maximum and minimum values of f2 on the interval [−1, 0], so we
evaluate f2 at its criƟcal points and the endpoints of the interval. We find the
criƟcal points:

f ′2(x) = −16x− 6 = 0 ⇒ x = −3/8.

Evaluate f2 at its criƟcal point and the endpoints of [−1, 0]:

f2(−1) = 2 ⇒ f(−1,−2) = 2
f2(−3/8) = 41/8 = 5.125 ⇒ f(−3/8,−0.125) = 5.125

f2(0) = 1 ⇒ f(0, 1) = 4.

Notes:
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important points along the boundary of S
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Chapter 12 FuncƟons of Several Variables

Finally, we evaluate f along the right edgeof the triangle, where y = −3/2x+
1.

f(x, y) = f(x,−3/2x+ 1) = x2 − (−3/2x+ 1)2 + 5 = −5
4
x2 + 3x+ 4 = f3(x).

The criƟcal points of f3(x) are:

f ′3(x) = 0 ⇒ x = 6/5 = 1.2.

We evaluate f3 at this criƟcal point and at the endpoints of the interval [0, 2]:

f3(0) = 4 ⇒ f(0, 1) = 4
f3(1.2) = 5.8 ⇒ f(1.2,−0.8) = 5.8

f3(2) = 5 ⇒ f(2,−2) = 5.

One last point to test: the criƟcal point of f, (0, 0). We find f(0, 0) = 5.
We have evaluated f at a total of 7 different places, all shown in Figure 12.32.

We checked each vertex of the triangle twice, as each showed up as the end-
point of an interval twice. Of all the z-values found, the maximum is 5.8, found
at (1.2,−0.8); the minimum is 1, found at (0,−2). ...

This porƟon of the text is enƟtled “Constrained OpƟmizaƟon” because we
want to opƟmize a funcƟon (i.e., find its maximum and/or minimum values)
subject to a constraint – some limit to what values the funcƟon can aƩain. In
the previous example, we constrained ourselves to considering a funcƟon only
within the boundary of a triangle. This was largely arbitrary; the funcƟon and
the boundary were chosen just as an example, with no real “meaning” behind
the funcƟon or the chosen constraint.

However, solving constrainedopƟmizaƟonproblems is a very important topic
in appliedmathemaƟcs. The techniques developed here are the basis for solving
larger problems, where more than two variables are involved.

We illustrate the technique once more with a classic problem.

.. Example 438 ..Constrained OpƟmizaƟon
The U.S. Postal Service states that the girth+length of Standard Post Package
must not exceed 130”. Given a rectangular box, the “length” is the longest side,
and the “girth” is twice the width+height.

Given a rectangular box where the width and height are equal, what are the
dimensions of the box that give the maximum volume subject to the constraint
of the size of a Standard Post Package?

SÊ½çã®ÊÄ Letw, h and ℓ denote the width, height and length of a rect-
angular box; we assume here thatw = h. The girth is then 2(w+ h) = 4w. The

Notes:
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12.8 Extreme Values

volume of the box is V(w, ℓ) = whℓ = w2ℓ. We wish to maximize this volume
subject to the constraint 4w+ ℓ ≤ 130, or ℓ ≤ 130− 4w. (Common sense also
indicates that ℓ > 0,w > 0.)

We begin by finding the criƟcal values of V. We find that Vw = 2wℓ and
Vℓ = w2; these are simultaneously 0 only at (0, 0). This gives a volume of 0, so
we can ignore this criƟcal point.

We now consider the volume along the constraint ℓ = 130− 4w. Along this
line, we have:

V(wℓ) = V(w, 130− 4w) = w2(130− 4w) = 130w2 − 4w3 = V1(w).

The constraint is applicable on the w-interval [0, 32.5] as indicated in the figure.
Thus we want to maximize V1 on [0, 32.5].

Finding the criƟcal values of V1, we take the derivaƟve and set it equal to 0:

V ′
1(w) = 260w−12w2 = 0 ⇒ w(260−12w) = 0 ⇒ w = 0,

260
12

≈ 21.67.

We found two criƟcal values: when w = 0 and when w = 21.67. We again
ignore the w = 0 soluƟon; the maximum volume, subject to the constraint,
comes at w = h = 21.67, ℓ = 130 − 4(21.6) = 43.33. This gives a volume of
V(21.67, 43.33) ≈ 19, 408in3.

The volume funcƟon V(w, ℓ) is shown in Figure 12.33 along with the con-
straint ℓ = 130 − 4w. As done previously, the constraint is drawn dashed in
the x-y plane and also along the surface of the funcƟon. The point where the
volume is maximized is indicated. ...

It is hard to overemphasize the importance of opƟmizaƟon. In “the real
world,” we rouƟnely seek to make something beƩer. By expressing the some-
thing as a mathemaƟcal funcƟon, “making something beƩer” means “opƟmize
some funcƟon.”

The techniques shownhere are only the beginning of an incredibly important
field. Many funcƟons that we seek to opƟmize are incredibly complex, making
the step of “find the gradient and set it equal to 0⃗” highly nontrivial. Mastery
of the principles here are key to being able to tackle these more complicated
problems.

Notes:
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Exercises 12.8
Terms and Concepts
1. T/F: Theorem 114 states that if f has a criƟcal point at P,

then f has a relaƟve extrema at P.

2. T/F: A point P is a criƟcal point of f if fx and fy are both 0 at
P.

3. T/F: A point P is a criƟcal point of f if fx or fy are undefined
at P.

4. Explain what it means to “solve a constrained opƟmizaƟon”
problem.

Problems
Exercises 5 – 14, find the criƟcal points of the given funcƟon.
Use the Second DerivaƟve Test to determine if each criƟcal
point corresponds to a relaƟve maximum, minimum, or sad-
dle point.

5. f(x, y) = 1
2 x

2 + 2y2 − 8y+ 4x

6. f(x, y) = x2 + 4x+ y2 − 9y+ 3xy

7. f(x, y) = x2 + 3y2 − 6y+ 4xy

8. f(x, y) =
1

x2 + y2 + 1

9. f(x, y) = x2 + y3 − 3y+ 1

10. f(x, y) =
1
3
x3 − x+

1
3
y3 − 4y

11. f(x, y) = x2y2

12. f(x, y) = x4 − 2x2 + y3 − 27y− 15

13. f(x, y) =
√

16− (x− 3)2 − y2

14. f(x, y) =
√

x2 + y2

Exercises 15 – 18, find the absolute maximum and minimum
of the funcƟon subject to the given constraint.

15. f(x, y) = x2 + y2 + y + 1, constrained to the triangle with
verƟces (0, 1), (−1,−1) and (1,−1).

16. f(x, y) = 5x − 7y, constrained to the region bounded by
y = x2 and y = 1.

17. f(x, y) = x2 + 2x + y2 + 2y, constrained to the region
bounded by the circle x2 + y2 = 4.

18. f(x, y) = 3y − 2x2, constrained to the region bounded by
the parabola y = x2 + x− 1 and the line y = x.
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13.1 Iterated Integrals and Area
In Chapter 12 we found that it was useful to differenƟate funcƟons of several
variables with respect to one variable, while treaƟng all the other variables as
constants or coefficients. We can integrate funcƟons of several variables in a
similar way. For instance, if we are told that fx(x, y) = 2xy, we can treat y as
staying constant and integrate to obtain f(x, y):

f(x, y) =
∫

fx(x, y) dx

=

∫
2xy dx

= x2y+ C.

Make a careful note about the constant of integraƟon, C. This “constant” is
something with a derivaƟve of 0 with respect to x, so it could be any expres-
sion that contains only constants and funcƟons of y. For instance, if f(x, y) =
x2y+ sin y+ y3 + 17, then fx(x, y) = 2xy. To signify that C is actually a funcƟon
of y, we write:

f(x, y) =
∫

fx(x, y) dx = x2y+ C(y).

Using this process we can even evaluate definite integrals.

.. Example 439 IntegraƟng funcƟons of more than one variable

Evaluate the integral
∫ 2y

1
2xy dx.

SÊ½çã®ÊÄ Wefind the indefinite integral as before, then apply the Fun-
damental Theorem of Calculus to evaluate the definite integral:∫ 2y

1
2xy dx = x2y

∣∣∣2y
1

= (2y)2y− 2(1)y

= 4y3 − 2y...
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We can also integrate with respect to y. In general,∫ h2(y)

h1(y)
fx(x, y) dx = f(x, y)

∣∣∣h2(y)
h1(y)

= f
(
h2(y), y

)
− f
(
h1(y), y

)
,

and ∫ g2(x)

g1(x)
fy(x, y) dy = f(x, y)

∣∣∣g2(x)
g1(x)

= f
(
x, g2(x)

)
− f
(
x, g1(x)

)
.

Note that when integraƟng with respect to x, the bounds are funcƟons of y
(of the form x = h1(y) and x = h2(y)) and the final result is also a funcƟon of y.
When integraƟng with respect to y, the bounds are funcƟons of x (of the form
y = g1(x) and y = g2(x)) and the final result is a funcƟon of x. Another example
will help us understand this.

.. Example 440 IntegraƟng funcƟons of more than one variable

Evaluate
∫ x

1

(
5x3y−3 + 6y2

)
dy.

SÊ½çã®ÊÄ We consider x as staying constant and integratewith respect
to y: ∫ x

1

(
5x3y−3 + 6y2

)
dy =

(
5x3y−2

−2
+

6y3

3

) ∣∣∣∣∣
x

1

=

(
−5
2
x3x−2 + 2x3

)
−
(
−5
2
x3 + 2

)
=

9
2
x3 − 5

2
x− 2.

Note how the bounds of the integral are from y = 1 to y = x and that the final
answer is a funcƟon of x. ..

In the previous example, we integrated a funcƟon with respect to y and
ended up with a funcƟon of x. We can integrate this as well. This process is
known as iterated integraƟon, ormulƟple integraƟon.

.. Example 441 ..IntegraƟng an integral

Evaluate
∫ 2

1

(∫ x

1

(
5x3y−3 + 6y2

)
dy
)

dx.

SÊ½çã®ÊÄ We follow a standard “order of operaƟons” and perform the
operaƟons inside parentheses first (which is the integral evaluated in Example

Notes:
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440.) ∫ 2

1

(∫ x

1

(
5x3y−3 + 6y2

)
dy
)

dx =
∫ 2

1

([
5x3y−2

−2
+

6y3

3

] ∣∣∣∣∣
x

1

)
dx

=

∫ 2

1

(
9
2
x3 − 5

2
x− 2

)
dx

=

(
9
8
x4 − 5

4
x2 − 2x

) ∣∣∣∣∣
2

1

=
89
8
.

Note how the bounds of x were x = 1 to x = 2 and the final result was a num-
ber. ...

The previous example showed how we could perform something called an
iterated integral; we do not yet know why we would be interested in doing so
nor what the result, such as the number 89/8, means. Before we invesƟgate
these quesƟons, we offer some definiƟons.

.

.

.
DefiniƟon 100 Iterated IntegraƟon

Iterated integraƟon is the process of repeatedly integraƟng the results
of previous integraƟons. IntegraƟng one integral is denoted as follows.

Let a, b, c and d be numbers and let g1(x), g2(x), h1(y) and h2(y) be
funcƟons of x and y, respecƟvely. Then:

1.
∫ d

c

∫ h2(y)

h1(y)
f(x, y) dx dy =

∫ d

c

(∫ h2(y)

h1(y)
f(x, y) dx

)
dy.

2.
∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx =

∫ b

a

(∫ g2(x)

g1(x)
f(x, y) dy

)
dx.

Again make note of the bounds of these iterated integrals.

With
∫ d

c

∫ h2(y)

h1(y)
f(x, y) dx dy, x varies from h1(y) to h2(y), whereas y varies from

c to d. That is, the bounds of x are curves, the curves x = h1(y) and x = h2(y),
whereas the bounds of y are constants, y = c and y = d. It is useful to remember
that when seƫng up and evaluaƟng such iterated integrals, we integrate “from

Notes:
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Figure 13.1: CalculaƟng the area of a
plane region R with an iterated integral.
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Figure 13.2: CalculaƟng the area of a
plane region R with an iterated integral.
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curve to curve, then from point to point.”

We now begin to invesƟgate why we are interested in iterated integrals and
what they mean.

Area of a plane region

Consider the plane region R bounded by a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x),
shown in Figure 13.1. We learned in SecƟon 7.1 that the area of R is given by

∫ b

a

(
g2(x)− g1(x)

)
dx.

We can also view the expression
(
g2(x)− g1(x)

)
as

(
g2(x)− g1(x)

)
=

∫ g2(x)

g1(x)
1 dy =

∫ g2(x)

g1(x)
dy,

meaning we can express the area of R as an iterated integral:

area of R =

∫ b

a

(
g2(x)− g1(x)

)
dx =

∫ b

a

(∫ g2(x)

g1(x)
dy

)
dx =

∫ b

a

∫ g2(x)

g1(x)
dy dx.

In short: a certain iterated integral can be viewed as giving the area of a
plane region.

A region R could also be defined by c ≤ y ≤ d and h1(y) ≤ x ≤ h2(x), as
shown in Figure 13.2. Using a process similar to that above, we have

the area of R =

∫ d

c

∫ h2(y)

h1(y)
dx dy.

We state this formally in a theorem.

Notes:
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Figure 13.3: CalculaƟng the area of a rect-
angle with an iterated integral in Example
442.
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Figure 13.4: CalculaƟng the area of a tri-
angle with iterated integrals in Example
443.

13.1 Iterated Integrals and Area

.

.

.
Theorem 117 Area of a plane region

1. Let R be a plane region bounded by a ≤ x ≤ b and g1(x) ≤ y ≤
g2(x), where g1 and g2 are conƟnuous funcƟons on [a, b]. The area
A of R is

A =

∫ b

a

∫ g2(x)

g1(x)
dy dx.

2. Let R be a plane region bounded by c ≤ y ≤ d and h1(y) ≤ x ≤
h2(y), where h1 and h2 are conƟnuous funcƟons on [c, d]. The area
A of R is

A =

∫ d

c

∫ h2(y)

h1(y)
dx dy.

The following examples should help us understand this theorem.

.. Example 442 Area of a rectangle
Find the area A of the rectangle with corners (−1, 1) and (3, 3), as shown in
Figure 13.3.

SÊ½çã®ÊÄ MulƟple integraƟon is obviously overkill in this situaƟon, but
we proceed to establish its use.

The region R is bounded by x = −1, x = 3, y = 1 and y = 3. Choosing to
integrate with respect to y first, we have

A =

∫ 3

−1

∫ 3

1
1 dy dx =

∫ 3

−1

(
y
∣∣∣3
1

)
dx =

∫ 3

−1
2 dx = 2x

∣∣∣3
−1

= 8.

We could also integrate with respect to x first, giving:

A =

∫ 3

1

∫ 3

−1
1 dx dy =

∫ 3

1

(
x
∣∣∣3
−1

)
dy =

∫ 3

1
4 dy = 4y

∣∣∣3
1
= 8.

Clearly there are simpler ways to find this area, but it is interesƟng to note
that this method works. ..

.. Example 443 ..Area of a triangle
Find the area A of the triangle with verƟces at (1, 1), (3, 1) and (5, 5), as shown
in Figure 13.4.

SÊ½çã®ÊÄ The triangle is bounded by the lines as shown in the figure.
Choosing to integrate with respect to x first gives that x is bounded by x = y

Notes:
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Figure 13.5: CalculaƟng the area of a
plane region with iterated integrals in Ex-
ample 444.
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to x = y+5
2 , while y is bounded by y = 1 to y = 5. (Recall that since x-values

increase from leŌ to right, the leŌmost curve, x = y, is the lower bound and the
rightmost curve, x = (y+ 5)/2, is the upper bound.) The area is

A =

∫ 5

1

∫ y+5
2

y
dx dy

=

∫ 5

1

(
x
∣∣∣ y+5

2

y

)
dy

=

∫ 5

1

(
−1
2
y+

5
2

)
dy

=

(
−1
4
y2 +

5
2
y
) ∣∣∣5

1

= 4.

We can also find the area by integraƟng with respect to y first. In this situa-
Ɵon, though, we have two funcƟons that act as the lower bound for the region
R, y = 1 and y = 2x − 5. This requires us to use two iterated integrals. Note
how the x-bounds are different for each integral:

A =

∫ 3

1

∫ x

1
1 dy dx +

∫ 5

3

∫ x

2x−5
1 dy dx

=

∫ 3

1

(
y
)∣∣∣x

1
dx +

∫ 5

3

(
y
)∣∣∣x

2x−5
dx

=

∫ 3

1

(
x− 1

)
dx +

∫ 5

3

(
− x+ 5

)
dx

= 2 + 2
= 4.

As expected, we get the same answer both ways. ...

.. Example 444 ..Area of a plane region
Find the area of the region enclosed by y = 2x and y = x2, as shown in Figure
13.5.

SÊ½çã®ÊÄ Once again we’ll find the area of the region using both or-
ders of integraƟon.

Using dy dx:∫ 2

0

∫ 2x

x2
1 dy dx =

∫ 2

0
(2x− x2) dx =

(
x2 − 1

3
x3
)∣∣∣2

0
=

4
3
.

Notes:

730



.....

y =
x/3

.

R

.
2

.
4

.
6

.

1

.

2

.

x

.

y

Figure 13.6: Sketching the region R de-
scribed by the iterated integral in Exam-
ple 445.

13.1 Iterated Integrals and Area

Using dx dy:∫ 4

0

∫ √
y

y/2
1 dx dy =

∫ 4

0
(
√
y− y/2) dy =

(
2
3
y3/2 − 1

4
y2
) ∣∣∣4

0
=

4
3
....

Changing Order of IntegraƟon

In each of the previous examples, we have been given a region R and found
the bounds needed to find the area of R using both orders of integraƟon. We
integrated using both orders of operaƟon to demonstrate their equality.

We now approach the skill of describing a region using both orders of inte-
graƟon from a different perspecƟve. Instead of starƟng with a region and cre-
aƟng iterated integrals, we will start with an iterated integral and rewrite it in
the other integraƟon order. To do so, we’ll need to understand the region over
which we are integraƟng.

The simplest of all cases is when both integrals are bound by constants. The
region described by these bounds is a rectangle (see Example 442), and so:∫ b

a

∫ d

c
1 dy dx =

∫ d

c

∫ b

a
1 dx dy.

When the inner integral’s bounds are not constants, it is generally very useful
to sketch the bounds to determinewhat the regionwe are integraƟng over looks
like. From the sketch we can then rewrite the integral with the other order of
integraƟon.

Examples will help us develop this skill.

.. Example 445 Changing the order of integraƟon

Rewrite the iterated integral
∫ 6

0

∫ x/3

0
1 dy dxwith the order of integraƟon dx dy.

SÊ½çã®ÊÄ We need to use the bounds of integraƟon to determine the
region we are integraƟng over.

The bounds tell us that y is bounded by 0 and x/3; x is bounded by 0 and 6.
We plot these four curves: y = 0, y = x/3, x = 0 and x = 6 to find the region
described by the bounds. Figure 13.6 shows these curves, indicaƟng that R is a
triangle.

To change the order of integraƟon, we need to consider the curves that
bound the x-values. We see that the lower bound is x = 3y and the upper
bound is x = 6. The bounds on y are 0 to 2. Thus we can rewrite the integral as∫ 2

0

∫ 6

3y
1 dx dy.

..

Notes:
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Figure 13.7: Drawing the region deter-
mined by the bounds of integraƟon in Ex-
ample 446.

Chapter 13 MulƟple IntegraƟon

.. Example 446 Changing the order of integraƟon

Change the order of integraƟon of
∫ 4

0

∫ (y+4)/2

y2/4
1 dx dy.

SÊ½çã®ÊÄ We sketch the region described by the bounds to help us
change the integraƟon order. x is bounded below and above (i.e., to the leŌ and
right) by x = y2/4 and x = (y+ 4)/2 respecƟvely, and y is bounded between 0
and 4. Graphing the previous curves, we find the region R to be that shown in
Figure 13.7.

To change the order of integraƟon, we need to establish curves that bound
y. The figure makes it clear that there are two lower bounds for y: y = 0 on
0 ≤ x ≤ 2, and y = 2x − 4 on 2 ≤ x ≤ 4. Thus we need two double integrals.
The upper bound for each is y = 2

√
x. Thus we have∫ 4

0

∫ (y+4)/2

y2/4
1 dx dy =

∫ 2

0

∫ 2
√
x

0
1 dy dx+

∫ 4

2

∫ 2
√
x

2x−4
1 dy dx.

..

This secƟon has introduced a new concept, the iterated integral. We devel-
oped one applicaƟon for iterated integraƟon: area between curves. However,
this is not new, for we already know how to find areas bounded by curves.

In the next secƟon we apply iterated integraƟon to solve problems we cur-
rently do not know how to handle.

Notes:
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Exercises 13.1
Terms and Concepts
1. When integraƟng fx(x, y) with respect to x, the constant of

integraƟon C is really which: C(x) or C(y)? What does this
mean?

2. IntegraƟng an integral is called .

3. When evaluaƟng an iterated integral, we integrate from
to , then from to .

4. One understanding of an iterated integral is that∫ b

a

∫ g2(x)

g1(x)
dy dx gives the of a plane region.

Problems
In Exercises 5 – 10, evaluate the integral and subsequent it-
erated integral.

5. (a)
∫ 5

2

(
6x2 + 4xy− 3y2

)
dy

(b)
∫ −2

−3

∫ 5

2

(
6x2 + 4xy− 3y2

)
dy dx

6. (a)
∫ π

0

(
2x cos y+ sin x

)
dx

(b)
∫ π/2

0

∫ π

0

(
2x cos y+ sin x

)
dx dy

7. (a)
∫ x

1

(
x2y− y+ 2

)
dy

(b)
∫ 2

0

∫ x

1

(
x2y− y+ 2

)
dy dx

8. (a)
∫ y2

y

(
x− y

)
dx

(b)
∫ 1

−1

∫ y2

y

(
x− y

)
dx dy

9. (a)
∫ y

0

(
cos x sin y

)
dx

(b)
∫ π

0

∫ y

0

(
cos x sin y

)
dx dy

10. (a)
∫ x

0

(
1

1+ x2

)
dy

(b)
∫ 2

1

∫ x

0

(
1

1+ x2

)
dy dx

In Exercises 11 – 16, a graph of a planar region R is given. Give
the iterated integrals, with both orders of integraƟon dy dx
and dx dy, that give the area of R. Evaluate one the iterated
integrals to find the area.
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16.
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In Exercises 17 – 22, iterated integrals are given that compute
the area of a region R in the x-y plane. Sketch the region R,
and give the iterated integral(s) that give the area of R with
the opposite order of integraƟon.

17.
∫ 2

−2

∫ 4−x2

0
dy dx

18.
∫ 1

0

∫ 5−5x2

5−5x
dy dx

19.
∫ 2

−2

∫ 2
√

4−y2

0
dx dy

20.
∫ 3

−3

∫ √
9−x2

−
√

9−x2
dy dx

21.
∫ 1

0

∫ √
y

−√
y
dx dy+

∫ 4

1

∫ √
y

y−2
dx dy

22.
∫ 1

−1

∫ (1−x)/2

(x−1)/2
dy dx
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Figure 13.8: Developing a method for
finding signed volume under a surface.

13.2 Double IntegraƟon and Volume

13.2 Double IntegraƟon and Volume

The definite integral of f over [a, b],
∫ b
a f(x) dx, was introduced as “the signed

area under the curve.” We approximated the value of this area by first subdivid-
ing [a, b] into n subintervals, where the i th subinterval has length∆xi, and leƫng
ci be any value in the i th subinterval. We formed rectangles that approximated
part of the area under the curve with width ∆xi, height f(ci), and hence with
area f(ci)∆xi. Summing up all rectangles gave an approximaƟon of the definite
integral, and Theorem 38 stated that∫ b

a
f(x) dx = lim

∥∆x∥→0

∑
f(ci)∆xi,

connecƟng sums of rectangles to area under the curve.

We use a similar approach in this secƟon to find volume under a surface.

Let R be a closed, bounded region in the x-y plane and let z = f(x, y) be
a conƟnuous funcƟon defined on R. We wish to find the signed volume under
the surface of f over R. (We use the term “signed volume” to denote that space
above the x-y plane, under f, will have a posiƟve volume; space above f and
under the x-y planewill have a “negaƟve” volume, similar to the noƟon of signed
area used before.)

We start by parƟƟoning R into n rectangular subregions as shown in Figure
13.8(a). For simplicity’s sake, we let all widths be ∆x and all heights be ∆y.
Note that the sum of the areas of the rectangles is not equal to the area of R,
but rather is a close approximaƟon. Arbitrarily number the rectangles 1 through
n, and pick a point (xi, yi) in the i th subregion.

The volume of the rectangular solid whose base is the i th subregion and
whose height is f(xi, yi) is Vi = f(xi, yi)∆x∆y. Such a solid is shown in Figure
13.8(b). Note how this rectangular solid only approximates the true volume un-
der the surface; part of the solid is above the surface and part is below.

For each subregion Ri used to approximate R, create the rectangular solid
with base area∆x∆y and height f(xi, yi). The sum of all rectangular solids is

n∑
i=1

f(xi, yi)∆x∆y.

This approximates the signed volume under f over R. As we have done before,
to get a beƩer approximaƟon we can use more rectangles to approximate the
region R.

In general, each rectangle could have a different width∆xj and height∆yk,
giving the i th rectangle an area ∆Ai = ∆xj∆yk and the i th rectangular solid a

Notes:
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volume of f(xi, yi)∆Ai. Let |∆A| denote the length of the longest diagonal of all
rectangles in the subdivision of R; |∆A| → 0 means each rectangle’s width and
height are both approaching 0. If f is a conƟnuous funcƟon, as∆A shrinks (and

hence n → ∞) the summaƟon
n∑

i=1

f(xi, yi)∆Ai approximates the signed volume

beƩer and beƩer. This leads to a definiƟon.

.

.

.
DefiniƟon 101 Double Integral, Signed Volume

Let z = f(x, y) be a conƟnuous funcƟon defined over a closed region R
in the x-y plane. The signed volume V under f over R is denoted by the
double integral

V =

∫∫
R
f(x, y) dA.

Alternate notaƟons for the double integral are∫∫
R
f(x, y) dA =

∫∫
R
f(x, y) dx dy =

∫∫
R
f(x, y) dy dx.

The definiƟon above does not state how to find the signed volume, though
the notaƟon offers a hint. We need the next two theorems to evaluate double
integrals to find volume.

.

.

.
Theorem 118 Double Integrals and Signed Volume

Let z = f(x, y) be a conƟnuous funcƟon defined over a closed region R
in the x-y plane. Then the signed volume V under f over R is

V =

∫∫
R
f(x, y) dA = lim

|∆A|→0

n∑
i=1

f(xi, yi)∆Ai.

This theorem states that we can find the exact signed volume using a limit
of sums. The parƟƟon of the region R is not specified, so any parƟƟoning where
the diagonal of each rectangle shrinks to 0 results in the same answer.

This does not offer a very saƟsfying way of compuƟng area, though. Our
experience has shown that evaluaƟng the limits of sums can be tedious. We
seek a more direct method.

Recall Theorem 54 in SecƟon 7.2. This stated that if A(x) gives the cross-
secƟonal area of a solid at x, then

∫ b
a A(x) dx gave the volume of that solid over

Notes:
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Figure 13.9: Finding volume under a sur-
face by sweeping out a cross–secƟonal
area.

13.2 Double IntegraƟon and Volume

[a, b].
Consider Figure 13.9, where a surface z = f(x, y) is drawn over a region R.

Fixing a parƟcular x value, we can consider the area under f over R where x has
that fixed value. That area can be found with a definite integral, namely

A(x) =
∫ g2(x)

g1(x)
f(x, y) dy.

Remember that though the integrand contains x, we are viewing x as fixed.
Also note that the bounds of integraƟon are funcƟons of x: the bounds depend
on the value of x.

As A(x) is a cross-secƟonal area funcƟon, we can find the signed volume V
under f by integraƟng it:

V =

∫ b

a
A(x) dx =

∫ b

a

(∫ g2(x)

g1(x)
f(x, y) dy

)
dx =

∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx.

This gives a concrete method for finding signed volume under a surface. We
could do a similar procedurewherewe startedwith y fixed, resulƟng in a iterated
integral with the order of integraƟon dx dy. The following theorem states that
both methods give the same result, which is the value of the double integral. It
is such an important theorem it has a name associated with it.

.

.

.
Theorem 119 Fubini’s Theorem

Let R be a closed, bounded region in the x-y plane and let z = f(x, y) be
a conƟnuous funcƟon on R.

1. If R is bounded by a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x), where g1
and g2 are conƟnuous funcƟons on [a, b], then∫∫

R
f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx.

2. If R is bounded by c ≤ y ≤ d and h1(y) ≤ x ≤ h2(y), where h1
and h2 are conƟnuous funcƟons on [c, d], then∫∫

R
f(x, y) dA =

∫ d

c

∫ h2(y)

h1(y)
f(x, y) dx dy.

Notes:
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Figure 13.10: Finding the signed volume
under a surface in Example 447.

Chapter 13 MulƟple IntegraƟon

Note that once again the bounds of integraƟon follow the “curve to curve,
point to point” paƩern discussed in the previous secƟon. In fact, one of the
main points of the previous secƟon is developing the skill of describing a region
R with the bounds of an iterated integral. Once this skill is developed, we can
use double integrals to compute many quanƟƟes, not just signed volume under
a surface.

.. Example 447 EvaluaƟng a double integral
Let f(x, y) = xy+ey. Find the signed volume under f on the region R, which is the
rectangle with corners (3, 1) and (4, 2) pictured in Figure 13.10, using Fubini’s
Theorem and both orders of integraƟon.

SÊ½çã®ÊÄ We wish to evaluate
∫∫

R

(
xy + ey

)
dA. As R is a rectangle,

the bounds are easily described as 3 ≤ x ≤ 4 and 1 ≤ y ≤ 2.

Using the order dy dx:∫∫
R

(
xy+ ey

)
dA =

∫ 4

3

∫ 2

1

(
xy+ ey

)
dy dx

=

∫ 4

3

([
1
2
xy2 + ey

]∣∣∣∣2
1

)
dx

=

∫ 4

3

(
3
2
x+ e2 − e

)
dx

=

(
3
4
x2 +

(
e2 − e

)
x
)∣∣∣∣2

1

=
21
4

+ e2 − e ≈ 9.92.

Now we check the validity of Fubini’s Theorem by using the order dx dy:∫∫
R

(
xy+ ey

)
dA =

∫ 2

1

∫ 4

3

(
xy+ ey

)
dx dy

=

∫ 2

1

([
1
2
x2y+ xey

]∣∣∣∣4
3

)
dy

=

∫ 2

1

(
7
2
y+ ey

)
dy

=

(
7
4
y2 + ey

)∣∣∣∣2
1

=
21
4

+ e2 − e ≈ 9.92.

Both orders of integraƟon return the same result, as expected. ..

Notes:
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Figure 13.11: Finding the signed volume
under the surface in Example 448.

13.2 Double IntegraƟon and Volume

.. Example 448 EvaluaƟng a double integral
Evaluate

∫∫
R

(
3xy− x2 − y2 + 6

)
dA, where R is the triangle bounded by x = 0,

y = 0 and x/2+ y = 1, as shown in Figure 13.11.

SÊ½çã®ÊÄ While it is not specified which order we are to use, we will
evaluate the double integral using both orders to help drive home the point that
it does not maƩer which order we use.

Using the order dy dx: The bounds on y go from “curve to curve,” i.e., 0 ≤
y ≤ 1− x/2, and the bounds on x go from “point to point,” i.e., 0 ≤ x ≤ 2.∫∫

R
(3xy− x2 − y2 + 6

)
dA =

∫ 2

0

∫ − x
2+1

0
(3xy− x2 − y2 + 6

)
dy dx

=

∫ 2

0

(
3
2
xy2 − x2y− 1

3
y3 + 6y

)∣∣∣∣− x
2+1

0
dx

=

∫ 2

0

(
11
12

x3 − 11
4
x2 − x− 17

3

)
dx

=

(
11
48

x4 − 11
12

x3 − 1
2
x2 − 17

3
x
)∣∣∣∣2

0

=
17
3

= 5.6.

Now lets consider the order dx dy. Here x goes from “curve to curve,” 0 ≤
x ≤ 2− 2y, and y goes from “point to point,” 0 ≤ y ≤ 1:∫∫

R
(3xy− x2 − y2 + 6

)
dA =

∫ 1

0

∫ 2−2y

0
(3xy− x2 − y2 + 6

)
dx dy

=

∫ 1

0

(
3
2
x2y− 1

3
x3 − xy2 + 6x

)∣∣∣∣2−2y

0
dy

=

∫ 1

0

(
32
3
y3 − 22y2 + 2y+

28
3

)
dy

=

(
8
3
y4 − 22

3
y3 + y2 +

28
3
y
)∣∣∣∣1

0

=
17
3

= 5.6.

We obtained the same result using both orders of integraƟon. ..

Note how in these two examples that the bounds of integraƟon depend only
on R; the bounds of integraƟon have nothing to do with f(x, y). This is an impor-
tant concept, so we include it as a Key Idea.

Notes:
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Figure 13.13: Finding the signed volume
under a surface in Example 449.

Chapter 13 MulƟple IntegraƟon

.

.

.
Key Idea 56 Double IntegraƟon Bounds

When evaluaƟng
∫∫

R f(x, y) dA using an iterated integral, the bounds of
integraƟon depend only on R. The surface f does not determine the
bounds of integraƟon.

Before doing another example, we give some properƟes of double integrals.
Each should make sense if we view them in the context of finding signed volume
under a surface, over a region.

.

.

.
Theorem 120 ProperƟes of Double Integrals

Let f and g be conƟnuous funcƟons over a closed, bounded plane region
R, and let c be a constant.

1.
∫∫

R
cf(x, y) dA = c

∫∫
R
f(x, y) dA.

2.
∫∫

R

(
f(x, y)± g(x, y)

)
dA =

∫∫
R
f(x, y) dA±

∫∫
R
g(x, y) dA

3. If f(x, y) ≥ 0 on R, then
∫∫

R
f(x, y) dA ≥ 0.

4. If f(x, y) ≥ g(x, y) on R, then
∫∫

R
f(x, y) dA ≥

∫∫
R
g(x, y) dA.

5. Let R be the union of two nonoverlapping regions, R = R1
∪

R2
(see Figure 13.12). Then∫∫

R
f(x, y) dA =

∫∫
R1
f(x, y) dA+

∫∫
R2
f(x, y) dA.

.. Example 449 ..EvaluaƟng a double integral
Let f(x, y) = sin x cos y and R be the triangle with verƟces (−1, 0), (1, 0) and
(0, 1) (see Figure 13.13). Evaluate the double integral

∫∫
R f(x, y) dA.

SÊ½çã®ÊÄ If we aƩempt to integrate using an iterated integral with the
order dy dx, note how there are two upper bounds on Rmeaning we’ll need to
use two iterated integrals. We can split the triangle into to regions along the

Notes:
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Figure 13.14: Finding the volume under
the surface in Example 450.

13.2 Double IntegraƟon and Volume

y-axis, then use Theorem 120, part 5.
Instead, let’s use the order dx dy. The curves bounding x are y − 1 ≤ x ≤

1− y; the bounds on y are 0 ≤ y ≤ 1. This gives us:∫∫
R
f(x, y) dA =

∫ 1

0

∫ 1−y

y−1
sin x cos y dx dy

=

∫ 1

0

(
− cos x cos y

)∣∣∣1−y

y−1
dy

=

∫ 1

0
cos y

(
− cos(1− y) + cos(y− 1)

)
dy.

Recall that the cosine funcƟon is an even funcƟon; that is, cos x = cos(−x).
Therefore, from the last integral above, we have cos(y− 1) = cos(1− y). Thus
the integrand simplifies to 0, and we have∫∫

R
f(x, y) dA =

∫ 1

0
0 dy

= 0.

It turns out that over R, there is just as much volume above the x-y plane as be-
low (look again at Figure 13.13), giving a final signed volume of 0. ...

.. Example 450 ..EvaluaƟng a double integral
Evaluate

∫∫
R(4−y) dA, where R is the region bounded by the parabolas y2 = 4x

and x2 = 4y, graphed in Figure 13.14.

SÊ½çã®ÊÄ Graphing each curve can help us find their points of inter-
secƟon; analyƟcally, the second equaƟon tells us that y = x2/4. SubsƟtuƟng
this value in for y in the first equaƟon gives us x4/16 = 4x. Solving for x:

x4

16
= 4x

x4 − 64x = 0

x(x3 − 64) = 0
x = 0, 4.

Thus we’ve found analyƟcally what was easy to approximate graphically: the
regions intersect at (0, 0) and (4, 4), as shown in Figure 13.14.

We now choose an order of integraƟon: dy dx or dx dy? Either order works;
since the integrand does not contain x, choosing dx dy might be simpler – at
least, the first integral is very simple.

Notes:
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Chapter 13 MulƟple IntegraƟon

Thus we have the following “curve to curve, point to point” bounds: y2/4 ≤
x ≤ 2

√
y, and 0 ≤ y ≤ 4.∫∫

R
(4− y) dA =

∫ 4

0

∫ 2
√
y

y2/4
(4− y) dx dy

=

∫ 4

0

(
x(4− y)

)∣∣∣2√y

y2/4
dy

=

∫ 4

0

((
2
√
y− y2

4
)(
4− y)

)
dy =

∫ 4

0

(y3
4

− y2 − 2y3/2 + 8y1/2
)
dy

=

(
y4

16
− y3

3
− 4y5/2

5
+

16y3/2

3

)∣∣∣∣4
0

=
176
15

= 11.73.

The signed volume under the surface f is about 11.7 cubic units. ...

In the previous secƟon we pracƟced changing the order of integraƟon of a
given iterated integral, where the region R was not explicitly given. Changing
the bounds of an integral is more than just an test of understanding. Rather,
there are cases where integraƟng in one order is really hard, if not impossible,
whereas integraƟng with the other order is feasible.

.. Example 451 ..Changing the order of integraƟon

Rewrite the iterated integral
∫ 3

0

∫ 3

y
e−x2 dx dy with the order dy dx. Comment

on the feasibility to evaluate each integral.

SÊ½çã®ÊÄ Once again we make a sketch of the region over which we
are integraƟng to facilitate changing the order. The bounds on x are from x = y
to x = 3; the bounds on y are from y = 0 to y = 3. These curves are sketched
in Figure 13.15, enclosing the region R.

To change the bounds, note that the curves bounding y are y = 0 up to
y = x; the triangle is enclosed between x = 0 and x = 3. Thus the new
bounds of integraƟon are 0 ≤ y ≤ x and 0 ≤ x ≤ 3, giving the iterated in-

tegral
∫ 3

0

∫ x

0
e−x2 dy dx.

How easy is it to evaluate each iterated integral? Consider the order of in-
tegraƟng dx dy, as given in the original problem. The first indefinite integral we
need to evaluate is

∫
e−x2 dx; we have stated before (see SecƟon 5.5) that this

integral cannot be evaluated in terms of elementary funcƟons. We are stuck.
Changing the order of integraƟonmakes a big difference here. In the second

Notes:
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13.2 Double IntegraƟon and Volume

iterated integral, we are faced with
∫
e−x2 dy; integraƟng with respect to y gives

us ye−x2 + C, and the first definite integral evaluates to∫ x

0
e−x2 dy = xe−x2 .

Thus ∫ 3

0

∫ x

0
e−x2 dy dx =

∫ 3

0

(
xe−x2

)
dx.

This last integral is easy to evaluate with subsƟtuƟon, giving a final answer of
1
2 (1− e−9) ≈ 0.5. Figure 13.16 shows the surface over R.

In short, evaluaƟng one iterated integral is impossible; the other iterated in-
tegral is relaƟvely simple. ...

DefiniƟon 22 defines the average value of a single–variable funcƟon f(x) on
the interval [a, b] as

average value of f(x) on [a, b] =
1

b− a

∫ b

a
f(x) dx;

that is, it is the “area under f over an interval divided by the length of the inter-
val.” We make an analogous statement here: the average value of z = f(x, y)
over a region R is the volume under f over R divided by the area of R.

.

.

.
DefiniƟon 102 The Average Value of f on R

Let z = f(x, y) be a conƟnuous funcƟon defined over a closed region R
in the x-y plane. The average value of f on R is

average value of f on R =

∫∫
R
f(x, y) dA∫∫
R
dA

.

.. Example 452 ..Finding average value of a funcƟon over a region R
Find the average value of f(x, y) = 4− y over the region R, which is bounded by
the parabolas y2 = 4x and x2 = 4y. Note: this is the same funcƟon and region
as used in Example 450.

SÊ½çã®ÊÄ In Example 450 we found∫∫
R
f(x, y) dA =

∫ 4

0

∫ 2
√
y

y2/4
(4− y) dx dy =

176
15

.

Notes:
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We find the area of R by compuƟng
∫∫

R dA:∫∫
R
dA =

∫ 4

0

∫ 2
√
y

y2/4
dx dy =

16
3
.

Dividing the volume under the surface by the area gives the average value:

average value of f on R =
176/15
16/3

=
11
5

= 2.2.

While the surface, as shown in Figure 13.17, covers z-values from z = 0 to z = 4,
the “average” z-value on R is 2.2. ...

The previous secƟon introduced the iterated integral in the context of find-
ing the area of plane regions. This secƟon has extended our understanding of
iterated integrals; nowwe see they can be used to find the signed volume under
a surface.

This new understanding allows us to revisit what we did in the previous sec-
Ɵon. Given a region R in the plane, we computed

∫∫
R 1 dA; again, our under-

standing at the Ɵme was that we were finding the area of R. However, we can
now view the funcƟon z = 1 as a surface, a flat surface with constant z-value of
1. The double integral

∫∫
R 1 dA finds the volume, under z = 1, over R, as shown

in Figure 13.18. Basic geometry tells us that if the base of a general right cylinder
has area A, its volume is A · h, where h is the height. In our case, the height is
1. We were “actually” compuƟng the volume of a solid, though we interpreted
the number as an area.

The next secƟon extends our abiliƟes to find “volumes under surfaces.” Cur-
rently, some integrals are hard to compute because either the region R we are
integraƟng over is hard to define with rectangular curves, or the integrand it-
self is hard to deal with. Some of these problems can be solved by converƟng
everything into polar coordinates.

Notes:
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Exercises 13.2
Terms and Concepts
1. An integral can be interpreted as giving the signed area over

an interval; a double integral can be interpreted as giving
the signed over region.

2. Explain why the following statement is false: “Fu-

bini’s Theorem states that
∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx =∫ b

a

∫ g2(y)

g1(y)
f(x, y) dx dy.”

3. Explain why if f(x, y) > 0 over a region R, then∫∫
R f(x, y) dA > 0.

4. If
∫∫

R f(x, y) dA =
∫∫

R g(x, y) dA, does this imply f(x, y) =
g(x, y)?

Problems
In Exercises 5 – 10, evaluate the given iterated integral. Also
rewrite the integral using the other order of integraƟon.

5.
∫ 2

1

∫ 1

−1

(
x
y
+ 3
)

dx dy

6.
∫ π/2

−π/2

∫ π

0
(sin x cos y) dx dy

7.
∫ 4

0

∫ −x/2+2

0

(
3x2 − y+ 2

)
dy dx

8.
∫ 3

1

∫ 3

y

(
x2y− xy2

)
dx dy

9.
∫ 1

0

∫ √
1−y

−
√

1−y
(x+ y+ 2) dx dy

10.
∫ 9

0

∫ √
y

y/3

(
xy2
)
dx dy

In Exercises 11 – 18, set up the iterated integrals, in both or-
ders, that evaluate the given double integral for the described
region R. Evaluate one of the iterated integrals.

11.
∫∫

R
x2y dA, where R is bounded by y =

√
x and y = x2.

12.
∫∫

R
x2y dA, where R is bounded by y = 3

√
x and y = x3.

13.
∫∫

R
x2 − y2 dA, where R is the rectangle with corners

(−1,−1), (1,−1), (1, 1) and (−1, 1).

14.
∫∫

R
yex dA, where R is bounded by x = 0, x = y2 and

y = 1.

15.
∫∫

R

(
6− 3x− 2y

)
dA, where R is bounded by x = 0, y = 0

and 3x+ 2y = 6.

16.
∫∫

R
ey dA, where R is bounded by y = ln x and

y =
1

e− 1
(x− 1).

17.
∫∫

R

(
x3y−x

)
dA, whereR is the half of the circle x2+y2 = 9

in the first and second quadrants.

18.
∫∫

R

(
4 − 3y

)
dA, where R is bounded by y = 0, y = x/e

and y = ln x.

In Exercises 19 – 22, state why it is difficult/impossible to in-
tegrate the iterated integral in the given order of integraƟon.
Change the order of integraƟon and evaluate the new iter-
ated integral.

19.
∫ 4

0

∫ 2

y/2
ex

2
dx dy

20.
∫ √

π/2

0

∫ √
π/2

x
cos
(
y2
)
dy dx

21.
∫ 1

0

∫ 1

y

2y
x2 + y2

dx dy

22.
∫ 1

−1

∫ 2

1

x tan2 y
1+ ln y

dy dx

In Exercises 23 – 26, find the average value of f over the re-
gion R. NoƟce how these funcƟons and regions are related to
the iterated integrals given in Exercises 5 – 8.

23. f(x, y) =
x
y
+ 3; R is the rectangle with opposite corners

(−1, 1) and (1, 2).

24. f(x, y) = sin x cos y; R is bounded by x = 0, x = π,
y = −π/2 and y = π/2.

25. f(x, y) = 3x2 − y + 2; R is bounded by the lines y = 0,
y = 2− x/2 and x = 0.

26. f(x, y) = x2y − xy2; R is bounded by y = x, y = 1 and
x = 3.
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Figure 13.20: EvaluaƟng a double integral
with polar coordinates in Example 453.

13.3 Double IntegraƟon with Polar Coordinates

y = r sin θ. Finally, find bounds g1(θ) ≤ r ≤ g2(θ) and α ≤ θ ≤ β that describe
R. This is the key principle of this secƟon, so we restate it here as a Key Idea.

.

.

.
Key Idea 57 EvaluaƟng Double Integrals with Polar Coordinates

Let R be a plane region bounded by the polar equaƟons α ≤ θ ≤ β and
g1(θ) ≤ r ≤ g2(θ). Then∫∫

R
f(x, y) dA =

∫ β

α

∫ g2(θ)

g1(θ)
f
(
r cos θ, r sin θ

)
r dr dθ.

Examples will help us understand this Key Idea.

.. Example 453 EvaluaƟng a double integral with polar coordinates
Find the signed volume under the plane z = 4 − x − 2y over the circle with
equaƟon x2 + y2 = 1.

SÊ½çã®ÊÄ The bounds of the integral are determined solely by the re-
gion R over which we are integraƟng. In this case, it is a circle with equaƟon
x2+ y2 = 1. We need to find polar bounds for this region. It may help to review
SecƟon 9.4; the bounds for this circle are 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π.

We replace f(x, y) with f(r cos θ, r sin θ). That means we make the following
subsƟtuƟons:

4− x− 2y ⇒ 4− r cos θ − 2r sin θ.

Finally, we replace dA in the double integral with r dr dθ. This gives the final
iterated integral, which we evaluate:∫∫

R
f(x, y) dA =

∫ 2π

0

∫ 1

0

(
4− r cos θ − 2r sin θ

)
r dr dθ

=

∫ 2π

0

∫ 1

0

(
4r− r2(cos θ − 2 sin θ)

)
dr dθ

=

∫ 2π

0

(
2r2 − 1

3
r3(cos θ − 2 sin θ)

)∣∣∣∣1
0
dθ

=

∫ 2π

0

(
2− 1

3
(
cos θ − 2 sin θ

))
dθ

=

(
2θ − 1

3
(
sin θ + 2 cos θ

))∣∣∣∣2π
0

= 4π ≈ 12.566.

The surface and region R are shown in Figure 13.20. ..

Notes:
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Figure 13.21: Showing the region R and
surface used in Example 454.

Chapter 13 MulƟple IntegraƟon

.. Example 454 ..EvaluaƟng a double integral with polar coordinates
Find the volume under the paraboloid z = 4 − (x − 2)2 − y2 over the region
bounded by the circles (x− 1)2 + y2 = 1 and (x− 2)2 + y2 = 4.

SÊ½çã®ÊÄ At first glance, this seems like a very hard volume to com-
pute as the region R (shown in Figure 13.21(a)) has a hole in it, cuƫng out a
strange porƟon of the surface, as shown in part (b) of the figure. However, by
describing R in terms of polar equaƟons, the volume is not very difficult to com-
pute. It is straighƞorward to show that the circle (x − 1)2 + y2 = 1 has polar
equaƟon r = 2 cos θ, and that the circle (x − 2)2 + y2 = 4 has polar equaƟon
r = 4 cos θ. Each of these circles is traced out on the interval 0 ≤ θ ≤ π. The
bounds on r are 2 cos θ ≤ r ≤ 4 cos θ.

Replacing x with r cos θ in the integrand, along with replacing y with r sin θ,
prepares us to evaluate the double integral

∫∫
R f(x, y) dA:∫∫

R
f(x, y) dA =

∫ π

0

∫ 4 cos θ

2 cos θ

(
4−

(
r cos θ − 2

)2 − (r sin θ)2)r dr dθ
=

∫ π

0

∫ 4 cos θ

2 cos θ

(
− r3 + 4r2 cos θ

)
dr dθ

=

∫ π

0

(
−1
4
r4 +

4
3
r3 cos θ

)∣∣∣∣4 cos θ
2 cos θ

dθ

=

∫ π

0

([
−1
4
(256 cos4 θ) +

4
3
(64 cos4 θ)

]
−[

−1
4
(16 cos4 θ) +

4
3
(8 cos4 θ)

])
dθ

=

∫ π

0

44
3

cos4 θ dθ.

To integrate cos4 θ, rewrite it as cos2 θ cos2 θ and employ the power-reducing
formula twice:

cos4 θ = cos2 θ cos2 θ

=
1
2
(
1+ cos(2θ)

)1
2
(
1+ cos(2θ)

)
=

1
4
(
1+ 2 cos(2θ) + cos2(2θ)

)
=

1
4

(
1+ 2 cos(2θ) +

1
2
(
1+ cos(4θ)

))
=

3
8
+

1
2
cos(2θ) +

1
8
cos(4θ).

Notes:
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Figure 13.22: The surface and region R
used in Example 455.

Note: Previous work has shown that
there is finite area under 1

x2+1 over the
enƟre x-axis. However, Example 455
shows that there is infinite volume under

1
x2+y2+1 over the enƟre x-y plane.

13.3 Double IntegraƟon with Polar Coordinates

Picking up from where we leŌ off above, we have

=

∫ π

0

44
3

cos4 θ dθ

=

∫ π

0

44
3

(
3
8
+

1
2
cos(2θ) +

1
8
cos(4θ)

)
dθ

=
44
3

(
3
8
θ +

1
4
sin(2θ) +

1
32

sin(4θ)
)∣∣∣∣π

0

=
11
2
π ≈ 17.279.

While this example was not trivial, the double integral would have been much
harder to evaluate had we used rectangular coordinates. ...

.. Example 455 EvaluaƟng a double integral with polar coordinates
Find the volume under the surface f(x, y) =

1
x2 + y2 + 1

over the sector of the

circlewith radius a centered at the origin in the first quadrant, as shown in Figure
13.22.

SÊ½çã®ÊÄ The region R we are integraƟng over is a circle with radius
a, restricted to the first quadrant. Thus, in polar, the bounds on R are 0 ≤ r ≤ a,
0 ≤ θ ≤ π/2. The integrand is rewriƩen in polar as

1
x2 + y2 + 1

⇒ 1
r2 cos2 θ + r2 sin2 θ + 1

=
1

r2 + 1
.

We find the volume as follows:∫∫
R
f(x, y) dA =

∫ π/2

0

∫ a

0

r
r2 + 1

dr dθ

=

∫ π/2

0

1
2
(
ln |r2 + 1|

)∣∣∣a
0
dθ

=

∫ π/2

0

1
2
ln(a2 + 1) dθ

=

(
1
2
ln(a2 + 1)θ

)∣∣∣∣π/2
0

=
π

4
ln(a2 + 1).

Figure 13.22 clearly shows that f shrinks to near 0 very quickly. Regardless, as a
grows, so does the volume, without bound. ..

Notes:
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Figure 13.23: Finding the volume of the
solid shown here from two perspecƟves.

Chapter 13 MulƟple IntegraƟon

.. Example 456 Finding the volume of a sphere
Find the volume of a sphere with radius a.

SÊ½çã®ÊÄ The sphere of radius a, centered at the origin, has equaƟon
x2+y2+z2 = a2; solving for z, we have z =

√
a2 − x2 − y2. This gives the upper

half of a sphere. We wish to find the volume under this top half, then double it
to find the total volume.

The region we need to integrate over is the circle of radius a, centered at the
origin. The polar bounds for this equaƟon are 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π.

All together, the volume of a sphere with radius a is:

2
∫∫

R

√
a2 − x2 − y2 dA = 2

∫ 2π

0

∫ a

0

√
a2 − (r cos θ)2 − (r sin θ)2r dr dθ

= 2
∫ 2π

0

∫ a

0
r
√

a2 − r2 dr dθ.

We can evaluate this inner integral with subsƟtuƟon. With u = a2 − r2, du =
−2r dr. The new bounds of integraƟon are u(0) = a2 to u(a) = 0. Thus we
have:

=

∫ 2π

0

∫ 0

a2

(
− u1/2

)
du dθ

=

∫ 2π

0

(
−2
3
u3/2

)∣∣∣∣0
a2
dθ

=

∫ 2π

0

(
2
3
a3
)

dθ

=

(
2
3
a3θ
)∣∣∣∣2π

0

=
4
3
πa3.

Generally, the formula for the volumeof a spherewith radius r is given as 4/3πr3;
we have jusƟfied this formula with our calculaƟon. ..

.. Example 457 ..Finding the volume of a solid
A sculptor wants to make a solid bronze cast of the solid shown in Figure 13.23,
where the base of the solid has boundary, in polar coordinates, r = cos(3θ),
and the top is defined by the plane z = 1 − x + 0.1y. Find the volume of the
solid.

SÊ½çã®ÊÄ From the outset, we should recognize that knowing how to
set up this problem is probably more important than knowing how to compute

Notes:
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13.3 Double IntegraƟon with Polar Coordinates

the integrals. The iterated integral to come is not “hard” to evaluate, though it is
long, requiring lots of algebra. Once the proper iterated integral is determined,
one can use readily–available technology to help compute the final answer.

The region R that we are integraƟng over is bound by 0 ≤ r ≤ cos(3θ),
for 0 ≤ θ ≤ π (note that this rose curve is traced out on the interval [0, π], not
[0, 2π]). This gives us our bounds of integraƟon. The integrand is z = 1−x+0.1y;
converƟng to polar, we have that the volume V is:

V =

∫∫
R
f(x, y) dA =

∫ π

0

∫ cos(3θ)

0

(
1− r cos θ + 0.1r sin θ

)
r dr dθ.

DistribuƟng the r, the inner integral is easy to evaluate, leading to∫ π

0

(
1
2
cos2(3θ)− 1

3
cos3(3θ) cos θ +

0.1
3

cos3(3θ) sin θ
)

dθ.

This integral takes Ɵme to compute by hand; it is rather long and cumbersome.
The powers of cosine need to be reduced, and products like cos(3θ) cos θ need
to be turned to sums using the Product To Sum formulas in the back cover of
this text.

For instance, we rewrite 1
2 cos

2(3θ) as 1
4 (1+ cos(6θ)). We can also rewrite

1
3 cos

3(3θ) cos θ as:

1
3
cos3(3θ) cos θ =

1
3
cos2(3θ) cos(3θ) cos θ =

1
3
1+ cos(6θ)

2
(
cos(4θ)+cos(2θ)

)
.

This last expression sƟll needs simplificaƟon, but eventually all terms can be re-
duced to the form a cos(mθ) or a sin(mθ) for various values of a andm.

We forgo the algebra and recommend the reader employ technology, such
as WolframAlpha®, to compute the numeric answer. Such technology gives:∫ π

0

∫ cos(3θ)

0

(
1− r cos θ + 0.1r sin θ

)
r dr dθ =

π

4
≈ 0.785u3.

Since the units were not specified, we leave the result as almost 0.8 cubic units
(meters, feet, etc.) Should the arƟst want to scale the piece uniformly, so that
each rose petal had a length other than 1, she should keep in mind that scaling
by a factor of k scales the volume by a factor of k3. ...

We have used iterated integrals to find areas of plane regions and volumes
under surfaces. Just as a single integral can be used to computemuchmore than
“area under the curve,” iterated integrals can be used to compute much more
than we have thus far seen. The next two secƟons show two, among many,
applicaƟons of iterated integrals.

Notes:
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Exercises 13.3
Terms and Concepts
1. When evaluaƟng

∫∫
R f(x, y) dA using polar coordinates,

f(x, y) is replaced with and dA is replaced with
.

2. Why would one be interested in evaluaƟng a double inte-
gral with polar coordinates?

Problems
In Exercises 3 – 10, a funcƟon f(x, y) is given and a region R of
the x-y plane is described. Set up and evaluate

∫∫
R f(x, y) dA

using polar coordinates.

3. f(x, y) = 3x − y + 4; R is the region enclosed by the circle
x2 + y2 = 1.

4. f(x, y) = 4x + 4y; R is the region enclosed by the circle
x2 + y2 = 4.

5. f(x, y) = 8− y; R is the region enclosed by the circles with
polar equaƟons r = cos θ and r = 3 cos θ.

6. f(x, y) = 4; R is the region enclosed by the petal of the rose
curve r = sin(2θ) in the first quadrant.

7. f(x, y) = ln
(
x2 + y2); R is the annulus enclosed by the cir-

cles x2 + y2 = 1 and x2 + y2 = 4.

8. f(x, y) = 1− x2 − y2; R is the region enclosed by the circle
x2 + y2 = 1.

9. f(x, y) = x2 − y2; R is the region enclosed by the circle
x2 + y2 = 36 in the first and fourth quadrants.

10. f(x, y) = (x − y)/(x + y); R is the region enclosed by the
lines y = x, y = 0 and the circle x2 + y2 = 1 in the first
quadrant.

In Exercises 11 – 14, an iterated integral in rectangular coor-
dinates is given. Rewrite the integral using polar coordinates.

11.
∫ 5

0

∫ √
25−x2

−
√

25−x2

√
x2 + y2 dy dx

12.
∫ 4

−4

∫ 0

−
√

16−y2

(
2y− x

)
dx dy

13.
∫ 2

0

∫ √
8−y2

y

(
x+ y

)
dx dy

14.
∫ −1

−2

∫ √
4−x2

0

(
x+5

)
dy dx+

∫ 1

−1

∫ √
4−x2

√
1−x2

(
x+5

)
dy dx+∫ 2

1

∫ √
4−x2

0

(
x+ 5

)
dy dx

Hint: draw the region of each integral carefully and see how
they all connect.

In Exercises 15 – 16, special double integrals are presented
that are especially well suited for evaluaƟon in polar coordi-
nates.

15. Consider
∫∫

R
e−(x2+y2) dA.

(a) Why is this integral difficult to evaluate in rectangular
coordinates, regardless of the region R?

(b) Let R be the region bounded by the circle of radius a
centered at the origin. Evaluate the double integral
using polar coordinates.

(c) Take the limit of your answer from (b), as a → ∞.
What does this imply about the volume under the
surface of e−(x2+y2)?

16. The surface of a right circular cone with height h and
base radius a can be described by the equaƟon f(x, y) =

h− h
√

x2

a2
+

y2

a2
, where the Ɵp of the cone lies at (0, 0, h)

and the circular base lies in the x-y plane, centered at the
origin.

Confirm that the volume of a right circular cone with
height h and base radius a is V =

1
3
πa2h by evaluaƟng∫∫

R
f(x, y) dA in polar coordinates.
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Figure 13.24: IllustraƟng the concept of a
lamina.

Note: Mass and weight are different
measures. Since they are scalar mulƟ-
ples of each other, it is oŌen easy to
treat them as the same measure. In this
secƟon we effecƟvely treat them as the
same, as our technique for findingmass is
the same as for finding weight. The den-
sity funcƟons used will simply have differ-
ent units.

13.4 Center of Mass

13.4 Center of Mass

We have used iterated integrals to find areas of plane regions and signed vol-
umes under surfaces. A brief recap of these uses will be useful in this secƟon as
we apply iterated integrals to compute the mass and center of mass of planar
regions.

To find the area of a planar region, we evaluated the double integral
∫∫

R dA.
That is, summing up the areas of lots of liƩle subregions of R gave us the total
area. Informally, we think of

∫∫
R dA as meaning “sum up lots of liƩle areas over

R.”
To find the signed volume under a surface, we evaluated the double integral∫∫

R f(x, y) dA. Recall that the “dA” is not just a “bookend” at the end of an in-
tegral; rather, it is mulƟplied by f(x, y). We regard f(x, y) as giving a height, and
dA sƟll giving an area: f(x, y) dA gives a volume. Thus, informally,

∫∫
R f(x, y) dA

means “sum up lots of liƩle volumes over R.”
We now extend these ideas to other contexts.

Mass and Weight

Consider a thin sheet of material with constant thickness and finite area.
MathemaƟcians (and physicists and engineers) call such a sheet a lamina. So
consider a lamina, as shown in Figure 13.24(a), with the shape of some planar
region R, as shown in part (b).

We can write a simple double integral that represents the mass of the lam-
ina:

∫∫
R dm, where “dm” means “a liƩle mass.” That is, the double integral

states the total mass of the lamina can be found by “summing up lots of liƩle
masses over R.”

To evaluate this double integral, parƟƟon R into n subregions as we have
done in the past. The i th subregion has area ∆Ai. A fundamental property of
mass is that “mass=density×area.” If the lamina has a constant density δ, then
the mass of this i th subregion is∆mi = δ∆Ai. That is, we can compute a small
amount of mass by mulƟplying a small amount of area by the density.

If density is variable, with density funcƟon δ = δ(x, y), then we can approx-
imate the mass of the i th subregion of R by mulƟplying ∆Ai by δ(xi, yi), where
(xi, yi) is a point in that subregion. That is, for a small enough subregion of R,
the density across that region is almost constant.

The total mass M of the lamina is approximately the sum of approximate
masses of subregions:

M ≈
n∑

i=1

∆mi =

n∑
i=1

δ(xi, yi)∆Ai.

Notes:
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Chapter 13 MulƟple IntegraƟon

Taking the limit as the size of the subregions shrinks to 0 gives us the actual
mass; that is, integraƟng δ(x, y) dA over R gives the mass of the lamina.

.

.

.
DefiniƟon 103 Mass of a Lamina with Vairable Density

Let δ(x, y) be a conƟnuous density funcƟon of a lamina corresponding to
a plane region R. The massM of the lamina is

massM =

∫∫
R
dm =

∫∫
R
δ(x, y) dA.

.. Example 458 Finding the mass of a lamina with constant density
Find the mass of a square lamina, with side length 1, with a density of δ =
3gm/cm2.

SÊ½çã®ÊÄ We represent the lamina with a square region in the plane
as shown in Figure 13.25. As the density is constant, it does not maƩer where
we place the square.

Following DefiniƟon 103, the massM of the lamina is

M =

∫∫
R
3 dA =

∫ 1

0

∫ 1

0
3 dx dy = 3

∫ 1

0

∫ 1

0
dx dy = 3gm.

This is all very straighƞorward; note that all we really did was find the area
of the lamina and mulƟply it by the constant density of 3gm/cm2. ..

.. Example 459 ..Finding the mass of a lamina with variable density
Find the mass of a square lamina, represented by the unit square with lower
leŌhand corner at the origin (see Figure 13.25), with variable density δ(x, y) =
(x+ y+ 2)gm/cm2.

SÊ½çã®ÊÄ The variable density δ, in this example, is very uniform, giv-
ing a density of 3 in the center of the square and changing linearly. A graph
of δ(x, y) can be seen in Figure 13.26; noƟce how “same amount” of density is
above z = 3 as below. We’ll comment on the significance of this momentarily.

The mass M is found by integraƟng δ(x, y) over R. The order of integraƟon

Notes:
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Figure 13.26: Graphing the density func-
Ɵon in Example 459.

13.4 Center of Mass

is not important; we choose dx dy arbitrarily. Thus:

M =

∫∫
R
(x+ y+ 2) dA =

∫ 1

0

∫ 1

0
(x+ y+ 2) dx dy

=

∫ 1

0

(
1
2
x2 + x(y+ 2)

)∣∣∣∣1
0
dy

=

∫ 1

0

(
5
2
+ y
)

dy

=

(
5
2
y+

1
2
y2
)∣∣∣∣1

0

= 3gm.

It turns out that since since the density of the lamina is so uniformly distributed
“above and below” z = 3 that the mass of the lamina is the same as if it had a
constant density of 3. ...

.. Example 460 ..Finding the weight of a lamina with variable density
Find the weight of the lamina represented by the circle with radius 2Ō, centered
at the origin, with density funcƟon δ(x, y) = (x2 + y2 + 1)lb/Ō2. Compare this
to the weight of the same lamina with density δ(x, y) = (2

√
x2 + y2 + 1)lb/Ō2.

SÊ½çã®ÊÄ A direct applicaƟon of DefiniƟon 103 states that the weight
of the lamina is

∫∫
R δ(x, y) dA. Since our lamina is in the shape of a circle, it

makes sense to approach the double integral using polar coordinates.
The density funcƟon δ(x, y) = x2 + y2 + 1 becomes δ(r, θ) = (r cos θ)2 +

(r sin θ)2 + 1 = r2 + 1. The circle is bounded by 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π.
Thus the weightW is:

W =

∫ 2π

0

∫ 2

0
(r2 + 1)r dr dθ

=

∫ 2π

0

(
1
4
r4 +

1
2
r2
)∣∣∣∣2

0
dθ

=

∫ 2π

0
(6) dθ

= 12π ≈ 37.70lb.

Now compare this with the density funcƟon δ(x, y) = 2
√

x2 + y2 + 1. Con-
verƟng this to polar coordinates gives δ(r, θ) = 2

√
(r cos θ)2 + (r sin θ)2 + 1 =

Notes:
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2r+ 1. Thus the weightW is:

W =

∫ 2π

0

∫ 2

0
(2r+ 1)r dr dθ

=

∫ 2π

0
(
2
3
r3 +

1
2
r2)
∣∣∣2
0
dθ

=

∫ 2π

0

(
22
3

)
dθ

=
44
3
π ≈ 46.08lb.

One would expect different density funcƟons to return different weights, as we
have here. The density funcƟons were chosen, though, to be similar: each gives
a density of 1 at the origin and a density of 5 at the outside edge of the circle,
as seen in Figure 13.27.
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Figure 13.27: Graphing the density funcƟons in Example 460. In (a) is the density funcƟon
δ(x, y) = x2 + y2 + 1; in (b) is δ(x, y) = 2

√
x2 + y2 + 1.

NoƟce how x2 + y2 + 1 ≤ 2
√

x2 + y2 + 1 over the circle; this results in less
weight. ...

Ploƫng the density funcƟons can be useful as our understanding of mass
can be related to our understanding of “volume under a surface.” We inter-
preted

∫∫
R f(x, y) dA as giving the volume under f over R; we can understand∫∫

R δ(x, y) dA in the same way. The “volume” under δ over R is actually mass;

Notes:
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13.4 Center of Mass

by compressing the “volume” under δ onto the x-y plane, we get “more mass”
in some areas than others – i.e., areas of greater density.

Knowing themass of a lamina is one of several importantmeasures. Another
is the center of mass, which we discuss next.

Center of Mass

Consider a disk of radius 1 with uniform density. It is common knowledge
that the disk will balance on a point if the point is placed at the center of the
disk. What if the disk does not have a uniform density? Through trial-and-error,
we should sƟll be able to find a spot on the disk at which the disk will balance
on a point. This balance point is referred to as the center of mass, or center of
gravity. It is though all the mass is “centered” there. In fact, if the disk has a
mass of 3kg, the disk will behave physically as though it were a point-mass of
3kg located at its center of mass. For instance, the disk will naturally spin with
an axis through its center of mass (which is why it is important to “balance” the
Ɵres of your car: if they are “out of balance”, their center of mass will be outside
of the axle and it will shake terribly).

We find the center of mass based on the principle of a weighted average.
Consider a college class in which your homework average is 90%, your test av-
erage is 73%, and your final exam grade is an 85%. Experience tells us that our
final grade is not the average of these three grades: that is, it is not:

0.9+ 0.73+ 0.85
3

≈ 0.837 = 83.7%.

That is, you are probably not pulling a B in the course. Rather, your grades are
weighted. Let’s say the homework is worth 10% of the grade, tests are 60% and
the exam is 30%. Then your final grade is:

(0.1)(0.9) + (0.6)(0.73) + (0.3)(0.85) = 0.783 = 78.3%.

Each grade is mulƟplied by a weight.
In general, given values x1, x2, . . . , xn andweightsw1,w2, . . . ,wn, theweighted

average of the n values is
n∑

i=1

wixi

/
n∑

i=1

wi.

In the grading example above, the sum of the weights 0.1, 0.6 and 0.3 is 1,
so we don’t see the division by the sum of weights in that instance.

How this relates to center of mass is given in the following theorem.

Notes:
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Figure 13.28: IllustraƟng point masses
along a thin rod and the center of mass.

Chapter 13 MulƟple IntegraƟon

.

.

.
Theorem 121 Center of Mass of Discrete Linear System

Let point massesm1,m2, . . . ,mn be distributed along the x-axis at loca-
Ɵons x1, x2, . . . , xn, respecƟvely. The center of mass x of the system is
located at

x =
n∑

i=1

mixi

/
n∑

i=1

mi.

.. Example 461 Finding the center of mass of a discrete linear system

1. Point masses of 2gm are located at x = −1, x = 2 and x = 3 are con-
nected by a thin rod of negligible weight. Find the center of mass of the
system.

2. Point masses of 10gm, 2gm and 1gm are located at x = −1, x = 2 and
x = 3, respecƟvely, are connected by a thin rod of negligible weight. Find
the center of mass of the system.

SÊ½çã®ÊÄ

1. Following Theorem 121, we compute the center of mass as:

x =
2(−1) + 2(2) + 2(3)

2+ 2+ 2
=

4
3
= 1.3.

So the system would balance on a point placed at x = 4/3, as illustrated
in Figure 13.28(a).

2. Again following Theorem 121, we find:

x =
10(−1) + 2(2) + 1(3)

10+ 2+ 1
=

−3
13

≈ −0.23.

Placing a large weight at the leŌ hand side of the systemmoves the center
of mass leŌ, as shown in Figure 13.28(b)...

In a discrete system (i.e., mass is located at individual points, not along a
conƟnuum) we find the center of mass by dividing the mass into a moment of
the system. In general, a moment is a weighted measure of distance from a par-
Ɵcular point or line. In the case described by Theorem 121, we are finding a
weighted measure of distances from the y-axis, so we refer to this as the mo-
ment about the y-axis, represented by My. Leƫng M be the total mass of the
system, we have x = My/M.

Notes:
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Figure 13.29: IllustraƟng the center of
mass of a discrete planar system in Exam-
ple 462.

13.4 Center of Mass

We can extend the concept of the center of mass of discrete points along a
line to the center of mass of discrete points in the plane rather easily. To do so,
we define some terms then give a theorem.

.

.

.
DefiniƟon 104 Moments about the x- and y- Axes.

Let point masses m1, m2, . . . ,mn be located at points (x1, y1),
(x2, y2) . . . , (xn, yn), respecƟvely, in the x-y plane.

1. Themoment about the y-axis,My, isMy =

n∑
i=1

mixi.

2. Themoment about the x-axis,Mx, isMx =
n∑

i=1

miyi.

One can think that these definiƟons are “backwards” asMy sums up “x” dis-
tances. But remember, “x” distances are measurements of distance from the
y-axis, hence defining the moment about the y-axis.

We now define the center of mass of discrete points in the plane.

.

.

.
Theorem 122 Center of Mass of Discrete Planar System

Let point masses m1, m2, . . . ,mn be located at points (x1, y1),

(x2, y2) . . . , (xn, yn), respecƟvely, in the x-y plane, and letM =

n∑
i=1

mi.

The center of mass of the system is at (x, y), where

x =
My

M
and y =

Mx

M
.

.. Example 462 ..Finding the center of mass of a discrete planar system
Let pointmasses of 1kg, 2kg and 5kg be located at points (2, 0), (1, 1) and (3, 1),
respecƟvely, and are connected by thin rods of negligibleweight. Find the center
of mass of the system.

SÊ½çã®ÊÄ We follow Theorem 122 and DefiniƟon 104 to find M, Mx
andMy:

M = 1+ 2+ 5 = 8kg.

Notes:
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Chapter 13 MulƟple IntegraƟon

Mx =
n∑

i=1

miyi

= 1(0) + 2(1) + 5(1)
= 7.

My =
n∑

i=1

mixi

= 1(2) + 2(1) + 5(3)
= 19.

Thus the center ofmass is (x, y) =
(
My

M
,
Mx

M

)
=

(
19
8
,
7
8

)
= (2.375, 0.875),

illustrated in Figure 13.29. ...

We finally arrive at our true goal of this secƟon: finding the center ofmass of
a lamina with variable density. While the abovemeasurement of center of mass
is interesƟng, it does not directly answermore realisƟc situaƟonswhereweneed
to find the center of mass of a conƟguous region. However, understanding the
discrete case allows us to approximate the center of mass of a planar lamina;
using calculus, we can refine the approximaƟon to an exact value.

We begin by represenƟng a planar lamina with a region R in the x-y plane
with density funcƟon δ(x, y). ParƟƟon R into n subdivisions, each with area
∆Ai. As done before, we can approximate the mass of the i th subregion with
δ(xi, yi)∆Ai, where (xi, yi) is a point inside the i th subregion. We can approxi-
mate the moment of this subregion about the y-axis with xiδ(xi, yi)∆Ai – that is,
by mulƟplying the approximate mass of the region by its approximate distance
from the y-axis. Similarly, we can approximate the moment about the x-axis
with yiδ(xi, yi)∆Ai. By summing over all subregions, we have:

mass: M ≈
n∑

i=1

δ(xi, yi)∆Ai (as seen before)

moment about the x-axis: Mx ≈
n∑

i=1

yiδ(xi, yi)∆Ai

moment about the y-axis: My ≈
n∑

i=1

xiδ(xi, yi)∆Ai

By taking limits, where size of each subregion shrinks to 0 in both the x and
y direcƟons, we arrive at the double integrals given in the following theorem.

Notes:
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lamina in Example 458.

13.4 Center of Mass

.

.

.
Theorem 123 Center of Mass of a Planar Lamina, Moments

Let a planar lamina be represented by a region R in the x-y plane with
density funcƟon δ(x, y).

1. mass: M =

∫∫
R
δ(x, y) dA

2. moment about the x-axis: Mx =

∫∫
R
yδ(x, y) dA

3. moment about the y-axis: My =

∫∫
R
xδ(x, y) dA

4. The center of mass of the lamina is

(x, y) =
(
My

M
,
Mx

M

)
.

We start our pracƟce of finding centers of mass by revisiƟng some of the
lamina used previously in this secƟon when finding mass. We will mostly just
set up the integrals needed to compute M, Mx and My and leave the details of
the integraƟon to the reader.

.. Example 463 ..Finding the center of mass of a lamina
Find the center mass of a square lamina, with side length 1, with a density of
δ = 3gm/cm2. (Note: this is the lamina from Example 458.)

SÊ½çã®ÊÄ We represent the lamina with a square region in the plane
as shown in Figure 13.30 as done previously.

Following Theorem 123, we findM,Mx andMy:

M =

∫∫
R
3 dA =

∫ 1

0

∫ 1

0
3 dx dy = 3gm.

Mx =

∫∫
R
3y dA =

∫ 1

0

∫ 1

0
3y dx dy = 3/2 = 1.5.

My =

∫∫
R
3x dA =

∫ 1

0

∫ 1

0
3x dx dy = 3/2 = 1.5.

Thus the center of mass is (x, y) =
(
My

M
,
Mx

M

)
= (1.5/3, 1.5/3) = (0.5, 0.5).

Notes:
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This is what we should have expected: the center of mass of a square with con-
stant density is the center of the square. ...

.. Example 464 Finding the center of mass of a lamina
Find the center of mass of a square lamina, represented by the unit square
with lower leŌhand corner at the origin (see Figure 13.30), with variable den-
sity δ(x, y) = (x+ y+ 2)gm/cm2. (Note: this is the lamina from Example 459.)

SÊ½çã®ÊÄ We follow Theorem 123, to findM,Mx andMy:

M =

∫∫
R
(x+ y+ 2) dA =

∫ 1

0

∫ 1

0
(x+ y+ 2) dx dy = 3gm.

Mx =

∫∫
R
y(x+ y+ 2) dA =

∫ 1

0

∫ 1

0
y(x+ y+ 2) dx dy =

19
12

.

My =

∫∫
R
x(x+ y+ 2) dA =

∫ 1

0

∫ 1

0
x(x+ y+ 2) dx dy =

19
12

.

Thus the center of mass is (x, y) =
(
My

M
,
Mx

M

)
=

(
19
36

,
19
36

)
≈ (0.528, 0.528).

While themass of this lamina is the same as the lamina in the previous example,
the greater density found with greater x and y values pulls the center of mass
from the center slightly towards the upper righthand corner. ..

.. Example 465 ..Finding the center of mass of a lamina
Find the center of mass of the lamina represented by the circle with radius 2Ō,
centered at the origin, with density funcƟon δ(x, y) = (x2+y2+1)lb/Ō2. (Note:
this is one of the lamina used in Example 460.)

SÊ½çã®ÊÄ As done in Example 460, it is best to describe R using polar
coordinates. Thus whenwe computeMy, we will integrate not xδ(x, y) = x(x2+
y2 + 1), but rather

(
r cos θ

)
δ(r cos θ, r sin θ) =

(
r cos θ

)(
r2 + 1

)
. We compute

M,Mx andMy:

M =

∫ 2π

0

∫ 2

0
(r2 + 1)r dr dθ = 12π ≈ 37.7lb.

Mx =

∫ 2π

0

∫ 2

0
(r sin θ)(r2 + 1)r dr dθ = 0.

My =

∫ 2π

0

∫ 2

0
(r cos θ)(r2 + 1)r dr dθ = 0.

Notes:
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Figure 13.31: IllustraƟng the region R in
Example 466.

13.4 Center of Mass

Since R and the density of R are both symmetric about the x and y axes, it should
come as no big surprise that the moments about each axis is 0. Thus the center
of mass is (x, y) = (0, 0). ...

.. Example 466 Finding the center of mass of a lamina
Find the center of mass of the lamina represented by the region R shown in Fig-
ure 13.31, half an annulus with outer radius 6 and inner radius 5, with constant
density 2lb/Ō2.

SÊ½çã®ÊÄ Once again it will be useful to represent R in polar coor-
dinates. Using the descripƟon of R and/or the illustraƟon, we see that R is
bounded by 1 ≤ r ≤ 2 and 0 ≤ θ ≤ π. As the lamina is symmetric about
the y-axis, we should expectMy = 0. We computeM,Mx andMy:

M =

∫ π

0

∫ 6

5
(2)r dr dθ = 11πlb.

Mx =

∫ π

0

∫ 6

5
(r sin θ)(2)r dr dθ =

364
3

≈ 121.33.

My =

∫ π

0

∫ 6

5
(r cos θ)(2)r dr dθ = 0.

Thus the center of mass is (x, y) =
(
0, 364

33π

)
≈ (0, 3.51). The center of mass is

indicated in Figure 13.31; note how it lies outside of R! ..

This secƟon has shown us another use for iterated integrals beyond finding
area or signed volume under the curve. While there are many uses for iterated
integrals, we give one more applicaƟon in the following secƟon: compuƟng sur-
face area.

Notes:
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Exercises 13.4
Terms and Concepts
1. Why is it easy to use “mass” and “weight” interchangeably,

even though they are different measures?

2. Given a point (x, y), the value of x is a measure of distance
from the -axis.

3. We can think of
∫∫

R dm as meaning “sum up lots of
.

4. What is a “discrete planar system?”

5. Why doesMx use
∫∫

R yδ(x, y) dA instead of
∫∫

R xδ(x, y) dA;
that is, why do we use “y” and not “x”?

6. Describe a situaƟon where the center of mass of a lamina
does not lie within the region of the lamina itself.

Problems
In Exercises 7 – 10, point masses are given along a line or in
the plane. Find the center of mass x or (x, y), as appropriate.
(All masses are in grams and distances are in cm.)

7. m1 = 4 at x = 1; m2 = 3 at x = 3; m3 = 5 at x = 10

8. m1 = 2 at x = −3; m2 = 2 at x = −1;
m3 = 3 at x = 0; m4 = 3 at x = 7

9. m1 = 2 at (−2,−2); m2 = 2 at (2,−2);
m3 = 20 at (0, 4)

10. m1 = 1 at (−1,−1); m2 = 2 at (−1, 1);
m3 = 2 at (1, 1); m4 = 1 at (1,−1)

In Exercises 11 – 18, find the mass/weight of the lamina de-
scribed by the region R in the plane and its density funcƟon
δ(x, y).

11. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = 5gm/cm2

12. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = (x+ y2)gm/cm2

13. R is the triangle with corners (−1, 0), (1, 0), and (0, 1);
δ(x, y) = 2lb/in2

14. R is the triangle with corners (0, 0), (1, 0), and (0, 1);
δ(x, y) = (x2 + y2 + 1)lb/in2

15. R is the circle centered at the origin with radius 2; δ(x, y) =
(x+ y+ 4)kg/m2

16. R is the circle sector bounded by x2 + y2 = 25 in the first
quadrant; δ(x, y) = (

√
x2 + y2 + 1)kg/m2

17. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) = 4lb/Ō2

18. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) =

√
x2 + y2lb/Ō2

In Exercises 19 – 26, find the center of mass of the lamina de-
scribed by the region R in the plane and its density funcƟon
δ(x, y).
Note: these are the same lamina as in Exercises 11 to 18.

19. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = 5gm/cm2

20. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = (x+ y2)gm/cm2

21. R is the triangle with corners (−1, 0), (1, 0), and (0, 1);
δ(x, y) = 2lb/in2

22. R is the triangle with corners (0, 0), (1, 0), and (0, 1);
δ(x, y) = (x2 + y2 + 1)lb/in2

23. R is the circle centered at the origin with radius 2; δ(x, y) =
(x+ y+ 4)kg/m2

24. R is the circle sector bounded by x2 + y2 = 25 in the first
quadrant; δ(x, y) = (

√
x2 + y2 + 1)kg/m2

25. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) = 4lb/Ō2

26. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) =

√
x2 + y2lb/Ō2

Themoment of inerƟa I is ameasure of the tendency of a lam-
ina to resist rotaƟng about an axis or conƟnue to rotate about
an axis. Ix is the moment of inerƟa about the x-axis, Ix is the
moment of inerƟa about the x-axis, and IO is the moment of
inerƟa about the origin. These are computed as follows:

• Ix =
∫∫

R
y2 dm

• Iy =
∫∫

R
x2 dm

• IO =

∫∫
R

(
x2 + y2

)
dm

In Exercises 27 – 30, a lamina corresponding to a planar re-
gion R is given with a mass of 16 units. For each, compute Ix,
Iy and IO.

27. R is the 4 × 4 square with corners at (−2,−2) and (2, 2)
with density δ(x, y) = 1.

28. R is the 8×2 rectangle with corners at (−4,−1) and (4, 1)
with density δ(x, y) = 1.

29. R is the 4×2 rectangle with corners at (−2,−1) and (2, 1)
with density δ(x, y) = 2.

30. R is the circle with radius 2 centered at the origin with den-
sity δ(x, y) = 4/π.
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Note: as done before, we think of
“
∫∫

R dS” as meaning “sum up lots of
liƩle surface areas.”

The concept of surface area is defined
here, for while we already have a noƟon
of the area of a region in the plane, we
did not yet have a solid grasp of what “the
area of a surface in space” means.

...
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Figure 13.33: Finding the area of a trian-
gle in space in Example 467.

Chapter 13 MulƟple IntegraƟon

Once again take a limit as all of the ∆xi and ∆yi shrink to 0; this leads to a
double integral.

.

.

.
DefiniƟon 105 Surface Area

Let z = f(x, y) where fx and fy are conƟnuous over a closed, bounded
region R. The surface area S over R is

S =
∫∫

R
dS

=

∫∫
R

√
1+ fx(x, y)2 + fy(x, y)2 dA.

We test this definiƟon by using it to compute surface areas of known sur-
faces. We start with a triangle.

.. Example 467 Finding the surface area of a plane over a triangle
Let f(x, y) = 4− x− 2y, and let R be the region in the plane bounded by x = 0,
y = 0 and y = 2− x/2, as shown in Figure 13.33. Find the surface area of f over
R.

SÊ½çã®ÊÄ We follow DefiniƟon 105. We start by noƟng that fx(x, y) =
−1 and fy(x, y) = −2. To define R, we use bounds 0 ≤ y ≤ 2 − x/2 and
0 ≤ x ≤ 4. Therefore

S =
∫∫

R
dS

=

∫ 4

0

∫ 2−x/2

0

√
1+ (−1)2 + (−2)2 dy dx

=

∫ 4

0

√
6
(
2− x

2

)
dx

= 4
√
6.

Because the surface is a triangle, we can figure out the area using geometry.
Considering the base of the triangle to be the side in the x-y plane, we find the
length of the base to be

√
20. We can find the height using our knowledge of

vectors: let u⃗ be the side in the x-z plane and let v⃗ be the side in the x-y plane.
The height is then || u⃗ − proj v⃗ u⃗ || = 4

√
6/5. Geometry states that the area is

thus
1
2
· 4
√

6/5 ·
√
20 = 4

√
6.

We affirm the validity of our formula. ..

Notes:
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Note: The inner integral in EquaƟon
(13.1) is an improper integral, as the

integrand of
∫ a

0
r
√

a2

a2 − r2
dr dθ is

not defined at r = a. To properly
evaluate this integral, one must use the
techniques of SecƟon 6.8.

The reason this need arises is that the
funcƟon f(x, y) =

√
a2 − x2 − y2 fails the

requirements of DefiniƟon 105, as fx and
fy are not conƟnuous on the boundary of
the circle x2 + y2 = a2.

The computaƟon of the surface area is
sƟll valid. The definiƟon makes stronger
requirements than necessary in part to
avoid the use of improper integraƟon, as
when fx and/or fy are not conƟnuous, the
resulƟng improper integral may not con-
verge. Since the improper integral does
converge in this example, the surface area
is accurately computed.

13.5 Surface Area

It is “common knowledge” that the surface area of a sphere of radius r is
4πr2. We confirm this in the following example, which involves using our for-
mula with polar coordinates.

.. Example 468 The surface area of a sphere.
Find the surface area of the sphere with radius a centered at the origin, whose
top hemisphere has equaƟon f(x, y) =

√
a2 − x2 − y2.

SÊ½çã®ÊÄ We start by compuƟng parƟal derivaƟves and find

fx(x, y) =
−x√

a2 − x2 − y2
and fy(x, y) =

−y√
a2 − x2 − y2

.

As our funcƟon f only defines the top upper hemisphere of the sphere, we dou-
ble our surface area result to get the total area:

S = 2
∫∫

R

√
1+ fx(x, y)2 + fy(x, y)2 dA

= 2
∫∫

R

√
1+

x2 + y2

a2 − x2 − y2
dA.

The region R that we are integraƟng over is the circle, centered at the origin,
with radius a: x2+ y2 = a2. Because of this region, we are likely to have greater
success with our integraƟon by converƟng to polar coordinates. Using the sub-
sƟtuƟons x = r cos θ, y = r sin θ, dA = r dr dθ and bounds 0 ≤ θ ≤ 2π and
0 ≤ r ≤ a, we have:

S = 2
∫ 2π

0

∫ a

0

√
1+

r2 cos2 θ + r2 sin2 θ
a2 − r2 cos2 θ − r2 sin2 θ

r dr dθ

= 2
∫ 2π

0

∫ a

0
r
√

1+
r2

a2 − r2
dr dθ

= 2
∫ 2π

0

∫ a

0
r
√

a2

a2 − r2
dr dθ. (13.1)

Apply subsƟtuƟon u = a2 − r2and integrate the inner integral, giving

= 2
∫ 2π

0
a2 dθ

= 4πa2.

Our work confirms our previous formula. ..
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Figure 13.34: Finding the surface area of
a cone in Example 469.

Note: Note that once again fx and fy are
not conƟnuous on the domain of f, as
both are undefined at (0, 0). (A similar
problem occurred in the previous exam-
ple.) Once again the resulƟng improper
integral converges and the computaƟon
of the surface area is valid.
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Figure 13.35: Graphing the surface in Ex-
ample 470.
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.. Example 469 Finding the surface area of a cone
The general formula for a right cone with height h and base radius a is

f(x, y) = h− h
a

√
x2 + y2,

shown in Figure 13.34. Find the surface area of this cone.

SÊ½çã®ÊÄ We begin by compuƟng parƟal derivaƟves.

fx(x, y) = − xh
a
√

x2 + y2
and − yh

a
√

x2 + y2
.

Since we are integraƟng over the circle x2 + y2 = a2, we again use polar
coordinates. Using the standard subsƟtuƟons, our integrand becomes√

1+
(
hr cos θ
a
√
r2

)2

+

(
hr sin θ
a
√
r2

)2

.

This may look inƟmidaƟng at first, but there are lots of simple simplificaƟons to
be done. It amazingly reduces to just√

1+
h2

a2
=

1
a

√
a2 + h2.

Our polar bounds are 0 ≤ θ ≤ 2π and 0 ≤ r ≤ a. Thus

S =
∫ 2π

0

∫ a

0
r
1
a

√
a2 + h2 dr dθ

=

∫ 2π

0

(
1
2
r2
1
a

√
a2 + h2

)∣∣∣∣a
0
dθ

=

∫ 2π

0

1
2
a
√

a2 + h2 dθ

= πa
√

a2 + h2.

This matches the formula found in the back of this text. ..

.. Example 470 ..Finding surface area over a region
Find the area of the surface f(x, y) = x2 − 3y+ 3 over the region R bounded by
−x ≤ y ≤ x, 0 ≤ x ≤ 4, as pictured in Figure 13.35.

SÊ½çã®ÊÄ It is straighƞorward to compute fx(x, y) = 2x and fy(x, y) =
−3. Thus the surface area is described by the double integral∫∫

R

√
1+ (2x)2 + (−3)2 dA =

∫∫
R

√
10+ 4x2 dA.

Notes:
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13.5 Surface Area

As with integrals describing arc length, double integrals describing surface area
are in general hard to evaluate directly because of the square–root. This parƟc-
ular integral can be easily evaluated, though, with judicious choice of our order
of integraƟon.

IntegraƟngwith order dx dy requires us to evaluate
∫ √

10+ 4x2 dx. This can
be done, though it involves IntegraƟon By Parts and sinh−1 x. IntegraƟng with
order dy dx has as its first integral

∫ √
10+ 4x2 dy, which is easy to evaluate: it

is simply y
√
10+ 4x2 + C. So we proceed with the order dy dx; the bounds are

already given in the statement of the problem.∫∫
R

√
10+ 4x2 dA =

∫ 4

0

∫ x

−x

√
10+ 4x2 dy dx

=

∫ 4

0

(
y
√

10+ 4x2
)∣∣∣x

−x
dx

=

∫ 4

0

(
2x
√

10+ 4x2
)
dx.

Apply subsƟtuƟon with u = 10+ 4x2:

=

(
1
6
(
10+ 4x2

)3/2)∣∣∣∣4
0

=
1
3
(
37

√
74− 5

√
10
)
≈ 100.825u2.

So while the region R over which we integrate has an area of 16u2, the surface
has a much greater area as its z-values change dramaƟcally over R. ...

In pracƟce, technology helps greatly in the evaluaƟon of such integrals. High
powered computer algebra systems can compute integrals that are difficult, or
at least Ɵme consuming, by hand, and can at the least produce very accurate
approximaƟons with numerical methods. In general, just knowing how to set up
the proper integrals brings one very close to being able to compute the needed
value. Most of the work is actually done in just describing the region R in terms
of polar or rectangular coordinates. Once this is done, technology can usually
provide a good answer.

Notes:
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Exercises 13.5
Terms and Concepts
1. “Surface area” is analogous to what previously studied con-

cept?

2. To approximate the area of a small porƟon of a surface, we
computed the area of its plane.

3. We interpret
∫∫

R
dS as “sum up lots of liƩle

.”

4. Why is it important to know how to set up a double inte-
gral to compute surface area, even if the resulƟng integral
is hard to evaluate?

5. Why do z = f(x, y) and z = g(x, y) = f(x, y) + h, for some
real number h, have the same surface area over a region
R?

6. Let z = f(x, y) and z = g(x, y) = 2f(x, y). Why is the sur-
face area of g over a region R not twice the surface area of
f over R?

Problems

In Exercises 7 – 10, set up the iterated integral that computes
the surface area of the given surface over the region R.

7. f(x, y) = sin x cos y; R is the rectangle with bounds 0 ≤
x ≤ 2π, 0 ≤ y ≤ 2π.

...

..
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8. f(x, y) =
1

x2 + y2 + 1
; R is the circle x2 + y2 = 9.
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9. f(x, y) = x2− y2; R is the rectangle with opposite corners
(−1,−1) and (1, 1).
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10. f(x, y) =
1

ex2 + 1
; R is the rectangle bounded by

−5 ≤ x ≤ 5 and 0 ≤ y ≤ 1.
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In Exercises 11 – 19, find the area of the given surface over
the region R.

11. f(x, y) = 3x− 7y+ 2; R is the rectangle with opposite cor-
ners (−1, 0) and (1, 3).

12. f(x, y) = 2x+ 2y+ 2; R is the triangle with corners (0, 0),
(1, 0) and (0, 1).

13. f(x, y) = x2 + y2 + 10; R is the circle x2 + y2 = 16.

14. f(x, y) = −2x + 4y2 + 7 over R, the triangle bounded by
y = −x, y = x, 0 ≤ y ≤ 1.

15. f(x, y) = x2 + y over R, the triangle bounded by y = 2x,
y = 0 and x = 2.

16. f(x, y) = 2
3 x

3/2 + 2y3/2 over R, the rectangle with opposite
corners (0, 0) and (1, 1).

17. f(x, y) = 10 − 2
√
x2 + y2 over R, the circle x2 + y2 = 25.

(This is the cone with height 10 and base radius 5; be sure
to compare you result with the known formula.)

18. Find the surface area of the sphere with radius 5 by dou-
bling the surface area of f(x, y) =

√
25− x2 − y2 over R,

the circle x2 + y2 = 25. (Be sure to compare you result
with the known formula.)

19. Find the surface area of the ellipse formed by restricƟng
the plane f(x, y) = cx + dy + h to the region R, the circle
x2 + y2 = 1, where c, d and h are some constants. Your
answer should be given in terms of c and d; why does the
value of h not maƩer?
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Figure 13.36: Finding the volume be-
tween the planes given in Example 13.36.
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13.6 VolumeBetweenSurfaces andTriple IntegraƟon
We learned in SecƟon 13.2 how to compute the signed volumeV under a surface
z = f(x, y) over a region R: V =

∫∫
R f(x, y) dA. It follows naturally that if f(x, y) ≥

g(x, y) on R, then the volume between f(x, y) and g(x, y) on R is

V =

∫∫
R
f(x, y) dA−

∫∫
R
g(x, y) dA =

∫∫
R

(
f(x, y)− g(x, y)

)
dA.

.

.

.
Theorem 124 Volume Between Surfaces

Let f and g be conƟnuous funcƟons on a closed, bounded region R, where
f(x, y) ≥ g(x, y) for all (x, y) in R. The volume V between f and g over R
is

V =

∫∫
R

(
f(x, y)− g(x, y)

)
dA.

.. Example 471 Finding volume between surfaces
Find the volume of the space region bounded by the planes z = 3x+ y− 4 and
z = 8− 3x− 2y in the 1st octant. In Figure 13.36(a) the planes are drawn; in (b),
only the defined region is given.

SÊ½çã®ÊÄ We need to determine the region R over which we will inte-
grate. To do so, we need to determine where the planes intersect. They have
common z-values when 3x+ y− 4 = 8− 3x− 2y. Applying a liƩle algebra, we
have:

3x+ y− 4 = 8− 3x− 2y
6x+ 3y = 12
2x+ y = 4

The planes intersect along the line 2x+y = 4. Therefore the region R is bounded
by x = 0, y = 0, and y = 4 − 2x; we can convert these bounds to integraƟon
bounds of 0 ≤ x ≤ 2, 0 ≤ y ≤ 4− 2x. Thus

V =

∫∫
R

(
8− 3x− 2y− (3x+ y− 4)

)
dA

=

∫ 2

0

∫ 4−2x

0

(
12− 6x− 3y

)
dy dx

= 16u3.

The volume between the surfaces is 16 cubic units. ..

Notes:
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Figure 13.37: ApproximaƟng the volume
of a region D in space.

13.6 Volume Between Surfaces and Triple IntegraƟon

In the preceding example, we found the volume by evaluaƟng the integral∫ 2

0

∫ 4−2x

0

(
8− 3x− 2y− (3x+ y− 4)

)
dy dx.

Note howwe can rewrite the integrand as an integral, much as we did in SecƟon
13.1:

8− 3x− 2y− (3x+ y− 4) =
∫ 8−3x−2y

3x+y−4
dz.

Thus we can rewrite the double integral that finds volume as∫ 2

0

∫ 4−2x

0

(
8−3x−2y−(3x+y−4)

)
dy dx =

∫ 2

0

∫ 4−2x

0

(∫ 8−3x−2y

3x+y−4
dz
)

dy dx.

This no longer looks like a “double integral,” but more like a “triple integral.”
Just as our first introducƟon to double integrals was in the context of finding the
area of a plane region, our introducƟon into triple integrals will be in the context
of finding the volume of a space region.

To formally find the volume of a closed, bounded region D in space, such as
the one shown in Figure 13.37(a), we start with an approximaƟon. Break D into
n rectangular solids; the solids near the boundary of D will either not include
porƟons of D or include extra space. In Figure 13.37(b), we zoom in on a porƟon
of the boundary of D to show a rectangular solid that contains space not in D;
as this is an approximaƟon of the volume, this is acceptable and this error will
be reduced as we shrink the size of our solids.

The volume ∆Vi of the i th solid Di is ∆Vi = ∆xi∆yi∆zi, where ∆xi, ∆yi
and∆zi give the dimensions of the rectangular solid in the x, y and z direcƟons,
respecƟvely. By summing up the volumes of all n solids, we get an approximaƟon
of the volume V of D:

V ≈
n∑

i=1

∆Vi =

n∑
i=1

∆xi∆yi∆zi.

Let |∆D| represent the length of the longest diagonal of rectangular solids
in the subdivision of D. As |∆D| → 0, the volume of each solid goes to 0, as do
each of ∆xi, ∆yi and ∆zi, for all i. Our calculus experience tells us that taking
a limit as |∆D| → 0 turns our approximaƟon of V into an exact calculaƟon of
V. Before we state this result in a theorem, we use a definiƟon to define some
terms.

Notes:
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.

.

.
DefiniƟon 106 Triple Integrals, Iterated IntegraƟon (Part I)

Let D be a closed, bounded region in space. Let a and b be real numbers, let g1(x) and g2(x) be
conƟnuous funcƟons of x, and let f1(x, y) and f2(x, y) be conƟnuous funcƟons of x and y.

1. The volume V of D is denoted by a triple integral,

V =

∫∫∫
D
dV.

2. The iterated integral
∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
dz dy dx is evaluated as

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
dz dy dx =

∫ b

a

∫ g2(x)

g1(x)

(∫ f2(x,y)

f1(x,y)
dz

)
dy dx.

EvaluaƟng the above iterated integral is triple integraƟon.

Our informal understanding of the notaƟon
∫∫∫

D dV is “sum up lots of liƩle
volumes over D,” analogous to our understanding of

∫∫
R dA and

∫∫
R dm.

We now state the major theorem of this secƟon.

.

.

.
Theorem 125 Triple IntegraƟon (Part I)

Let D be a closed, bounded region in space and let∆D be any subdivision of D into n rectangular
solids, where the i th subregion Di has dimensions∆xi ×∆yi ×∆zi and volume∆Vi.

1. The volume V of D is

V =

∫∫∫
D
dV = lim

|∆D|→0

n∑
i=1

∆Vi = lim
|∆D|→0

n∑
i=1

∆xi∆yi∆zi.

2. If D is defined as the region bounded by the planes x = a and x = b, the cylinders y = g(x)
and y = g2(x), and the surfaces z = f1(x, y) and z = f2(x, y), where a < b, g1(x) ≤ g2(x)
and f1(x, y) ≤ f2(x, y) on D, then∫∫∫

D
dV =

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
dz dy dx.

3. V can be determined using iterated integraƟon with other orders of integraƟon (there are 6
total), as long as D is defined by the region enclosed by a pair of planes, a pair of cylinders,
and a pair of surfaces.

Notes:
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Figure 13.38: The region D used in Exam-
ple 472 in (a); in (b), the region found by
collapsing D onto the x, y plane.

13.6 Volume Between Surfaces and Triple IntegraƟon

We evaluated the area of a plane region R by iterated integraƟon, where
the bounds were “from curve to curve, then from point to point.” Theorem 125
allows us to find the volume of a space region with an iterated integral with
bounds “from surface to surface, then from curve to curve, then from point to
point.” In the iterated integral

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
dz dy dx,

the bounds a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x) define a region R in the x, y plane
overwhich the regionD exists in space. However, these bounds are also defining
surfaces in space; x = a is a plane and y = g1(x) is a cylinder. The combinaƟon
of these 6 surfaces enclose, and define, D.

Examples will help us understand triple integraƟon, including integraƟng
with various orders of integraƟon.

.. Example 472 ..Finding the volumeof a space regionwith triple integraƟon
Find the volume of the space region in the 1 st octant bounded by the plane
z = 2 − y/3 − 2x/3, shown in Figure 13.38(a), using the order of integraƟon
dz dy dx. Set up the triple integrals that give the volume in the other 5 orders of
integraƟon.

SÊ½çã®ÊÄ StarƟng with the order of integraƟon dz dy dx, we need to
first find bounds on z. The region D is bounded below by the plane z = 0 (be-
cause we are restricted to the first octant) and above by z = 2 − y/3 − 2x/3;
0 ≤ z ≤ 2− y/3− 2x/3.

To find the bounds on y and x, we “collapse” the region onto the x, y plane,
giving the triangle shown in Figure 13.38(b). (We know the equaƟon of the line
y = 6− 2x in two ways. First, by seƫng z = 0, we have 0 = 2− y/3− 2x/3 ⇒
y = 6 − 2x. Secondly, we know this is going to be a straight line between the
points (3, 0) and (0, 6) in the x, y plane.)

We define that region R, in the integraƟon order of dy dx, with bounds 0 ≤

Notes:
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y ≤ 6− 2x and 0 ≤ x ≤ 3. Thus the volume V of the region D is:

V =

∫∫∫
D
dV

=

∫ 3

0

∫ 6−2x

0

∫ 2− 1
3 y−

2
3 x

0
dz dy dz

=

∫ 3

0

∫ 6−2x

0

(∫ 2− 1
3 y−

2
3 x

0
dz

)
dy dz

=

∫ 3

0

∫ 6−2x

0
z
∣∣∣2− 1

3 y−
2
3 x

0
dy dz

=

∫ 3

0

∫ 6−2x

0

(
2− 1

3
y− 2

3
x
)

dy dz.

From this step on, we are evaluaƟng a double integral as done many Ɵmes be-
fore. We skip these steps and give the final volume,

= 6u3.

..The order dz dx dy:

Now consider the volumeusing the order of integraƟon dz dx dy. The bounds
on z are the same as before, 0 ≤ z ≤ 2−y/3−2x/3. Collapsing the space region
on the x, y plane as shown in Figure 13.38(b), we now describe this triangle with
the order of integraƟon dx dy. This gives bounds 0 ≤ x ≤ 3−y/2 and 0 ≤ y ≤ 6.
Thus the volume is given by the triple integral

V =

∫ 6

0

∫ 3− 1
2 y

0

∫ 2− 1
3 y−

2
3 x

0
dz dx dy.

The order: dx dy dz:

Following our “surface to surface. . .” strategy, we need to determine the
x-surfaces that bound our space region. To do so, approach the region “from
behind,” in the direcƟon of increasing x. The first surface we hit as we enter the
region is the y, z plane, defined by x = 0. We come out of the region at the
plane z = 2− y/3− 2x/3; solving for x, we have x = 3− y/2− 3z/2. Thus the
bounds on x are: 0 ≤ x ≤ 3− y/2− 3z/2.

Nowcollapse the space regiononto the y, zplane, as shown in Figure 13.39(a).
(Again, we find the equaƟon of the line z = 2−y/3 by seƫng x = 0 in the equa-
Ɵon x = 3− y/2− 3z/2.) We need to find bounds on this region with the order

Notes:
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Figure 13.39: The regionD in Example 472
is collapsed onto the y, z plane in (a); in
(b), the region is collapsed onto the x, z
plane.

13.6 Volume Between Surfaces and Triple IntegraƟon

dy dz. The curves that bound y are y = 0 and y = 6− 3z; the points that bound
z are 0 and 2. Thus the triple integral giving volume is:

0 ≤ x ≤ 3− y/2− 3z/2
0 ≤ y ≤ 6− 3z

0 ≤ z ≤ 2
⇒

∫ 2

0

∫ 6−3z

0

∫ 3−y/2−3z/2

0
dx dy dz.

The order: dx dz dy:

..The x-bounds are the same as the order above. Wenowconsider the triangle
in Figure 13.39(a) and describe it with the order dz dy: 0 ≤ z ≤ 2 − y/3 and
0 ≤ y ≤ 6. Thus the volume is given by:

0 ≤ x ≤ 3− y/2− 3z/2
0 ≤ z ≤ 2− y/3

0 ≤ y ≤ 6
⇒

∫ 6

0

∫ 2−y/3

0

∫ 3−y/2−3z/2

0
dx dz dy.

The order: dy dz dx:

We now need to determine the y-surfaces that determine our region. Ap-
proaching the space region from “behind” and moving in the direcƟon of in-
creasing y, we first enter the region at y = 0, and exit along the plane z =
2− y/3− 2x/3. Solving for y, this plane has equaƟon y = 6− 2x− 3z. Thus y
has bounds 0 ≤ y ≤ 6− 2x− 3z.

Now collapse the region onto the x, z plane, as shown in Figure 13.39(b). The
curves bounding this triangle are z = 0 and z = 2 − 2x/3; x is bounded by the
points x = 0 to x = 3. Thus the triple integral giving volume is:

0 ≤ y ≤ 6− 2x− 3z
0 ≤ z ≤ 2− 2x/3

0 ≤ x ≤ 3
⇒

∫ 3

0

∫ 2−2x/3

0

∫ 6−2x−3z

0
dy dz dx.

The order: dy dx dz:

The y-bounds are the same as in the order above. We now determine the
bounds of the triangle in Figure 13.39(b) using the order dy dx dz. x is bounded
by x = 0 and x = 3 − 2z/3; z is bounded between z = 0 and z = 2. This leads
to the triple integral:

0 ≤ y ≤ 6− 2x− 3z
0 ≤ x ≤ 3− 2z/3

0 ≤ z ≤ 2
⇒

∫ 2

0

∫ 3−2z/3

0

∫ 6−2x−3z

0
dy dx dz.

Notes:
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Figure 13.40: Finding the projecƟons of
the curve of intersecƟon in Example 473.

Chapter 13 MulƟple IntegraƟon

This problem was long, but hopefully useful, demonstraƟng how to deter-
mine bounds with every order of integraƟon to describe the region D. In prac-
Ɵce, we only need 1, but being able to do them all gives us flexibility to choose
the order that suits us best. ...

In the previous example, we collapsed the surface into the x-y, x-z, and y-z
planes as we determined the “curve to curve, point to point” bounds of integra-
Ɵon. Since the surface was a plane, this collapsing, or projecƟng, was simple:
the projecƟon of the boundaries of a plane onto a coordinate plane is just a line.

The following example shows us how to do this when dealing with more
complicated surfaces and curves.

.. Example 473 ..Finding the projecƟon of a curve in space onto the coordi-
nate planes
Consider the surfaces z = 3− x2 − y2 and z = 2y, as shown in Figure 13.40(a).
The curve of their intersecƟon is shown, along with the projecƟon of this curve
into the coordinate planes, shown dashed. Find the equaƟons of the projecƟons
into the coordinate planes.

SÊ½çã®ÊÄ The two surfaces are z = 3 − x2 − y2 and z = 2y. To find
where they intersect, it is natural to set them equal to each other: 3− x2− y2 =
2y. This is an implicit funcƟon of x and y that gives all points (x, y) in the x, y
plane where the z values of the two surfaces are equal.

We can rewrite this implicit funcƟon by compleƟng the square:

3− x2 − y2 = 2y ⇒ y2 + 2y+ x2 = 3 ⇒ (y+ 1)2 + x2 = 4.

Thus in the x, y plane the projecƟon of the intersecƟon is a circle with radius 2,
centered at (0,−1).

To project onto the x, z plane, we do a similar procedure: find the x and z
values where the y values on the surface are the same. We start by solving the
equaƟon of each surface for y. In this parƟcular case, it works well to actually
solve for y2:
z = 3− x2 − y2 ⇒ y2 = 3− x2 − z
z = 2y ⇒ y2 = z2/4.

Thus we have (aŌer again compleƟng the square):

3− x2 − z = z2/4 ⇒ (z+ 2)2

16
+

x2

4
= 1,

and ellipse centered at (0,−2) in the x, z with a major axis of length 8 and a
minor axis of length 4.
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Figure 13.41: The regionD in Example 474
is shown in (a); in (b), it is collapsed onto
the x, y plane.
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Finally, to project the curve of intersecƟon into the y, z plane, we solve equa-
Ɵon for x. Since z = 2y is a cylinder that lacks the variable x, it becomes our
equaƟon of the projecƟon in the y, z plane.

All three projecƟons are shown in Figure 13.40(b). ...

.. Example 474 ..Finding the volumeof a space regionwith triple integraƟon
Set up the triple integrals that find the volume of the space region D bounded
by the surfaces x2 + y2 = 1, z = 0 and z = −y, as shown in Figure 13.41(a),
with the orders of integraƟon dz dy dx, dy dx dz and dx dz dy.

SÊ½çã®ÊÄ The order dz dy dx:

The region D is bounded below by the plane z = 0 and above by the plane
z = −y. The cylinder x2 + y2 = 1 does not offer any bounds in the z-direcƟon,
as that surface is parallel to the z-axis. Thus 0 ≤ z ≤ −y.

Collapsing the region into the x, y plane, we get part of the circle with equa-
Ɵon x2 + y2 = 1 as shown in Figure 13.41(b). As a funcƟon of x, this half circle
has equaƟon y = −

√
1− x2. Thus y is bounded below by−

√
1− x2 and above

by y = 0: −
√
1− x2 ≤ y ≤ 0. The x bounds of the half circle are −1 ≤ x ≤ 1.

All together, the bounds of integraƟon and triple integral are as follows:

0 ≤ z ≤ −y
−
√
1− x2 ≤ y ≤ 0
−1 ≤ x ≤ 1

⇒
∫ 1

−1

∫ 0

−
√
1−x2

∫ −y

0
dz dy dx.

We evaluate this triple integral:∫ 1

−1

∫ 0

−
√
1−x2

∫ −y

0
dz dy dx =

∫ 1

−1

∫ 0

−
√
1−x2

(
− y
)
dy dx

=

∫ 1

−1

(
− 1

2
y2
)∣∣∣0

−
√
1−x2

dx

=

∫ 1

−1

1
2
(
1− x2

)
dx

=

(
1
2

(
x− 1

3
x3
))∣∣∣∣1

−1

=
2
3
u3.

With the order dy dx dz:

Notes:
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Figure 13.42: The region D in Example
474 is shown collapsed onto the x, z plane
in (a); in (b), it is collapsed onto the y, z
plane.
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The region is bounded “below” in the y-direcƟon by the surface x2 + y2 =
1 ⇒ y = −

√
1− x2 and “above” by the surface y = −z. Thus the y bounds are

−
√
1− x2 ≤ y ≤ −z.

Collapsing the region onto the x, z plane gives the region shown in Figure
13.42(a); this half circle has equaƟon x2 + z2 = 1. (We find this curve by solving
each surface for y2, then seƫng them equal to each other. We have y2 = 1− x2
and y = −z ⇒ y2 = z2. Thus x2+z2 = 1.) It is bounded belowby x = −

√
1− z2

and above by x =
√
1− z2, where z is bounded by 0 ≤ z ≤ 1. All together, we

have:

−
√
1− x2 ≤ y ≤ −z

−
√
1− z2 ≤ x ≤

√
1− z2

0 ≤ z ≤ 1
⇒

∫ 1

0

∫ √
1−z2

−
√
1−z2

∫ −z

−
√
1−x2

dy dx dz.

With the order dx dz dy:

D is bounded below by the surface x = −
√

1− y2 and above by
√

1− y2.
We then collapse the region onto the y, z plane and get the triangle shown in
Figure 13.42(b). (The hypotenuse is the line z = −y, just as the plane.) Thus z is
bounded by 0 ≤ z ≤ −y and y is bounded by−1 ≤ y ≤ 0. This gives:

−
√

1− y2 ≤ x ≤
√

1− y2
0 ≤ z ≤ −y
−1 ≤ y ≤ 0

⇒
∫ 0

−1

∫ −y

0

∫ √
1−y2

−
√

1−y2
dx dz dy.

...

The following theorem states two things that should make “common sense”
to us. First, using the triple integral to find volume of a region D should always
return a posiƟve number; we are compuƟng volume here, not signed volume.
Secondly, to compute the volume of a “complicated” region, we could break
it up into subregions and compute the volumes of each subregion separately,
summing them later to find the total volume.

Notes:
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Figure 13.43: The regionD in Example 475
is shown in (a); in (b), it is collapsed onto
the x, y plane.
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.

.

.
Theorem 126 ProperƟes of Triple Integrals

Let D be a closed, bounded region in space, and let D1 and D2 be non-
overlapping regions such that D = D1

∪
D2.

1.
∫∫∫

D
dV ≥ 0

2.
∫∫∫

D
dV =

∫∫∫
D1

dV+

∫∫∫
D2

dV.

We use this laƩer property in the next example.

.. Example 475 ..Finding the volumeof a space regionwith triple integraƟon
Find the volume of the space region D bounded by the coordinate planes, z =
1− x/2 and z = 1− y/4, as shown in Figure 13.43(a). Set up the triple integrals
that find the volume of D in all 6 orders of integraƟon.

SÊ½çã®ÊÄ Following the bounds–determining strategy of “surface to
surface, curve to curve, and point to point,” we can see that the most difficult
orders of integraƟon are the two in which we integrate with respect to z first,
for there are two “upper” surfaces that bound D in the z-direcƟon. So we start
by noƟng that we have

0 ≤ z ≤ 1− 1
2
x and 0 ≤ z ≤ 1− 1

4
y.

We now collapse the region D onto the x, y axis, as shown in Figure 13.43(b).
The boundary of D, the line from (0, 0, 1) to (2, 4, 0), is shown in part (b) of the
figure as a dashed line; it has equaƟon y = 2x. (We can recognize this in two
ways: one, in collapsing the line from (0, 0, 1) to (2, 4, 0) onto the x, y plane,
we simply ignore the z-values, meaning the line now goes from (0, 0) to (2, 4).
Secondly, the two surfaces meet where z = 1 − x/2 is equal to z = 1 − y/4:
thus 1− x/2 = 1− y/4 ⇒ y = 2x.)

We use the second property of Theorem 126 to state that∫∫∫
D
dV =

∫∫∫
D1

dV+

∫∫∫
D2

dV,

where D1 and D2 are the space regions above the plane regions R1 and R2, re-
specƟvely. Thus we can say∫∫∫

D
dV =

∫∫
R1

(∫ 1−x/2

0
dz

)
dA+

∫∫
R2

(∫ 1−y/4

0
dz

)
dA.

Notes:
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Figure 13.44: The region D in Example
475 is shown collapsed onto the x, z plane
in (a); in (b), it is collapsed onto the y, z
plane.
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All that is leŌ is to determine bounds of R1 and R2, depending on whether we
are integraƟngwith order dx dy or dy dx. We give the final integrals here, leaving
it to the reader to confirm these results.

dz dy dx:

0 ≤ z ≤ 1− x/2
0 ≤ y ≤ 2x
0 ≤ x ≤ 2

0 ≤ z ≤ 1− y/4
2x ≤ y ≤ 4
0 ≤ x ≤ 2∫∫∫

D
dV =

∫ 2

0

∫ 2x

0

∫ 1−x/2

0
dz dy dx +

∫ 2

0

∫ 4

2x

∫ 1−y/4

0
dz dy dx

dz dx dy:

0 ≤ z ≤ 1− x/2
y/2 ≤ x ≤ 2
0 ≤ y ≤ 4

0 ≤ z ≤ 1− y/4
0 ≤ x ≤ y/2
0 ≤ y ≤ 4∫∫∫

D
dV =

∫ 4

0

∫ 2

y/2

∫ 1−x/2

0
dz dx dy +

∫ 4

0

∫ y/2

0

∫ 1−y/4

0
dz dx dy

The remaining four orders of integraƟon do not require a sum of triple in-
tegrals. In Figure 13.44 we show D collapsed onto the other two coordinate
planes. Using these graphs, we give the final orders of integraƟon here, again
leaving it to the reader to confirm these results.

dy dx dz:

0 ≤ y ≤ 4− 4z
0 ≤ x ≤ 2− 2z

0 ≤ z ≤ 1
⇒
∫ 1

0

∫ 2−2z

0

∫ 4−4z

0
dy dx dz

..dy dz dx:

0 ≤ y ≤ 4− 4z
0 ≤ z ≤ 1− x/2

0 ≤ x ≤ 2
⇒
∫ 2

0

∫ 1−x/2

0

∫ 4−4z

0
dy dx dz

Notes:
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Figure 13.45: The region D is bounded
by the surfaces shown in (a) and (b); D is
shown in (c).
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dx dy dz:

0 ≤ x ≤ 2− 2z
0 ≤ y ≤ 4− 4z

0 ≤ z ≤ 1
⇒
∫ 1

0

∫ 4−4z

0

∫ 2−2z

0
dx dy dz

dx dz dy:

0 ≤ x ≤ 2− 2z
0 ≤ z ≤ 1− y/4

0 ≤ y ≤ 4
⇒
∫ 4

0

∫ 1−y/4

0

∫ 2−2z

0
dx dz dy

...

We give one more example of finding the volume of a space region.

.. Example 476 ..Finding the volume of a space region
Set up a triple integral that gives the volume of the space region D bounded by
z = 2x2 + 2 and z = 6− 2x2 − y2. These surfaces are ploƩed in Figure 13.45(a)
and (b), respecƟvely; the region D is shown in part (c) of the figure.

SÊ½çã®ÊÄ The main point of this example is this: integraƟng with re-
spect to z first is rather straighƞorward; integraƟng with respect to x first is not.

The order dz dy dx:

The bounds on z are clearly 2x2 + 2 ≤ z ≤ 6− 2x2 − y2. Collapsing D onto
the x, y plane gives the ellipse shown in Figure 13.45(c). The equaƟon of this
ellipse is found by seƫng the two surfaces equal to each other:

2x2 + 2 = 6− 2x2 − y2 ⇒ 4x2 + y2 = 4 ⇒ x2 +
y2

4
= 1.

We can describe this ellipse with the bounds

−
√

4− 4x2 ≤ y ≤
√

4− 4x2 and − 1 ≤ x ≤ 1.

Thus we find volume as

2x2 + 2 ≤ z ≤ 6− 2x2 − y2

−
√
4− 4x2 ≤ y ≤

√
4− 4x2

−1 ≤ x ≤ 1
⇒
∫ 1

−1

∫ √
4−4x2

−
√
4−4x2

∫ 6−2x2−y2

2x2+2
dz dy dx .

The order dy dz dx:

Notes:
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Figure 13.46: The regionD in Example 476
is collapsed onto the x, z plane in (a); in
(b), it is collapsed onto the y, z plane.
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IntegraƟngwith respect to y is not too difficult. Since the surface z = 2x2+2
is a cylinder whose directrix is the y-axis, it does not create a border for y. The
paraboloid z = 6− 2x2 − y2 does; solving for y, we get the bounds

−
√

6− 2x2 − z ≤ y ≤
√

6− 2x2 − z.

Collapsing D onto the x, z axes gives the region shown in Figure 13.46(a); the
lower curve is the from the cylinder, with equaƟon z = 2x2 + 2. The upper
curve is from the paraboloid; with y = 0, the curve is z = 6− 2x2. Thus bounds
on z are 2x2+2 ≤ z ≤ 6−2x2; the bounds on x are−1 ≤ x ≤ 1. Thus we have:

−
√
6− 2x2 − z ≤ y ≤

√
6− 2x2 − z

2x2 + 2 ≤ z ≤ 6− 2x2

−1 ≤ x ≤ 1
⇒
∫ 1

−1

∫ 6−2x2

2x2+2

∫ √
6−2x2−z

−
√
6−2x2−z

dy dz dx.

The order dx dz dy:

This order takes more effort as D must be split into two subregions. The
two surfaces create two sets of upper/lower bounds in terms of x; the cylinder
creates bounds

−
√

z/2− 1 ≤ x ≤
√

z/2− 1

for region D1 and the paraboloid creates bounds

−
√

3− y2/2− z2/2 ≤ x ≤
√

3− y2/2− z2/2

for region D2.
Collapsing D onto the y, z axes gives the regions shown in Figure 13.46(b).

We find the equaƟon of the curve z = 4 − y2/2 by noƟng that the equaƟon of
the ellipse seen in Figure 13.45(c) has equaƟon

x2 + y2/4 = 1 ⇒ x =
√

1− y2/4.

SubsƟtute this expression for x in either surface equaƟon, z = 6 − 2x2 − y2 or
z = 2x2 + 2. In both cases, we find

z = 4− 1
2
y2.

..Region R1, corresponding to D1, has bounds

2 ≤ z ≤ 4− y2/2, −2 ≤ y ≤ 2

and region R2, corresponding to D2, has bounds

4− y2/2 ≤ z ≤ 6− y2, −2 ≤ y ≤ 2.

Notes:
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Thus the volume of D is given by:

∫ 2

−2

∫ 4−y2/2

2

∫ √
z/2−1

−
√

z/2−1
dx dz dy +

∫ 2

−2

∫ 6−y2

4−y2/2

∫ √
3−y2/2−z2/2

−
√

3−y2/2−z2/2
dx dz dy.

...

If all one wanted to do in Example 476 was find the volume of the region D,
one would have likely stopped at the first integraƟon setup (with order dz dy dx)
and computed the volume from there. However, we included the other two
methods 1) to show that it could be done, “messy” or not, and 2) because some-
Ɵmes we “have” to use a less desirable order of integraƟon in order to actually
integrate.

Triple IntegraƟon and FuncƟons of Three Variables

There are uses for triple integraƟon beyond merely finding volume, just as
there are uses for integraƟon beyond “area under the curve.” These uses start
with understanding how to integrate funcƟons of three variables, which is effec-
Ɵvely no different than integraƟng funcƟons of two variables. This leads us to a
definiƟon, followed by an example.

.

.

.
DefiniƟon 107 Iterated IntegraƟon, (Part II)

Let D be a closed, bounded region in space, over which g1(x), g2(x),
f1(x, y), f2(x, y) and h(x, y, z) are all conƟnuous, and let a and b be real
numbers.

The iterated integral
∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
h(x, y, z) dz dy dx is evaluated as∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
h(x, y, z)dz dy dx =

∫ b

a

∫ g2(x)

g1(x)

(∫ f2(x,y)

f1(x,y)
h(x, y, z) dz

)
dy dx.

.. Example 477 ..EvaluaƟng a triple integral of a funcƟon of three variables

Evaluate
∫ 1

0

∫ x

x2

∫ 2x+3y

x2−y

(
xy+ 2xz

)
dz dy dx.

SÊ½çã®ÊÄ We evaluate this integral according to DefiniƟon 107.

Notes:
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∫ 1

0

∫ x

x2

∫ 2x+3y

x2−y

(
xy+ 2xz

)
dz dy dx

=

∫ 1

0

∫ x

x2

(∫ 2x+3y

x2−y

(
xy+ 2xz

)
dz
)

dy dx

=

∫ 1

0

∫ x

x2

((
xyz+ xz2

)∣∣∣2x+3y

x2−y

)
dy dx

=

∫ 1

0

∫ x

x2

(
xy(2x+ 3y) + x(2x+ 3y)2 −

(
xy(x2 − y) + x(x2 − y)2

))
dy dx

=

∫ 1

0

∫ x

x2

(
− x5 + x3y+ 4x3 + 14x2y+ 12xy2

)
dy dx.

We conƟnue as we have in the past, showing fewer steps.

=

∫ 1

0

(
− 7

2
x7 − 8x6 − 7

2
x5 + 15x4

)
dx

=
281
336

≈ 0.836.
...

We now know how to evaluate a triple integral of a funcƟon of three vari-
ables; we do not yet understand what itmeans. We build up this understanding
in a way very similar to how we have understood integraƟon and double inte-
graƟon.

Let h(x, y, z) a conƟnuous funcƟon of three variables, defined over some
space region D. We can parƟƟon D into n rectangular–solid subregions, each
with dimensions ∆xi × ∆yi × ∆zi. Let (xi, yi, zi) be some point in the i th sub-
region, and consider the product h(xi, yi, zi)∆xi∆yi∆zi. It is the product of a
funcƟon value (that’s the h(xi, yi, zi) part) and a small volume ∆Vi (that’s the
∆xi∆yi∆zi part). One of the simplest understanding of this type of product is
when h describes the density of an object; then h× volume = mass.

We can sumup all n products overD. Again leƫng |∆D| represent the length
of the longest diagonal of the n rectangular solids in the parƟƟon, we can take
the limit of the sums of products as |∆D| → 0. That is, we can find

S = lim
|∆D|→0

n∑
i=1

h(xi, yi, zi)∆Vi = lim
|∆D|→0

n∑
i=1

h(xi, yi, zi)∆xi∆yi∆zi.

While this limit has lots of interpretaƟons depending on the funcƟon h, in
the case where h describes density, S is the total mass of the object described
by the region D.

Notes:
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We now use the above limit to define the triple integral, give a theorem that
relates triple integrals to iterated iteraƟon, followed by the applicaƟon of triple
integrals to find the centers of mass of solid objects.

.

.

.
DefiniƟon 108 Triple Integral

Letw = h(x, y, z) be a conƟnuous funcƟon over a closed, bounded space
region D, and let∆D be any parƟƟon of D into n rectangular solids with
volume Vi. The triple integral of h over D is∫∫∫

D
h(x, y, z) dV = lim

|∆D|→0

n∑
i=1

h(xi, yi, zi)∆Vi.

The following theorem assures us that the above limit exists for conƟnuous
funcƟons h and gives us a method of evaluaƟng the limit.

.

.

.
Theorem 127 Triple IntegraƟon (Part II)

Letw = h(x, y, z) be a conƟnuous funcƟon over a closed, bounded space
region D, and let∆D be any parƟƟon of D into n rectangular solids with
volume Vi.

1. The limit lim
|∆D|→0

n∑
i=1

h(xi, yi, zi)∆Vi exists.

2. If D is defined as the region bounded by the planes x = a and
x = b, the cylinders y = g1(x) and y = g2(x), and the surfaces
z = f1(x, y) and z = f2(x, y), where a < b, g1(x) ≤ g2(x) and
f1(x, y) ≤ f2(x, y) on D, then∫∫∫

D
h(x, y, z) dV =

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
h(x, y, z) dz dy dx.

We now apply triple integraƟon to find the centers of mass of solid objects.

Mass and Center of Mass
One may wish to review SecƟon 13.4 for a reminder of the relevant terms

and concepts.

Notes:
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of this solid in Example 478.
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.

.

.
DefiniƟon 109 Mass, Center of Mass of Solids

Let a solid be represented by a region D in space with variable density
funcƟon δ(x, y, z).

1. Themass of the object isM =

∫∫∫
D
dm =

∫∫∫
D
δ(x, y, z) dV.

2. Themoment about the x,y plane isMxy =

∫∫∫
D
zδ(x, y, z) dV.

3. Themoment about the x,z plane isMxz =

∫∫∫
D
yδ(x, y, z) dV.

4. Themoment about the y,z plane isMyz =

∫∫∫
D
xδ(x, y, z) dV.

5. The center of mass of the object is

(
x, y, z

)
=

(
Myz

M
,
Mxz

M
,
Mxy

M

)
.

.. Example 478 ..Finding the center of mass of a solid
Find the mass, and center of mass, of the solid represented by the space region
bounded by the coordinate planes and z = 2 − y/3 − 2x/3, shown in Figure
13.47, with constant density δ(x, y, z) = 3gm/cm3. (Note: this space region was
used in Example 472.)

SÊ½çã®ÊÄ We apply DefiniƟon 109. In Example 472, we found bounds
for the order of integraƟon dz dy dx to be 0 ≤ z ≤ 2−y/3−2x/3, 0 ≤ y ≤ 6−2x
and 0 ≤ x ≤ 3. We find the mass of the object:

M =

∫∫∫
D
δ(x, y, z) dV

=

∫ 3

0

∫ 6−2x

0

∫ 2−y/3−2x/3

0

(
3
)
dz dy dx

= 3
∫ 3

0

∫ 6−2x

0

∫ 2−y/3−2x/3

0
dz dy dx

= 3(6) = 18gm.

The evaluaƟon of the triple integral is done in Example 472, so we skipped those

Notes:

788



...

..

x 2
+ y 2

= 1

.

z = −y

.

−1

.

1

.

−1

.

−0.5

.
1

.

x

.

y

.

z

Figure 13.48: Finding the center of mass
of this solid in Example 479.

13.6 Volume Between Surfaces and Triple IntegraƟon

steps above. Note how the mass of an object with constant density is simply
“density×volume.”

We now find the moments about the planes.

Mxy =

∫∫∫
D
3z dV

=

∫ 3

0

∫ 6−2x

0

∫ 2−y/3−2x/3

0

(
3z
)
dz dy dx

=

∫ 3

0

∫ 6−2x

0

1
6
(
2x+ y− 6

)2 dy dx
=

∫ 3

0
−4
9
(
x− 3

)3 dx
= 9.

We omit the steps of integraƟng to find the other moments.

Myz =

∫∫∫
D
3x dV

=
27
2
.

Mxz =

∫∫∫
D
3y dV

= 27.

The center of mass is(
x, y, z

)
=

(
27/2
18

,
27
18

,
9
18

)
=
(
0.75, 1.5, 0.5

)
.

...

.. Example 479 ..Finding the center of mass of a solid
Find the center of mass of the solid represented by the region bounded by the
planes z = 0 and z = −y and the cylinder x2 + y2 = 1, shown in Figure 13.48,
with density funcƟon δ(x, y, z) = 10 + x2 + 5y − 5z. (Note: this space region
was used in Example 474.)

SÊ½çã®ÊÄ As we start, consider the density funcƟon. It is symmetric
about the y, z plane, and the farther one moves from this plane, the denser the
object is. The symmetry indicates that x should be 0.

As one moves away from the origin in the y or z direcƟons, the object be-
comes less dense, though there is more volume in these regions.

Though none of the integrals needed to compute the center of mass are
parƟcularly hard, they do require a number of steps. We emphasize here the

Notes:
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Chapter 13 MulƟple IntegraƟon

importance of knowing how to set up the proper integrals; in complex situaƟons
we can appeal to technology for a good approximaƟon, if not the exact answer.
We use the order of integraƟon dz dy dx, using the bounds found in Example
474. (As these are the same for all four triple integrals, we explicitly show the
bounds only forM.)

M =

∫∫∫
D

(
10+ x2 + 5y− 5z

)
dV

=

∫ 1

−1

∫ 0

−
√
1−x2

∫ −y

0

(
10+ x2 + 5y− 5z

)
dV

=
64
5

− 15π
16

≈ 3.855.

Myz =

∫∫∫
D
x
(
10+ x2 + 5y− 5z

)
dV

= 0.

Mxz =

∫∫∫
D
y
(
10+ x2 + 5y− 5z

)
dV

= 2− 61π
48

≈ −1.99.

Mxy =

∫∫∫
D
z
(
10+ x2 + 5y− 5z

)
dV

=
61π
96

− 10
9

≈ 0.885.

Note howMyz = 0, as expected. The center of mass is

(
x, y, z

)
=

(
0,

−1.99
3.855

,
0.885
3.855

)
≈
(
0,−0.516, 0.230

)
.

...

As stated before, there are many uses for triple integraƟon beyond finding
volume. When h(x, y, z) describes a rate of change funcƟon over some space

region D, then
∫∫∫

D
h(x, y, z) dV gives the total change over D. Our one specific

example of this was compuƟngmass; a density funcƟon is simply a “rate of mass
change per volume” funcƟon. IntegraƟng density gives total mass.

While knowing how to integrate is important, it is arguably much more im-
portant to know how to set up integrals. It takes skill to create a formula that de-
scribes a desired quanƟty; modern technology is very useful in evaluaƟng these
formulas quickly and accurately.

Notes:
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Exercises 13.6
Terms and Concepts
1. The strategy for establishing bounds for triple integrals

is “ to , to and
to .”

2. Give an informal interpretaƟon of what “
∫∫∫

D
dV”

means.

3. Give two uses of triple integraƟon.

4. If an object has a constant density δ and a volume V, what
is its mass?

Problems
In Exercises 5 – 8, two surfaces f1(x, y) and f2(x, y) and a re-
gion R in the x, y plane are given. Set up and evaluate the
double integral that finds the volume between these surfaces
over R.

5. f1(x, y) = 8− x2 − y2, f2(x, y) = 2x+ y;
R is the square with corners (−1,−1) and (1, 1).

6. f1(x, y) = x2 + y2, f2(x, y) = −x2 − y2;
R is the square with corners (0, 0) and (2, 3).

7. f1(x, y) = sin x cos y, f2(x, y) = cos x sin y+ 2;
R is the triangle with corners (0, 0), (π, 0) and (π, π).

8. f1(x, y) = 2x2 + 2y2 + 3, f2(x, y) = 6− x2 − y2;
R is the circle x2 + y2 = 1.

In Exercises 9 – 16, a domain D is described by its bounding
surfaces, along with a graph. Set up the triple integrals that
give the volume of D in all 6 orders of integraƟon, and find
the volume of D by evaluaƟng the indicated triple integral.

9. D is bounded by the coordinate planes and
z = 2− 2x/3− 2y.

Evaluate the triple integral with order dz dy dx.

...

..

z = 2 − 2
3 x − 2y

.
1

.

2

.

3

.
1

.

2

.

3

.

1

.

2

.

x

.

y

.

z

10. D is bounded by the planes y = 0, y = 2, x = 1, z = 0 and
z = (3− x)/2.

Evaluate the triple integral with order dx dy dz.

...

..

z = 1
2 (3 − x)

.1 .
2

.
3

. 1.
2

.
3

.

1

.

x

.
y

.

z

11. D is bounded by the planes x = 0, x = 2, z = −y and by
z = y2/2.

Evaluate the triple integral with the order dy dz dx.

...

..

z
=

−
y

.z
=

12 y 2

.

1

.

2

.
1

.

2

.

x

.

y

.

z
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12. D is bounded by the planes z = 0, y = 9, x = 0 and by
z =

√
y2 − 9x2.

Do not evaluate any triple integral.

...

..

z =
√

y2 − 9x2

.

3

.
3

.

6

.

9

.

3

.

6

.

9

.

x

.

y

.

z

13. D is bounded by the planes x = 2, y = 1, z = 0 and
z = 2x+ 4y− 4.

Evaluate the triple integral with the order dx dy dz.

...

..

z = 2x + 4y − 4

.

1

.

2

. 1.

2

.

2

.

4

.

x

.

y

.

z

14. D is bounded by the plane z = 2y and by y = 4− x2.

Evaluate the triple integral with the order dz dy dx.

...

..

y =
4−

x2.

z =
2y

.

1

.

2

.

−1

.
−2

.
1

.
2

. 3. 4. 2.

4

.

6

.

8

.

x

.
y

.

z

15. D is bounded by the coordinate planes and by
y = 1− x2 and y = 1− z2.

Do not evaluate any triple integral. Which order is easier to
evaluate: dz dy dx or dy dz dx? Explain why.

...

..

y = 1 − x2

.

y
=

1−
z 2

.

1

.

1

.

1

.

x

.

y

.

z
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16. D is bounded by the coordinate planes and by
z = 1− y/3 and z = 1− x.
Evaluate the triple integral with order dx dy dz.

...

..

z = 1 − x

.

z
=

1−
y/3

.
1

.

2

.
1

.

2

.

3

.

1

.

x

.

y

.

z

In Exercises 17 – 20, evaluate the triple integral.

17.
∫ π/2

−π/2

∫ π

0

∫ π

0

(
cos x sin y sin z

)
dz dy dx

18.
∫ 1

0

∫ x

0

∫ x+y

0

(
x+ y+ z

)
dz dy dx

19.
∫ π

0

∫ 1

0

∫ z

0

(
sin(yz)

)
dx dy dz

20.
∫ π2

π

∫ x3

x

∫ y2

−y2

(
z
x2y+ y2x
ex2+y2

)
dz dy dx

In Exercises 21 – 24, find the center ofmass of the solid repre-
sented by the indicated space region Dwith density funcƟon
δ(x, y, z).

21. D is bounded by the coordinate planes and
z = 2− 2x/3− 2y; δ(x, y, z) = 10gm/cm3.
(Note: this is the same region as used in Exercise 9.)

22. D is bounded by the planes y = 0, y = 2, x = 1, z = 0 and
z = (3− x)/2; δ(x, y, z) = 2gm/cm3.
(Note: this is the same region as used in Exercise 10.)

23. D is bounded by the planes x = 2, y = 1, z = 0 and
z = 2x+ 4y− 4; δ(x, y, z) = x2lb/in3.
(Note: this is the same region as used in Exercise 13.)

24. D is bounded by the plane z = 2y and by y = 4− x2.
δ(x, y, z) = y2lb/in3.
(Note: this is the same region as used in Exercise 14.)
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Chapter 9
SecƟon 9.1

1. When defining the conics as the intersecƟons of a plane and a
double napped cone, degenerate conics are created when the
plane intersects the Ɵps of the cones (usually taken as the origin).
Nondegenerate conics are formed when this plane does not
contain the origin.

3. Hyperbola

5. With a horizontal transverse axis, the x2 term has a posiƟve
coefficient; with a verƟcal transverse axis, the y2 term has a
posiƟve coefficient.

7. y = −1
12 (x+ 1)2 − 1

9. x = y2

11. x = − 1
12 y

2

13. x = − 1
8 (y− 3)2 + 2

15. focus: (5, 2); directrix: x = 1. The point P is 10 units from each.

17. .....

−5

.

5

. −6.

−4

.

−2

.

x

.

y

19. (x−1)2

1/4 + y2
9 = 1; foci at (1,±

√
8.75); e =

√
8.75/3 ≈ 0.99

21. (x−2)2

25 +
(y−3)2

16 = 1

23. (x+1)2

9 +
(y−1)2

25 = 1

25. x2
3 + y2

5 = 1

27. (x−2)2

4 +
(y−2)2

4 = 1

29. x2 − y2
3 = 1

31. (y−3)2

4 − (x−1)2

9 = 1

33. ...

..

−5

.

5

.

−6

.

−4

.

−2

.

2

.

x

.

y

35. x2
4 − y2

5 = 1

37. (x−3)2

16 − (y−3)2

9 = 1

39. x2
4 − y2

3 = 1

41. (y− 2)2 − x2
10 = 1

43. (a) Solve for c in e = c/a: c = ae. Thus a2e2 = a2 − b2, and
b2 = a2 − a2e2. The result follows.

(b) Mercury: x2/(0.387)2 + y2/(0.3787)2 = 1
Earth: x2 + y2/(0.99986)2 = 1
Mars: x2/(1.524)2 + y2/(1.517)2 = 1

(c) Mercury: (x− 0.08)2/(0.387)2 + y2/(0.3787)2 = 1
Earth: (x− 0.0167)2 + y2/(0.99986)2 = 1
Mars: (x− 0.1423)2/(1.524)2 + y2/(1.517)2 = 1

SecƟon 9.2

1. T

3. rectangular

5.

.....

5

.

10

.

−5

.

x

.

y

7.

.....
1

.
2

.

1

.

2

.

x

.

y

9.

.....
−10

.
−5

.
5

.
10

.

2

.

4

.

6

.

8

. x.

y
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11.

.....

−5

.

5

. −5.

5

.

x

.

y

13.

.....

−1

.

−0.5

.

0.5

.

1

. −1.

−0.5

.

0.5

.

1

.

x

.

y

15.

.....

5

.

10

.

−10

.

10

.

x

.

y

17.

.....

−1

.

1

.
−1

.

1

.

x

.

y

19. (a) Traces a circle of radius 1 counterclockwise once.

(b) Traces a circle of radius 1 counterclockwise over 6 Ɵmes.

(c) Traces a circle of radius 1 clockwise infinite Ɵmes.

(d) Traces an arc of a circle of radius 1, from an angle of -1
radians to 1 radian, twice.

21. x2 − y2 = 1

23. y = x3/2

25. y = x3 − 3

27. y2 − x2 = 1

29. x = 1− 2y2

31. x2 + y2 = r2; circle centered at (0, 0) with radius r.

33. (x−h)2

a2 − (y−k)2

b2 = 1; hyperbola centered at (h, k) with
horizontal transverse axis and asymptotes with slope b/a. The
parametric equaƟons only give half of the hyperbola. When
a > 0, the right half; when a < 0, the leŌ half.

35. x = ln t, y = t. At t = 1, x = 0, y = 1.
y′ = ex; when x = 0, y′ = 1.

37. x = 1/(4t2), y = 1/(2t). At t = 1, x = 1/4, y = 1/2.
y′ = 1/(2

√
x); when x = 1/4, y′ = 1.

39. t = −1, 2

41. t = π/6, π/2, 5π/6

43. t = 2

45. t = . . . 0, 2π, 4π, . . .

47. x = 50t, y = −16t2 + 64t

49. x = 2 cos t, y = −2 sin t; other answers possible

51. x = cos t+ 1, y = 3 sin t+ 3; other answers possible

53. x = ± sec t+ 2, y =
√
8 tan t− 3; other answers possible

SecƟon 9.3

1. F

3. F

5. (a) dy
dx = 2t

(b) Tangent line: y = 2(x− 1) + 1; normal line:
y = −1/2(x− 1) + 1

7. (a) dy
dx = 2t+1

2t−1

(b) Tangent line: y = 3x+ 2; normal line: y = −1/3x+ 2

9. (a) dy
dx = csc t

(b) t = π/4: Tangent line: y =
√
2(x−

√
2) + 1; normal line:

y = −1/
√
2(x−

√
2) + 1

11. (a) dy
dx =

cos t sin(2t)+sin t cos(2t)
− sin t sin(2t)+2 cos t cos(2t)

(b) Tangent line: y = x−
√
2; normal line: y = −x−

√
2

13. t = 0

15. t = −1/2

17. The graph does not have a horizontal tangent line.

19. The soluƟon is non-trivial; use idenƟƟes sin(2t) = 2 sin t cos t and
cos(2t) = cos2 t− sin2 t to rewrite
g′(t) = 2 sin t(2 cos2 t− sin2 t). On [0, 2π], sin t = 0 when
t = 0, π, 2π, and 2 cos2 t− sin2 t = 0 when
t = tan−1(

√
2), π ± tan−1(

√
2), 2π − tan−1(

√
2).

21. t0 = 0; limt→0
dy
dx = 0.

23. t0 = 1; limt→1
dy
dx = ∞.

25. d2y
dx2 = 2; always concave up

27. d2y
dx2 = − 4

(2t−1)3 ; concave up on (−∞, 1/2); concave down on
(1/2,∞).

29. d2y
dx2 = − cot3 t; concave up on (−∞, 0); concave down on
(0,∞).

31. d2y
dx2 =

4(13+3 cos(4t))
(cos t+3 cos(3t))3 , obtained with a computer algebra system;

concave up on
(
− tan−1(

√
2/2), tan−1(

√
2/2)

)
, concave down

on
(
− π/2,− tan−1(

√
2/2)

)
∪
(
tan−1(

√
2/2), π/2

)
33. L = 6π

35. L = 2
√
34
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37. L ≈ 2.4416 (actual value: L = 2.42211)

39. L ≈ 4.19216 (actual value: L = 4.18308)

41. The answer is 16π for both (of course), but the integrals are
different.

43. SA ≈ 8.50101 (actual value SA = 8.02851

SecƟon 9.4

1. Answers will vary.

3. T

5. ..
1

.
2

.
O
. A.B .

C

.
D

7. A = P(2.5, π/4) and P(−2.5, 5π/4);
B = P(−1, 5π/6) and P(1, 11π/6);
C = P(3, 4π/3) and P(−3, π/3);
D = P(1.5, 2π/3) and P(−1.5, 5π/3);

9. A = (
√
2,
√
2)

B = (
√
2,−

√
2)

C = P(
√
5,−0.46)

D = P(
√
5, 2.68)

11.

.....
1

.
2

.

1

.

2

.

x

.

y

13.

.....

−2

.

2

. −2.

−1

.

1

.

2

.

x

.

y

15.

.....

−2

.

2

.

−2

.

2

.

x

.

y

17.

.....

−2

.

2

.
−2

.

2

.

x

.

y

19.

.....

−1

.

1

. −1.

1

.

x

.

y

21.

.....

−1

.

1

. −1.

1

.

x

.

y

23.

.....
−2

.
2

.

2

.

3

.

1

.

x

.

y

25.

.....

−8

.

−6

.

−4

.

−2

.

−2

.

2

.

x

.

y

27.

.....

−5

.

5

.
−4

.

−2

.

2

.

4

.

x

.

y

29.

.....

−5

.

5

.
−4

.

−2

.

2

.

4

.

x

.

y

31. x2 + (y+ 2)2 = 4

33. y = 2/5x+ 7/5

35. y = 4

37. x2 + y2 = 4

39. θ = π/4

41. r = 5 sec θ

43. r = cos θ/ sin2 θ

A.3



45. r =
√
7

47. P(
√
3/2, π/6), P(0, π/2), P(−

√
3/2, 5π/6)

49. P(0, 0) = P(0, π/2), P(
√
2, π/4)

51. P(
√
2/2, π/12), P(−

√
2/2, 5π/12), P(

√
2/2, 3π/4)

53. For all points, r = 1; θ =
π/12, 5π/12, 7π/12, 11π/12, 13π/12, 17π/12, 19π/12, 23π/12.

55. Answers will vary. Ifm and n do not have any common factors,
then an interval of 2nπ is needed to sketch the enƟre graph.

SecƟon 9.5

1. Using x = r cos θ and y = r sin θ, we can write x = f(θ) cos θ,
y = f(θ) sin θ.

3. (a) dy
dx = − cot θ

(b) tangent line: y = −(x−
√
2/2) +

√
2/2; normal line:

y = x

5. (a) dy
dx =

cos θ(1+2 sin θ)
cos2 θ−sin θ(1+sin θ)

(b) tangent line: x = 3
√
3/4; normal line: y = 3/4

7. (a) dy
dx = θ cos θ+sin θ

cos θ−θ sin θ

(b) tangent line: y = −2/πx+ π/2; normal line:
y = π/2x+ π/2

9. (a) dy
dx =

4 sin(t) cos(4t)+sin(4t) cos(t)
4 cos(t) cos(4t)−sin(t) sin(4t)

(b) tangent line: y = 5
√
3(x+

√
3/4)− 3/4; normal line:

y = −1/5
√
3(x+

√
3/4)− 3/4

11. horizontal: θ = π/2, 3π/2;
verƟcal: θ = 0, π, 2π

13. horizontal: θ = tan−1(1/
√
5), π/2, π − tan−1(1/

√
5), π +

tan−1(1/
√
5), 3π/2, 2π − tan−1(1/

√
5);

verƟcal: θ = 0, tan−1(
√
5), π − tan−1(

√
5), π, π +

tan−1(
√
5), 2π − tan−1(

√
5)

15. In polar: θ = 0 ∼= θ = π

In rectangular: y = 0

17. area = 4π

19. area = π/12

21. area = π − 3
√
3/2

23. area = π + 3
√
3

25. area =
∫ π/3

π/12

1
2
sin2(3θ) dθ −

∫ π/6

π/12

1
2
cos2(3θ) dθ =

1
12

+
π

24

27. area =
∫ 5π/12

0

1
2
(1− cos θ)2 dθ +

∫ π/2

5π/12

1
2
(3 cos θ)2 dθ =

1
4
(2π −

√
6−

√
2− 2) ≈ 0.105

29. 4π

31. L ≈ 2.2592; (actual value L = 2.22748)

33. SA = 16π

35. SA = 32π/5

37. SA = 36π

Chapter 10
SecƟon 10.1

1. right hand

3. curve (a parabola); surface (a cylinder)

5. a hyperboloid of two sheets

7. || AB || =
√
6; || BC || =

√
17; || AC || =

√
11. Yes, it is a right

triangle as || AB ||2 + || AC ||2 = || BC ||2.

9. Center at (4,−1, 0); radius = 3

11. Interior of a sphere with radius 1 centered at the origin.

13. The first octant of space; all points (x, y, z) where each of x, y and
z are posiƟve. (Analogous to the first quadrant in the plane.)

15.

...

..

−1

.
1

.
x

.y .

z

17.

...

..
−2

.2 .
−2

. 2.
−2
.

2

.x .
y

.

z

19. y2 + z2 = x4

21. z = (
√

x2 + y2)2 = x2 + y2

23. (a) x = y2 +
z2

9

25. (b) x2 +
y2

9
+

z2

4
= 1

27.

...

..
−1

.
1

.−1 .
1

.

−1

.

1

.
x

.
y

.

z

29.

...

..
−1

.
−1

.1 .

−1

.

1

.x . y.

z
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31.

...

..
−5

.5 .
−1

. 1.−5 .

5

.x . y.

z

SecƟon 10.2

1. Answers will vary.

3. A vector with magnitude 1.

5. It stretches the vector by a factor of 2, and points it in the
opposite direcƟon.

7. # ‰PQ = ⟨−4, 4⟩ = −4⃗i+ 4⃗j

9. # ‰PQ = ⟨2, 2, 0⟩ = 2⃗i+ 2⃗j

11. (a) u⃗+ v⃗ = ⟨3, 2, 1⟩; u⃗− v⃗ = ⟨−1, 0,−3⟩;
πu⃗−

√
2⃗v =

⟨
π − 2

√
2, π −

√
2,−π − 2

√
2
⟩
.

(c) x⃗ = ⟨−1, 0,−3⟩.

13.

.....

u⃗

.

v⃗

.

u⃗ + v⃗

.

u⃗−
v⃗

.

x

.

y

Sketch of u⃗− v⃗ shiŌed for clarity.

15.

...

..
u⃗

.

v⃗

.
u⃗ + v⃗

.

u⃗ − v⃗

.

x

.

y

.

z

17. || u⃗ || =
√
17, || v⃗ || =

√
3, || u⃗+ v⃗ || =

√
14, || u⃗− v⃗ || =

√
26

19. || u⃗ || = 7, || v⃗ || = 35, || u⃗+ v⃗ || = 42, || u⃗− v⃗ || = 28

21. u⃗ =
⟨
3/

√
30, 7/

√
30
⟩

23. u⃗ = ⟨1/3,−2/3, 2/3⟩

25. u⃗ = ⟨cos 50◦, sin 50◦⟩ ≈ ⟨0.643, 0.766⟩.

27.

|| u⃗ || =
√

sin2 θ cos2 φ+ sin2 θ sin2 φ+ cos2 θ

=
√

sin2 θ(cos2 φ+ sin2 φ) + cos2 θ

=
√

sin2 θ + cos2 θ
= 1.

29. The force on each chain is 100lb.

31. The force on each chain is 50lb.

33. θ = 5.71◦; the weight is liŌed 0.005 Ō (about 1/16th of an inch).

35. θ = 84.29◦; the weight is liŌed 9 Ō.

SecƟon 10.3

1. Scalar

3. By considering the sign of the dot product of the two vectors. If
the dot product is posiƟve, the angle is acute; if the dot product is
negaƟve, the angle is obtuse.

5. −22

7. 3

9. not defined

11. Answers will vary.

13. θ = 0.3218 ≈ 18.43◦

15. θ = π/4 = 45◦

17. Answers will vary; two possible answers are ⟨−7, 4⟩ and ⟨14,−8⟩.

19. Answers will vary; two possible answers are ⟨1, 0,−1⟩ and
⟨4, 5,−9⟩.

21. proj v⃗ u⃗ = ⟨−1/2, 3/2⟩.

23. proj v⃗ u⃗ = ⟨−1/2,−1/2⟩.

25. proj v⃗ u⃗ = ⟨1, 2, 3⟩.

27. u⃗ = ⟨−1/2, 3/2⟩+ ⟨3/2, 1/2⟩.

29. u⃗ = ⟨−1/2,−1/2⟩+ ⟨−5/2, 5/2⟩.

31. u⃗ = ⟨1, 2, 3⟩+ ⟨0, 3,−2⟩.

33. 1.96lb

35. 141.42Ō–lb

37. 500Ō–lb

39. 500Ō–lb

SecƟon 10.4

1. vector

3. “Perpendicular” is one answer.

5. Torque

7. u⃗× v⃗ = ⟨11, 1,−17⟩

9. u⃗× v⃗ = ⟨47,−36,−44⟩

11. u⃗× v⃗ = ⟨0, 0, 0⟩

13. i⃗× k⃗ = −⃗j

15. Answers will vary.

17. 5

19. 0

21.
√
14

23. 3

25. 5
√
2/2

27. 1

29. 7

31. 2

33. ± 1√
6
⟨1, 1,−2⟩

35. ⟨0,±1, 0⟩
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37. 87.5Ō–lb

39. 200/3 ≈ 66.67Ō–lb

41. With u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩, we have

u⃗ · (⃗u× v⃗) = ⟨u1, u2, u3⟩ · (⟨u2v3 − u3v2,−(u1v3 − u3v1), u1v2 − u2v1⟩)
= u1(u2v3 − u3v2)− u2(u1v3 − u3v1) + u3(u1v2 − u2v1)
= 0.

SecƟon 10.5

1. A point on the line and the direcƟon of the line.

3. parallel, skew

5. vector: ℓ(t) = ⟨2,−4, 1⟩+ t ⟨9, 2, 5⟩
parametric: x = 2+ 9t, y = −4+ 2t, z = 1+ 5t
symmetric: (x− 2)/9 = (y+ 4)/2 = (z− 1)/5

7. Answers can vary: vector: ℓ(t) = ⟨2, 1, 5⟩+ t ⟨5,−3,−1⟩
parametric: x = 2+ 5t, y = 1− 3t, z = 5− t
symmetric: (x− 2)/5 = −(y− 1)/3 = −(z− 5)

9. Answers can vary; here the direcƟon is given by d⃗1 × d⃗2: vector:
ℓ(t) = ⟨0, 1, 2⟩+ t ⟨−10, 43, 9⟩
parametric: x = −10t, y = 1+ 43t, z = 2+ 9t
symmetric: −x/10 = (y− 1)/43 = (z− 2)/9

11. Answers can vary; here the direcƟon is given by d⃗1 × d⃗2: vector:
ℓ(t) = ⟨7, 2,−1⟩+ t ⟨1,−1, 2⟩
parametric: x = 7+ t, y = 2− t, z = −1+ 2t
symmetric: x− 7 = 2− y = (z+ 1)/2

13. vector: ℓ(t) = ⟨1, 1⟩+ t ⟨2, 3⟩
parametric: x = 1+ 2t, y = 1+ 3t
symmetric: (x− 1)/2 = (y− 1)/3

15. parallel

17. intersecƟng; ℓ1(3) = ℓ2(4) = ⟨9,−5, 13⟩

19. skew

21. same

23.
√
41/3

25. 5
√
2/2

27. 3/
√
2

29. Since both P and Q are on the line, # ‰PQ is parallel to d⃗. Thus
# ‰PQ× d⃗ = 0⃗, giving a distance of 0.

31. The distance formula cannot be used because since d⃗1 and d⃗2 are
parallel, c⃗ is 0⃗ and we cannot divide by || 0⃗ ||.
Since d⃗1 and d⃗2 are parallel,

#     ‰P1P2 lies in the plane formed by the
two lines. Thus #     ‰P1P2 × d⃗2 is orthogonal to this plane, and
c⃗ = (

#     ‰P1P2 × d⃗2)× d⃗2 is parallel to the plane, but sƟll orthogonal
to both d⃗1 and d⃗2. We desire the length of the projecƟon of #     ‰P1P2
onto c⃗, which is what the formula provides.

SecƟon 10.6

1. A point in the plane and a normal vector (i.e., a direcƟon
orthogonal to the plane).

3. Answers will vary.

5. Answers will vary.

7. Standard form: 3(x− 2)− (y− 3) + 7(z− 4) = 0
general form: 3x− y+ 7z = 31

9. Answers may vary;
Standard form: 8(x− 1) + 4(y− 2)− 4(z− 3) = 0
general form: 8x+ 4y− 4z = 4

11. Answers may vary;
Standard form: −7(x− 2) + 2(y− 1) + (z− 2) = 0
general form: −7x+ 2y+ z = −10

13. Answers may vary;
Standard form: 2(x− 1)− (y− 1) = 0
general form: 2x− y = 1

15. Answers may vary;
Standard form: 2(x− 2)− (y+ 6)− 4(z− 1) = 0
general form: 2x− y− 4z = 6

17. Answers may vary;
Standard form: (x− 5) + (y− 7) + (z− 3) = 0
general form: x+ y+ z = 15

19. Answers may vary;
Standard form: 3(x+ 4) + 8(y− 7)− 10(z− 2) = 0
general form: 3x+ 8y− 10z = 24

21. Answers may vary:

ℓ =


x = 14t
y = −1− 10t
z = 2− 8t

23. (−3,−7,−5)

25. No point of intersecƟon; the plane and line are parallel.

27.
√

5/7

29. 1/
√
3

31. If P is any point in the plane, and Q is also in the plane, then # ‰PQ
lies parallel to the plane and is orthogonal to n⃗, the normal vector.
Thus n⃗ · # ‰PQ = 0, giving the distance as 0.

Chapter 11
SecƟon 11.1

1. parametric equaƟons

3. displacement

5.

.....

1

.

2

.

3

.

4

.

−5

.

5

.

x

.

y

7.

.....

2

.

4

.−1.

−0.5

.

0.5

.

1

.

x

.

y
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9.

.....

−3

.

−2

.

−1

.

1

.

2

.

3

.

−1

.
−2

.

1

.

2

.

x

.

y

11.

...

..

−10

.

−5

.

5

.

10

.

−5

.

5

.

x

.

y

13.

...

..

−2

.

2

.
−1

.

1

.
1

.

2

.

x

.

y

.

z

15.

...

..
−1

.1 .

−1

.
1

.

−1

.

1

.x .y.

z

17. || r⃗(t) || =
√

25 cos2 t+ 9 sin2 t.

19. || r⃗(t) || =
√
cos2 t+ t2 + t4.

21. Answers may vary; three soluƟons are
r⃗(t) = ⟨3 sin t+ 5, 3 cos t+ 5⟩,
r⃗(t) = ⟨−3 cos t+ 5, 3 sin t+ 5⟩ and
r⃗(t) = ⟨3 cos t+ 5,−3 sin t+ 5⟩.

23. Answers may vary, though most direct soluƟons are
r⃗(t) = ⟨−3 cos t+ 3, 2 sin t− 2⟩,
r⃗(t) = ⟨3 cos t+ 3,−2 sin t− 2⟩ and
r⃗(t) = ⟨3 sin t+ 3, 2 cos t− 2⟩.

25. Answers may vary, though most direct soluƟons are
r⃗(t) = ⟨t,−1/2(t− 1) + 5⟩,
r⃗(t) = ⟨t+ 1,−1/2t+ 5⟩,
r⃗(t) = ⟨−2t+ 1, t+ 5⟩ and
r⃗(t) = ⟨2t+ 1,−t+ 5⟩.

27. Answers may vary, though most direct soluƟon is
r⃗(t) = ⟨3 cos(4πt), 3 sin(4πt), 3t⟩.

29. ⟨1, 1⟩

31. ⟨1, 2, 7⟩

SecƟon 11.2

1. component

3. It is difficult to idenƟfy the points on the graphs of r⃗(t) and r⃗ ′(t)
that correspond to each other.

5.
⟨
e3, 0

⟩
7. ⟨2t, 1, 0⟩

9. (0,∞)

11. r⃗ ′(t) =
⟨
−1/t2, 5/(3t+ 1)2, sec2 t

⟩
13. r⃗ ′(t) = ⟨2t, 1⟩ · ⟨sin t, 2t+ 5⟩+

⟨
t2 + 1, t− 1

⟩
· ⟨cos t, 2⟩ =

(t2 + 1) cos t+ 2t sin t+ 4t+ 3

15.

.....
2

.
4

.
6

.

2

.

4

.

6

.

r⃗ ′(1)

.

x

.

y

r⃗ ′(t) = ⟨2t+ 1, 2t− 1⟩

17.

.....

2

.

4

.
−2
.

2

.

r⃗ ′(1)

.

x

.

y

r⃗ ′(t) =
⟨
2t, 3t2 − 1

⟩
19. ℓ(t) = ⟨2, 0⟩+ t ⟨3, 1⟩

21. ℓ(t) = ⟨−3, 0, π⟩+ t ⟨0,−3, 1⟩

23. t = 0

25. r⃗(t) is not smooth at t = 3π/4+ nπ, where n is an integer

27. Both derivaƟves return
⟨
5t4, 4t3 − 3t2, 3t2

⟩
.

29. Both derivaƟves return⟨
2t− et − 1, cos t− 3t2, (t2 + 2t)et − (t− 1) cos t− sin t

⟩
.

31.
⟨
tan−1 t, tan t

⟩
+ C⃗

33. ⟨4,−4⟩

35. r⃗(t) = ⟨ln |t+ 1|+ 1,− ln | cos t|+ 2⟩

37. r⃗(t) = ⟨− cos t+ 1, t− sin t, et − t− 1⟩

39. 10π

41.
√
2(1− e−1)

SecƟon 11.3

1. Velocity is a vector, indicaƟng an objects direcƟon of travel and its
rate of distance change (i.e., its speed). Speed is a scalar.
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3. The average velocity is found by dividing the displacement by the
Ɵme traveled – it is a vector. The average speed is found by
dividing the distance traveled by the Ɵme traveled – it is a scalar.

5. One example is traveling at a constant speed s in a circle, ending
at the starƟng posiƟon. Since the displacement is 0⃗, the average
velocity is 0⃗, hence || 0⃗ || = 0. But traveling at constant speed s
means the average speed is also s > 0.

7. v⃗(t) = ⟨2, 5, 0⟩, a⃗(t) = ⟨0, 0, 0⟩

9. v⃗(t) = ⟨− sin t, cos t⟩, a⃗(t) = ⟨− cos t,− sin t⟩

11. v⃗(t) = ⟨1, cos t⟩, a⃗(t) = ⟨0,− sin t⟩

.....
0.5

.
1

.
1.5

.

0.5

.

1

.

1.5

.

v⃗(π/4)

.
a⃗(π/4)

. x.

y

13. v⃗(t) = ⟨2t+ 1,−2t+ 2⟩, a⃗(t) = ⟨2,−2⟩

.....

2

.

4

.

6

.

2

.

−2

.

−4

.

−6

.−8.

v⃗(π/4)

.

a⃗(π/4)

.

x

.

y

15. || v⃗(t) || =
√
4t2 + 1.

Min at t = 0; Max at t = ±1.

17. || v⃗(t) || = 5.
Speed is constant, so there is no difference between min/max

19. || v⃗(t) || = | sec t|
√
tan2 t+ sec2 t.

min: t = 0; max: t = π/4

21. || v⃗(t) || = 13.
speed is constant, so there is no difference between min/max

23. || v⃗(t) || =
√

4t2 + 1+ t2/(1− t2).
min: t = 0; max: there is no max; speed approaches∞ as
t → ±1

25. (a) r⃗1(1) = ⟨1, 1⟩; r⃗2(1) = ⟨1, 1⟩

(b) v⃗1(1) = ⟨1, 2⟩; || v⃗1(1) || =
√
5; a⃗1(1) = ⟨0, 2⟩

v⃗2(1) = ⟨2, 4⟩; || v⃗2(1) || = 2
√
5; a⃗2(1) = ⟨2, 12⟩

27. (a) r⃗1(2) = ⟨6, 4⟩; r⃗2(2) = ⟨6, 4⟩

(b) v⃗1(2) = ⟨3, 2⟩; || v⃗1(2) || =
√
13; a⃗1(2) = ⟨0, 0⟩

v⃗2(2) = ⟨6, 4⟩; || v⃗2(2) || = 2
√
13; a⃗2(2) = ⟨0, 0⟩

29. v⃗(t) = ⟨2t+ 1, 3t+ 2⟩, r⃗(t) =
⟨
t2 + t+ 5, 3t2/2+ 2t− 2

⟩
31. v⃗(t) = ⟨sin t, cos t⟩, r⃗(t) = ⟨1− cos t, sin t⟩

33. Displacement: ⟨0, 0, 6π⟩; distance traveled: 2
√
13π ≈ 22.65Ō;

average velocity: ⟨0, 0, 3⟩; average speed:
√
13 ≈ 3.61Ō/s

35. Displacement: ⟨0, 0⟩; distance traveled: 2π ≈ 6.28Ō; average
velocity: ⟨0, 0⟩; average speed: 1Ō/s

37. At t-values of sin−1(9/30)/(4π) + n/2 ≈ 0.024+ n/2 seconds,
where n is an integer.

39. (a) Holding the crossbow at an angle of 0.013 radians,
≈ 0.745◦ will hit the target 0.4s later. (Another soluƟon
exists, with an angle of 89◦, landing 18.75s later, but this is
impracƟcal.)

(b) In the .4 seconds the arrow travels, a deer, traveling at
20mph or 29.33Ō/s, can travel 11.7Ō. So she needs to lead
the deer by 11.7Ō.

41. The posiƟon funcƟon is r⃗(t) =
⟨
220t,−16t2 + 1000

⟩
. The

y-component is 0 when t = 7.9; r⃗(7.9) = ⟨1739.25, 0⟩, meaning
the box will travel about 1740Ō horizontally before it lands.

SecƟon 11.4

1. 1

3. T⃗(t) and N⃗(t).

5. T⃗(t) =
⟨

4t√
20t2−4t+1

, 2t−1√
20t2−4t+1

⟩
; T⃗(1) =

⟨
4/

√
17, 1/

√
17
⟩

7. T⃗(t) = cos t sin t√
cos2 t sin2 t

⟨− cos t, sin t⟩. (Be careful; this cannot be

simplified as just ⟨− cos t, sin t⟩ as
√
cos2 t sin2 t ̸= cos t sin t, but

rather | cos t sin t|.) T⃗(π/4) =
⟨
−
√
2/2,

√
2/2
⟩

9. ℓ(t) = ⟨2, 0⟩+ t
⟨
4/

√
17, 1/

√
17
⟩
; in parametric form,

ℓ(t) =
{

x = 2+ 4t/
√
17

y = t/
√
17

11. ℓ(t) =
⟨√

2/4,
√
2/4
⟩
+ t
⟨
−
√
2/2,

√
2/2
⟩
; in parametric form,

ℓ(t) =
{

x =
√
2/4−

√
2t/2

y =
√
2/4+

√
2t/2

13. T⃗(t) = ⟨− sin t, cos t⟩; N⃗(t) = ⟨− cos t,− sin t⟩

15. T⃗(t) =
⟨
− sin t√

4 cos2 t+sin2 t
, 2 cos t√

4 cos2 t+sin2 t

⟩
;

N⃗(t) =
⟨
− 2 cos t√

4 cos2 t+sin2 t
,− sin t√

4 cos2 t+sin2 t

⟩
17. (a) Be sure to show work

(b) N⃗(π/4) =
⟨
−5/

√
34,−3/

√
34
⟩

19. (a) Be sure to show work

(b) N⃗(0) =
⟨
− 1√

5
, 2√

5

⟩
21. T⃗(t) = 1√

5
⟨2, cos t,− sin t⟩; N⃗(t) = ⟨0,− sin t,− cos t⟩

23. T⃗(t) = 1√
a2+b2

⟨−a sin t, a cos t, b⟩; N⃗(t) = ⟨− cos t,− sin t, 0⟩

25. aT = 4t√
1+4t2

and aN =
√

4− 16t2
1+4t2

At t = 0, aT = 0 and aN = 2;
At t = 1, aT = 4/

√
5 and aN = 2/

√
5.

At t = 0, all acceleraƟon comes in the form of changing the
direcƟon of velocity and not the speed; at t = 1, more
acceleraƟon comes in changing the speed than in changing
direcƟon.

27. aT = 0 and aN = 2
At t = 0, aT = 0 and aN = 2;
At t = π/2, aT = 0 and aN = 2.
The object moves at constant speed, so all acceleraƟon comes
from changing direcƟon, hence aT = 0. a⃗(t) is always parallel to
N⃗(t), but twice as long, hence aN = 2.
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29. aT = 0 and aN = a
At t = 0, aT = 0 and aN = a;
At t = π/2, aT = 0 and aN = a.
The object moves at constant speed, meaning that aT is always 0.
The object “rises” along the z-axis at a constant rate, so all
acceleraƟon comes in the form of changing direcƟon circling the
z-axis. The greater the radius of this circle the greater the
acceleraƟon, hence aN = a.

SecƟon 11.5

1. Ɵme and/or distance

3. Answers may include lines, circles, helixes

5. κ

7. s = 3t, so r⃗(s) = ⟨2s/3, s/3,−2s/3⟩

9. s =
√
13t, so r⃗(s) =

⟨
3 cos(s/

√
13), 3 sin(s/

√
13), 2s/

√
13
⟩

11. κ =
|6x|

(1+(3x2−1)2)3/2
;

κ(0) = 0, κ(1/2) = 192
17

√
17

≈ 2.74.

13. κ =
| cos x|

(1+sin2 x)3/2
;

κ(0) = 1, κ(π/2) = 0

15. κ =
|2 cos t cos(2t)+4 sin t sin(2t)|

(4 cos2(2t)+sin2 t)3/2
;

κ(0) = 1/4, κ(π/4) = 8

17. κ =
|6t2+2|

(4t2+(3t2−1)2)3/2
;

κ(0) = 2, κ(5) = 19
1394

√
1394

≈ 0.0004

19. κ = 0;
κ(0) = 0, κ(1) = 0

21. κ = 3
13 ;

κ(0) = 3/13, κ(π/2) = 3/13

23. maximized at x = ±
√

2
4√5

25. maximized at t = 1/4

27. radius of curvature is 5
√
5/4.

29. radius of curvature is 9.

31. x2 + (y− 1/2)2 = 1/4, or c⃗(t) = ⟨1/2 cos t, 1/2 sin t+ 1/2⟩

33. x2 + (y+ 8)2 = 81, or c⃗(t) = ⟨9 cos t, 9 sin t− 8⟩

Chapter 12
SecƟon 12.1

1. Answers will vary.

3. topographical

5. surface

7. domain: R2

range: z ≥ 2

9. domain: R2

range: R

11. domain: R2

range: 0 < z ≤ 1

13. domain: {(x, y) | x2 + y2 ≤ 9}, i.e., the domain is the circle and
interior of a circle centered at the origin with radius 3.
range: 0 ≤ z ≤ 3

15. Level curves are lines y = (3/2)x− c/2.

...

..

−2

.

−1

.

1

.

2

.

−2

.

2

.

x

.

y

17. Level curves are parabolas x = y2 + c.

...

..

−4

.

−2

.

2

.

4

.
−4

.

−2

.

2

.

4

.

c = 2

.

c = 0

.

c = −2

.

x

.

y

19. Level curves are circles, centered at (1/c,−1/c) with radius
2/c2 − 1. When c = 0, the level curve is the line y = x.

...
..

−4

.

−2

.

2

.

4

.
−4

.

−2

.

2

.

4

.

c = 1

.

c = −1

.

c = 0

.

x

.

y

21. Level curves are ellipses of the form x2
c2 + y2

c2/4 = 1, i.e., a = c
and b = c/2.

.....

−4

.

−2

.

2

.

4

. −4.

−2

.

2

.

4

.

x

.

y

23. domain: x+ 2y− 4z ̸= 0; the set of points in R3 NOT in the
domain form a plane through the origin.
range: R

25. domain: z ≥ x2 − y2; the set of points in R3 above (and
including) the hyperbolic paraboloid z = x2 − y2.
range: [0,∞)

27. The level surfaces are spheres, centered at the origin, with radius√
c.
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29. The level surfaces are paraboloids of the form z = x2
c + y2

c ; the
larger c, the “wider” the paraboloid.

31. The level curves for each surface are similar; for z =
√

x2 + 4y2

the level curves are ellipses of the form x2
c2 + y2

c2/4 = 1, i.e., a = c
and b = c/2; whereas for z = x2 + 4y2 the level curves are
ellipses of the form x2

c + y2
c/4 = 1, i.e., a =

√
c and b =

√
c/2.

The first set of ellipses are spaced evenly apart, meaning the
funcƟon grows at a constant rate; the second set of ellipses are
more closely spaced together as c grows, meaning the funcƟon
grows faster and faster as c increases.
The funcƟon z =

√
x2 + 4y2 can be rewriƩen as z2 = x2 + 4y2,

an ellipƟc cone; the funcƟon z = x2 + 4y2 is a paraboloid, each
matching the descripƟon above.

SecƟon 12.2

1. Answers will vary.

3. Answers will vary.
One possible answer: {(x, y)|x2 + y2 ≤ 1}

5. Answers will vary.
One possible answer: {(x, y)|x2 + y2 < 1}

7. Answers will vary.
interior point: (1, 3)
boundary point: (3, 3)
S is a closed set
S is bounded

9. Answers will vary.
interior point: none
boundary point: (0,−1)
S is a closed set, consisƟng only of boundary points
S is bounded

11. D = {(x, y) | y ̸= 2x}; D is an open set.

13. D =
{
(x, y) | y > x2

}
; D is an open set.

15. (a) Along y = 0, the limit is 1.

(b) Along x = 0, the limit is−1.
Since the above limits are not equal, the limit does not exist.

17. (a) Along y = mx, the limit is
mx(1−m)

m2x+ 1
.

(b) Along x = 0, the limit is−1.
Since the above limits are not equal, the limit does not exist.

19. (a) Along y = 2, the limit is:

lim
(x,y)→(1,2)

x+ y− 3
x2 − 1

= lim
x→1

x− 1
x2 − 1

= lim
x→1

1
x+ 1

= 1/2.

(b) Along y = x+ 1, the limit is:

lim
(x,y)→(1,2)

x+ y− 3
x2 − 1

= lim
x→1

2(x− 1)
x2 − 1

= lim
x→1

2
x+ 1

= 1.

Since the limits along the lines y = 2 and y = x+ 1 differ, the
overall limit does not exist.

SecƟon 12.3

1. A constant is a number that is added or subtracted in an
expression; a coefficient is a number that is being mulƟplied by a
nonconstant funcƟon.

3. fx

5. fx = 2xy− 1, fy = x2 + 2
fx(1, 2) = 3, fy(1, 2) = 3

7. fx = − sin x sin y, fy = cos x cos y
fx(π/3, π/3) = −3/4, fy(π/3, π/3) = 1/4

9. fx = 2xy+ 6x, fy = x2 + 4
fxx = 2y+ 6, fyy = 0
fxy = 2x, fyx = 2x

11. fx = 1/y, fy = −x/y2
fxx = 0, fyy = 2x/y3
fxy = −1/y2, fyx = −1/y2

13. fx = 2xex
2+y2 , fy = 2yex

2+y2

fxx = 2ex
2+y2 + 4x2ex

2+y2 , fyy = 2ex
2+y2 + 4y2ex

2+y2

fxy = 4xyex
2+y2 , fyx = 4xyex

2+y2

15. fx = cos x cos y, fy = − sin x sin y
fxx = − sin x cos y, fyy = − sin x cos y
fxy = − sin y cos x, fyx = − sin y cos x

17. fx = −5y3 sin(5xy3), fy = −15xy2 sin(5xy3)
fxx = −25y6 cos(5xy3),
fyy = −225x2y4 cos(5xy3)− 30xy sin(5xy3)
fxy = −75xy5 cos(5xy3)− 15y2 sin(5xy3),
fyx = −75xy5 cos(5xy3)− 15y2 sin(5xy3)

19. fx = 2y2√
4xy2+1

, fy = 4xy√
4xy2+1

fxx = − 4y4√
4xy2+1

3 , fyy = − 16x2y2√
4xy2+1

3 + 4x√
4xy2+1

fxy = − 8xy3√
4xy2+1

3 + 4y√
4xy2+1

, fyx = − 8xy3√
4xy2+1

3 + 4y√
4xy2+1

21. fx = − 2x
(x2+y2+1)2 , fy = − 2y

(x2+y2+1)2

fxx = 8x2
(x2+y2+1)3 − 2

(x2+y2+1)2 , fyy =
8y2

(x2+y2+1)3 − 2
(x2+y2+1)2

fxy = 8xy
(x2+y2+1)3 , fyx =

8xy
(x2+y2+1)3

23. fx = 6x, fy = 0
fxx = 6, fyy = 0
fxy = 0, fyx = 0

25. fx = 1
4xy , fy = − ln x

4y2

fxx = − 1
4x2y , fyy =

ln x
2y3

fxy = − 1
4xy2 , fyx = − 1

4xy2

27. f(x, y) = x sin y+ x+ C, where C is any constant.

29. f(x, y) = 3x2y− 4xy2 + 2y+ C, where C is any constant.

31. fx = 2xe2y−3z, fy = 2x2e2y−3z, fz = −3x2e2y−3z

fyz = −6x2e2y−3z, fzy = −6x2e2y−3z

33. fx = 3
7y2z , fy = − 6x

7y3z , fz = − 3x
7y2z2

fyz = 6x
7y3z2 , fzy =

6x
7y3z2

SecƟon 12.4

1. T

3. T

5. dz = (sin y+ 2x)dx+ (x cos y)dy

7. dz = 5dx− 7dy

9. dz = x√
x2+y

dx+ 1
2
√

x2+y
dy, with dx = −0.05 and dy = .1. At

(3, 7), dz = 3/4(−0.05) + 1/8(.1) = −0.025, so
f(2.95, 7.1) ≈ −0.025+ 4 = 3.975.
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11. dz = (2xy− y2)dx+ (x2 − 2xy)dy, with dx = 0.04 and
dy = 0.06. At (2, 3), dz = 3(0.04) + (−8)(0.06) = −0.36, so
f(2.04, 3.06) ≈ −0.36− 6 = −6.36.

13. The total differenƟal of volume is dV = 4πdr+ πdh. The
coefficient of dr is greater than the coefficient of dh, so the
volume is more sensiƟve to changes in the radius.

15. Using trigonometry, ℓ = x tan θ, so dℓ = tan θdx+ x sec2 θdθ.
With θ = 85◦ and x = 30, we have dℓ = 11.43dx+ 3949.38dθ.
The measured length of the wall is much more sensiƟve to errors
in θ than in x. While it can be difficult to compare sensiƟviƟes
between measuring feet and measuring degrees (it is somewhat
like “comparing apples to oranges”), here the coefficients are so
different that the result is clear: a small error in degree has a
much greater impact than a small error in distance.

17. dw = 2xyz3 dx+ x2z3 dy+ 3x2yz2 dz

19. dx = 0.05, dy = −0.1. dz = 9(.05) + (−2)(−0.1) = 0.65. So
f(3.5, 0.9) ≈ 7+ 0.65 = 7.65.

21. dx = 0.5, dy = 0.1, dz = −0.2.
dw = 2(0.5) + (−3)(0.1) + 3.7(−0.2) = −0.04, so
f(2.5, 4.1, 4.8) ≈ −1− 0.04 = −1.04.

SecƟon 12.5

1. Because the parametric equaƟons describe a level curve, z is
constant for all t. Therefore dz

dt = 0.

3. dx
dt , and

∂f
∂y

5. F

7. (a) dz
dt = 3(2t) + 4(2) = 6t+ 8.

(b) At t = 1, dz
dt = 14.

9. (a) dz
dt = 5(−2 sin t) + 2(cos t) = −10 sin t+ 2 cos t

(b) At t = π/4, dz
dt = −4

√
2.

11. (a)
dz
dt

= 2x(cos t) + 4y(3 cos t).

(b) At t = π/4, x =
√
2/2, y = 3

√
2/2, and dz

dt = 19.

13. t = −4/3; this corresponds to a minimum

15. t = tan−1(1/5) + nπ, where n is an integer

17. We find that
dz
dt

= 38 cos t sin t.

Thus dz
dt = 0 when t = πn or πn+ π/2, where n is any integer.

19. (a) ∂z
∂s = 2xy(1) + x2(2) = 2xy+ 2x2;
∂z
∂t = 2xy(−1) + x2(4) = −2xy+ 4x2

(b) With s = 1, t = 1, x = 1 and y = 2. Thus ∂z
∂s = 6 and

∂z
∂t = 0

21. (a) ∂z
∂s = 2x(cos t) + 2y(sin t) = 2x cos t+ 2y sin t;
∂z
∂t = 2x(−s sin t) + 2y(s cos t) = −2xs sin t+ 2ys cos t

(b) With s = 2, t = π/4, x =
√
2 and y =

√
2. Thus ∂z

∂s = 4
and ∂z

∂t = 0

23. fx = 2x tan y, fy = x2 sec2 y;
dy
dx

= −
2 tan y
x sec2 y

25. fx =
(x+ y2)(2x)− (x2 + y)(1)

(x+ y2)2
,

fy =
(x+ y2)(1)− (x2 + y)(2y)

(x+ y2)2
;

dy
dx

= −
2x(x+ y2)− (x2 + y)
x+ y2 − 2y(x2 + y)

SecƟon 12.6

1. A parƟal derivaƟve is essenƟally a special case of a direcƟonal
derivaƟve; it is the direcƟonal derivaƟve in the direcƟon of x or y,
i.e., ⟨1, 0⟩ or ⟨0, 1⟩.

3. u⃗ = ⟨0, 1⟩

5. maximal, or greatest

7. ∇f =
⟨
−2xy+ y2 + y,−x2 + 2xy+ x

⟩
9. ∇f =

⟨
−2x

(x2+y2+1)2 ,
−2y

(x2+y2+1)2

⟩
11. ∇f = ⟨2x− y− 7, 4y− x⟩

13. ∇f =
⟨
−2xy+ y2 + y,−x2 + 2xy+ x

⟩
;∇f(2, 1) = ⟨−2, 2⟩. Be

sure to change all direcƟons to unit vectors.

(a) 2/5 (⃗u = ⟨3/5, 4/5⟩)

(b) −2
√
5 (⃗u =

⟨
−1/

√
5,−2

√
5
⟩
)

15. ∇f =
⟨

−2x
(x2+y2+1)2 ,

−2y
(x2+y2+1)2

⟩
;∇f(1, 1) = ⟨−2/9,−2/9⟩. Be

sure to change all direcƟons to unit vectors.

(a) 0 (⃗u =
⟨
1/

√
2,−1/

√
2
⟩
)

(b) 2
√
2/9 (⃗u =

⟨
−1/

√
2,−1/

√
2
⟩
)

17. ∇f = ⟨2x− y− 7, 4y− x⟩;∇f(4, 1) = ⟨0, 0⟩.

(a) 0

(b) 0

19. ∇f =
⟨
−2xy+ y2 + y,−x2 + 2xy+ x

⟩
(a) ∇f(2, 1) = ⟨−2, 2⟩

(b) || ∇f(2, 1) || = || ⟨−2, 2⟩ || =
√
8

(c) ⟨2,−2⟩

(d)
⟨
1/

√
2, 1/

√
2
⟩

21. ∇f =
⟨

−2x
(x2+y2+1)2 ,

−2y
(x2+y2+1)2

⟩
(a) ∇f(1, 1) = ⟨−2/9,−2/9⟩.

(b) || ∇f(1, 1) || = || ⟨−2/9,−2/9⟩ || = 2
√
2/9

(c) ⟨2/9, 2/9⟩

(d)
⟨
1/

√
2,−1/

√
2
⟩

23. ∇f = ⟨2x− y− 7, 4y− x⟩

(a) ∇f(4, 1) = ⟨0, 0⟩

(b) 0

(c) ⟨0, 0⟩

(d) All direcƟons give a direcƟonal derivaƟve of 0.

25. (a) ∇F(x, y, z) =
⟨
6xz3 + 4y, 4x, 9x2z2 − 6z

⟩
(b) 113/

√
3

27. (a) ∇F(x, y, z) =
⟨
2xy2, 2y(x2 − z2),−2y2z

⟩
(b) 0

SecƟon 12.7

1. Answers will vary. The displacement of the vector is one unit in
the x-direcƟon and 3 units in the z-direcƟon, with no change in y.
Thus along a line parallel to v⃗, the change in z is 3 Ɵmes the
change in x – i.e., a “slope” of 3. Specifically, the line in the x-z
plane parallel to z has a slope of 3.
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3. T

5. (a) ℓx(t) =

 x = 2+ t
y = 3
z = −48− 12t

(b) ℓy(t) =

 x = 2
y = 3+ t
z = −48− 40t

(c) ℓ⃗u (t) =


x = 2+ t/

√
10

y = 3+ 3t/
√
10

z = −48− 66
√

2/5t

7. (a) ℓx(t) =

 x = 4+ t
y = 2
z = 2+ 3t

(b) ℓy(t) =

 x = 4
y = 2+ t
z = 2− 5t

(c) ℓ⃗u (t) =


x = 4+ t/

√
2

y = 2+ t/
√
2

z = 2−
√
2t

9. ℓ⃗n(t) =

 x = 2− 12t
y = 3− 40t
z = −48− t

11. ℓ⃗n(t) =

 x = 4+ 3t
y = 2− 5t
z = 2− t

13. (1.425, 1.085,−48.078), (2.575, 4.915,−47.952)

15. (5.014, 0.31, 1.662) and (2.986, 3.690, 2.338)

17. −12(x− 2)− 40(y− 3)− (z+ 48) = 0

19. 3(x− 4)− 5(y− 2)− (z− 2) = 0 (Note that this tangent plane
is the same as the original funcƟon, a plane.)

21. ∇F = ⟨x/4, y/2, z/8⟩; at P,∇F =
⟨
1/4,

√
2/2,

√
6/8
⟩

(a) ℓ⃗n(t) =


x = 1+ t/4
y =

√
2+

√
2t/2

z =
√
6+

√
6t/8

(b) 1
4 (x− 1) +

√
2

2 (y−
√
2) +

√
6

8 (z−
√
6) = 0.

23. ∇F =
⟨
y2 − z2, 2xy,−2xz

⟩
; at P,∇F = ⟨0, 4, 4⟩

(a) ℓ⃗n(t) =

 x = 2
y = 1+ 4t
z = −1+ 4t

(b) 4(y− 1) + 4(z+ 1) = 0.

SecƟon 12.8

1. F; it is the “other way around.”

3. T

5. One criƟcal point at (−4, 2); fxx = 1 and D = 4, so this point
corresponds to a relaƟve minimum.

7. One criƟcal point at (6,−3); D = −4, so this point corresponds
to a saddle point.

9. Two criƟcal points: at (0,−1); fxx = 2 and D = −12, so this point
corresponds to a saddle point;
at (0, 1), fxx = 2 and D = 12, so this corresponds to a relaƟve
minimum.

11. One criƟcal point at (0, 0). D = −12x2y2, so at (0, 0), D = 0 and
the test is inconclusive. (Some elementary thought shows that it
is the absolute minimum.)

13. One criƟcal point: fx = 0 when x = 3; fy = 0 when y = 0, so one
criƟcal point at (3, 0), which is a relaƟve maximum, where
fxx = y2−16

(16−(x−3)2−y2)3/2
and D = 16

(16−(x−3)2−y2)2 .

Both fx and fy are undefined along the circle (x− 3)2 + y2 = 16;
at any point along this curve, f(x, y) = 0, the absolute minimum
of the funcƟon.

15. The triangle is bound by the lines y = −1, y = 2x+ 1 and
y = −2x+ 1.
Along y = −1, there is a criƟcal point at (0,−1).
Along y = 2x+ 1, there is a criƟcal point at (−3/5,−1/5).
Along y = −2x+ 1, there is a criƟcal point at (3/5,−1/5).
The funcƟon f has one criƟcal point, irrespecƟve of the constraint,
at (0,−1/2).
Checking the value of f at these four points, along with the three
verƟces of the triangle, we find the absolute maximum is at
(0, 1, 3) and the absolute minimum is at (0,−1/2, 3/4).

17. The region has no “corners” or “verƟces,” just a smooth edge.
To find criƟcal points along the circle x2 + y2 = 4, we solve for y2:
y2 = 4− x2. We can go further and state y = ±

√
4− x2.

We can rewrite f as
f(x) = x2 + 2x+ (4− x2) +

√
4− x2 = 2x+ 4+

√
4− x2. (We

will return and use−
√
4− x2 later.) Solving f ′(x) = 0, we get

x =
√
2 ⇒ y =

√
2. f ′(x) is also undefined at x = ±2, where

y = 0.
Using y = −

√
4− x2, we rewrite f(x, y) as

f(x) = 2x+ 4−
√
4− x2. Solving f ′(x) = 0, we get

x = −
√
2, y = −

√
2.

The funcƟon f itself has a criƟcal point at (−1,−1).
Checking the value of f at (−1,−1), (

√
2,
√
2), (−

√
2,−

√
2),

(2, 0) and (−2, 0), we find the absolute maximum is at (2, 0, 8)
and the absolute minimum is at (−1,−1,−2).

Chapter 13
SecƟon 13.1

1. C(y), meaning that instead of being just a constant, like the
number 5, it is a funcƟon of y, which acts like a constant when
taking derivaƟves with respect to x.

3. curve to curve, then from point to point

5. (a) 18x2 + 42x− 117

(b) −108

7. (a) x4/2− x2 + 2x− 3/2

(b) 23/15

9. (a) sin2 y

(b) π/2

11.
∫ 4

1

∫ 1

−2
dy dx and

∫ 1

−2

∫ 4

1
dx dy.

area of R = 9u2

13.
∫ 4

2

∫ 7−x

x−1
dy dx. The order dx dy needs two iterated integrals as

x is bounded above by two different funcƟons. This gives:∫ 3

1

∫ y+1

2
dx dy+

∫ 5

3

∫ 7−y

2
dx dy.

area of R = 4u2

15.
∫ 1

0

∫ √
x

x4
dy dx and

∫ 1

0

∫ 4√y

y2
dx dy

area of R = 7/15u2
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17.

.....

R

.

y = 4 − x2

. −2. 2.

2

.

4

.
x

.

y

area of R =

∫ 4

0

∫ √
4−y

−
√

4−y
dx dy

19.

.....

R

.

x2/16 + y2/4 = 1

.

2

.

4

.
−2
.

2

.

x

.

y

area of R =

∫ 4

0

∫ √
4−x2/4

−
√

4−x2/4
dy dx

21.

.....

R

.

y = x2

.

y =
x+

2

.
−1
.

1
.

2
.

1

.

2

.

3

.

4

. x.

y

area of R =

∫ 2

−1

∫ x+2

x2
dy dx

SecƟon 13.2

1. volume

3. The double integral gives the signed volume under the surface.
Since the surface is always posiƟve, it is always above the x-y
plane and hence produces only “posiƟve” volume.

5. 6;
∫ 1

−1

∫ 2

1

(
x
y
+ 3
)

dy dx

7. 112/3;
∫ 2

0

∫ 4−2y

0

(
3x2 − y+ 2

)
dx dy

9. 16/5;
∫ 1

−1

∫ 1−x2

0
(x+ y+ 2) dy dx

11.
3
56

=

∫ 1

0

∫ √
x

x2
x2y dy dx =

∫ 1

0

∫ √
y

y2
x2y dx dy.

13. 0 =

∫ 1

−1

∫ 1

−1
x2 − y2 dy dx =

∫ 1

−1

∫ 1

−1
x2 − y2 dx dy.

15. 6 =

∫ 2

0

∫ 3−3/2x

0

(
6− 3x− 2y

)
dy dx =∫ 3

0

∫ 2−2/3y

0

(
6− 3x− 2y

)
dx dy.

17. 0 =

∫ 3

−3

∫ √
9−x2

0

(
x3y− x

)
dy dx =∫ 3

0

∫ √
9−y2

−
√

9−y2

(
x3y− x

)
dx dy.

19. IntegraƟng ex
2
with respect to x is not possible in terms of

elementary funcƟons.
∫ 2

0

∫ 2x

0
ex

2
dy dx = e4 − 1.

21. IntegraƟng
∫ 1

y

2y
x2 + y2

dx gives tan−1(1/y)− π/4; integraƟng

tan−1(1/y) is hard.∫ 1

0

∫ x

0

2y
x2 + y2

dy dx = ln 2.

23. average value of f = 6/2 = 3

25. average value of f = 112/3
4 = 28/3

SecƟon 13.3

1. f
(
r cos θ, r sin θ

)
, r dr dθ

3.
∫ 2π

0

∫ 1

0

(
3r cos θ − r sin θ + 4

)
r dr dθ = 4π

5.
∫ π

0

∫ 3 cos θ

cos θ

(
8− r sin θ

)
r dr dθ = 16π

7.
∫ 2π

0

∫ 2

1

(
ln(r2)

)
r dr dθ = 2π

(
ln 16− 3/2

)
9.
∫ π/2

−π/2

∫ 6

0

(
r2 cos2 θ − r2 sin2 θ

)
r dr dθ =∫ π/2

−π/2

∫ 6

0

(
r2 cos(2θ)

)
r dr dθ = 0

11.
∫ π/2

−π/2

∫ 5

0

(
r2
)
dr dθ = 125π/3

13.
∫ π/4

0

∫ √
8

0

(
r cos θ + r sin θ

)
r dr dθ = 16

√
2/3

15. (a) This is impossible to integrate with rectangular coordinates
as e−(x2+y2) does not have an anƟderivaƟve in terms of
elementary funcƟons.

(b)
∫ 2π

0

∫ a

0
rer

2
dr dθ = π(1− e−a2 ).

(c) lim
a→∞

π(1− e−a2 ) = π. This implies that there is a finite

volume under the surface e−(x2+y2) over the enƟre x-y
plane.

SecƟon 13.4

1. Because they are scalar mulƟples of each other.

3. “liƩle masses”

5. Mx measures the moment about the x-axis, meaning we need to
measure distance from the x-axis. Such measurements are
measures in the y-direcƟon.

7. x = 5.25

9. (x, y) = (0, 3)
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11. M = 150gm;

13. M = 2lb

15. M = 16π ≈ 50.27kg

17. M = 54π ≈ 169.65lb

19. M = 150gm;My = 600;Mx = −75; (x, y) = (4,−0.5)

21. M = 2lb;My = 0;Mx = 2/3; (x, y) = (0, 1/3)

23. M = 16π ≈ 50.27kg;My = 4π;Mx = 4π; (x, y) = (1/4, 1/4)

25. M = 54π ≈ 169.65lb;My = 0;Mx = 504; (x, y) = (0, 2.97)

27. Ix = 64/3; Iy = 64/3; IO = 128/3

29. Ix = 16/3; Iy = 64/3; IO = 80/3

SecƟon 13.5

1. arc length

3. surface areas

5. IntuiƟvely, adding h to f only shiŌs f up (i.e., parallel to the z-axis)
and does not change its shape. Therefore it will not change the
surface area over R.
AnalyƟcally, fx = gx and fy = gy; therefore, the surface area of
each is computed with idenƟcal double integrals.

7. SA =

∫ 2π

0

∫ 2π

0

√
1+ cos2 x cos2 y+ sin2 x sin2 y dx dy

9. SA =

∫ 1

−1

∫ 1

−1

√
1+ 4x2 + 4y2 dx dy

11. SA =

∫ 3

0

∫ 1

−1

√
1+ 9+ 49 dx dy = 6

√
59 ≈ 46.09

13. This is easier in polar:

SA =

∫ 2π

0

∫ 4

0
r
√

1+ 4r2 cos2 t+ 4r2 sin2 t dr dθ

=

∫ 2π

0

∫ 4

0
r
√

1+ 4r2 dr dθ

=
π

6
(
65

√
65− 1

)
≈ 273.87

15.

SA =

∫ 2

0

∫ 2x

0

√
1+ 1+ 4x2 dy dx

=

∫ 2

0

(
2x
√

2+ 4x2
)
dx

=
26
3

√
2 ≈ 12.26

17. This is easier in polar:

SA =

∫ 2π

0

∫ 5

0
r

√
1+

4r2 cos2 t+ 4r2 sin2 t
r2 sin2 t+ r2 cos2 t

dr dθ

=

∫ 2π

0

∫ 5

0
r
√
5 dr dθ

= 25π
√
5 ≈ 175.62

19. IntegraƟng in polar is easiest considering R:

SA =

∫ 2π

0

∫ 1

0
r
√

1+ c2 + d2 dr dθ

=

∫ 2π

0

1
2

(√
1+ c2 + d2

)
dy

= π
√

1+ c2 + d2.

The value of h does not maƩer as it only shiŌs the plane verƟcally
(i.e., parallel to the z-axis). Different values of h do not create
different ellipses in the plane.

SecƟon 13.6

1. surface to surface, curve to curve and point to point

3. Answers can vary. From this secƟon we used triple integraƟon to
find the volume of a solid region, the mass of a solid, and the
center of mass of a solid.

5. V =
∫ 1
−1
∫ 1
−1
(
8− x2 − y2 − (2x+ y)

)
dx dy = 88/3

7. V =
∫ π
0
∫ x
0
(
cos x sin y+ 2− sin x cos y

)
dy dx = π2 − π ≈ 6.728

9. dz dy dx:
∫ 3

0

∫ 1−x/3

0

∫ 2−2x/3−2y

0
dz dy dx

dz dx dy:
∫ 1

0

∫ 3−3y

0

∫ 2−2x/3−2y

0
dz dy dx

dy dz dx:
∫ 3

0

∫ 2−2x/3

0

∫ 1−x/3−z/2

0
dy dz dx

dy dx dz:
∫ 2

0

∫ 3−3z/2

0

∫ 1−x/3−z/2

0
dy dx dz

dx dz dy:
∫ 1

0

∫ 2−2y

0

∫ 3−3y−3z/2

0
dx dz dy

dx dy dz:
∫ 2

0

∫ 1−z/2

0

∫ 3−3y−3z/2

0
dx dy dz

V =

∫ 3

0

∫ 1−x/3

0

∫ 2−2x/3−2y

0
dz dy dx = 1.

11. dz dy dx:
∫ 2

0

∫ 0

−2

∫ −y

y2/2
dz dy dx

dz dx dy:
∫ 0

−2

∫ 2

0

∫ −y

y2/2
dz dx dy

dy dz dx:
∫ 2

0

∫ 2

0

∫ −z

−
√

2z
dy dz dx

dy dx dz:
∫ 2

0

∫ 2

0

∫ −z

−
√

2z
dy dx dz

dx dz dy:
∫ 0

−2

∫ −y

y2/2

∫ 2

0
dx dz dy

dx dy dz:
∫ 2

0

∫ −z

−
√

2z

∫ 2

0
dx dy dz

V =

∫ 2

0

∫ 2

0

∫ −z

−
√

2z
dy dz dx = 4/3.

13. dz dy dx:
∫ 2

0

∫ 1

1−x/2

∫ 2x+4y−4

0
dz dy dx

dz dx dy:
∫ 1

0

∫ 2

2−2y

∫ 2x+4y−4

0
dz dy dx

dy dz dx:
∫ 2

0

∫ 2x

0

∫ 1

z/4−x/2+1
dy dz dx

dy dx dz:
∫ 4

0

∫ 2

z/2

∫ 1

z/4−x/2+1
dy dx dz

dx dz dy:
∫ 1

0

∫ 4y

0

∫ 2

z/2−2y+2
dx dz dy

dx dy dz:
∫ 4

0

∫ 1

z/4

∫ 2

z/2−2y+2
dx dy dz

V =

∫ 4

0

∫ 1

z/4

∫ 2y−z/2−2

0
dx dy dz = 4/3.
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15. dz dy dx:
∫ 1

0

∫ 1−x2

0

∫ √
1−y

0
dz dy dx

dz dx dy:
∫ 1

0

∫ √
1−y

0

∫ √
1−y

0
dz dy dx

dy dz dx:
∫ 1

0

∫ x

0

∫ 1−x2

0
dy dz dx+

∫ 1

0

∫ 1

x

∫ 1−z2

0
dy dz dx

dy dx dz:
∫ 1

0

∫ z

0

∫ 1−z2

0
dy dx dz+

∫ 1

0

∫ 1

z

∫ 1−x2

0
dy dx dz

dx dz dy:
∫ 1

0

∫ √
1−y

0

∫ √
1−y

0
dx dz dy

dx dy dz:
∫ 1

0

∫ 1−z2

0

∫ √
1−y

0
dx dy dz

Answers will vary. Neither order is parƟcularly “hard.” The order
dz dy dx requires integraƟng a square root, so powers can be
messy; the order dy dz dx requires two triple integrals, but each
uses only polynomials.

17. 8

19. π

21. M = 10,Myz = 15/2,Mxz = 5/2,Mxy = 5;
(x, y, z) = (3/4, 1/4, 1/2)

23. M = 16/5,Myz = 16/3,Mxz = 104/45,Mxy = 32/9;
(x, y, z) = (5/3, 13/18, 10/9) ≈ (1.67, 0.72, 1.11)
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Index

!, 383
Absolute Convergence Theorem, 431
absolute maximum, 121
absolute minimum, 121
Absolute Value Theorem, 387
acceleraƟon, 71, 618
AlternaƟng Harmonic Series, 403, 428, 441
AlternaƟng Series Test

for series, 425
aN, 636, 646
analyƟc funcƟon, 459
angle of elevaƟon, 623
anƟderivaƟve, 185
arc length, 357, 499, 523, 615, 640
arc length parameter, 640, 642
asymptote

horizontal, 46
verƟcal, 44

aT, 636, 646
average rate of change, 603
average value of a funcƟon, 743
average value of funcƟon, 229

Binomial Series, 460
BisecƟon Method, 39
boundary point, 658
bounded sequence, 389

convergence, 390
bounded set, 658

center of mass, 757–759, 761, 788
Chain Rule, 94

mulƟvariable, 689, 691
notaƟon, 100

circle of curvature, 645
closed, 658
closed disk, 658
concave down, 142
concave up, 142
concavity, 142, 496

inflecƟon point, 143
test for, 143

conic secƟons, 469
degenerate, 469
ellipse, 473
hyperbola, 476
parabola, 470

Constant MulƟple Rule
of derivaƟves, 78
of integraƟon, 189
of series, 403

constrained opƟmizaƟon, 720
conƟnuous funcƟon, 34, 664

properƟes, 37, 665
vector–valued, 606

contour lines, 653
convergence

absolute, 429, 431
AlternaƟng Series Test, 425
condiƟonal, 429
Direct Comparison Test, 413

for integraƟon, 327
Integral Test, 410
interval of, 436
Limit Comparison Test, 414

for integraƟon, 329
nth–term test, 406
of geometric series, 398
of improper int., 322, 327, 329
of monotonic sequences, 393
of p-series, 399
of power series, 435
of sequence, 385, 390
of series, 395
radius of, 436
RaƟo Comparison Test, 419
Root Comparison Test, 422

criƟcal number, 123
criƟcal point, 123, 715–717
cross product

and derivaƟves, 611
applicaƟons, 574

area of parallelogram, 575
torque, 577
volume of parallelepiped, 576

definiƟon, 570
properƟes, 572, 573

curvature, 642
and moƟon, 646
equaƟons for, 644
of circle, 644, 645
radius of, 645

curve
parametrically defined, 483
rectangular equaƟon, 483
smooth, 489

curve sketching, 149
cusp, 489
cycloid, 601
cylinder, 532

decreasing funcƟon, 134
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finding intervals, 135
strictly, 134

definite integral, 196
and subsƟtuƟon, 262
properƟes, 197

derivaƟve
acceleraƟon, 72
as a funcƟon, 62
at a point, 58
basic rules, 76
Chain Rule, 94, 100, 689, 691
Constant MulƟple Rule, 78
Constant Rule, 76
differenƟal, 179
direcƟonal, 696, 698, 699, 702
exponenƟal funcƟons, 100
First Deriv. Test, 137
Generalized Power Rule, 95
higher order, 79

interpretaƟon, 80
hyperbolic funct., 306
implicit, 103, 693
interpretaƟon, 69
inverse funcƟon, 114
inverse hyper., 309
inverse trig., 117
Mean Value Theorem, 130
mixed parƟal, 672
moƟon, 72
mulƟvariable differenƟability, 681, 686
normal line, 59
notaƟon, 62, 79
parametric equaƟons, 493
parƟal, 668, 676
Power Rule, 76, 89, 108
power series, 439
Product Rule, 83
QuoƟent Rule, 86
Second Deriv. Test, 146
Sum/Difference Rule, 78
tangent line, 58
trigonometric funcƟons, 87
vector–valued funcƟons, 607, 608, 611
velocity, 72

differenƟable, 58, 681, 686
differenƟal, 179

notaƟon, 179
Direct Comparison Test

for integraƟon, 327
for series, 413

direcƟonal derivaƟve, 696, 698, 699, 702
directrix, 470, 532
Disk Method, 342
displacement, 223, 602, 615
distance

between lines, 587
between point and line, 587
between point and plane, 595
between points in space, 530
traveled, 626

divergence
AlternaƟng Series Test, 425
Direct Comparison Test, 413

for integraƟon, 327
Integral Test, 410
Limit Comparison Test, 414

for integraƟon, 329
nth–term test, 406
of geometric series, 398
of improper int., 322, 327, 329
of p-series, 399
of sequence, 385
of series, 395
RaƟo Comparison Test, 419
Root Comparison Test, 422

dot product
and derivaƟves, 611
definiƟon, 557
properƟes, 558, 559

double integral, 736, 737
in polar, 747
properƟes, 740

eccentricity, 475, 479
elementary funcƟon, 233
ellipse

definiƟon, 473
eccentricity, 475
parametric equaƟons, 489
reflecƟve property, 476
standard equaƟon, 474

extrema
absolute, 121, 715
and First Deriv. Test, 137
and Second Deriv. Test, 146
finding, 124
relaƟve, 122, 715, 716

Extreme Value Theorem, 122, 720
extreme values, 121

factorial, 383
First DerivaƟve Test, 137
fluid pressure/force, 375, 377
focus, 470, 473, 476
Fubini’s Theorem, 737
funcƟon

of three variables, 655
of two variables, 651
vector–valued, 599

Fundamental Theorem of Calculus, 221, 222
and Chain Rule, 225

Gabriel’s Horn, 363
Generalized Power Rule, 95
geometric series, 397, 398
gradient, 698, 699, 702, 712

and level curves, 699
and level surfaces, 712

Harmonic Series, 403
Head To Tail Rule, 547



Hooke’s Law, 368
hyperbola

definiƟon, 476
eccentricity, 479
parametric equaƟons, 489
reflecƟve property, 479
standard equaƟon, 477

hyperbolic funcƟon
definiƟon, 303
derivaƟves, 306
idenƟƟes, 306
integrals, 306
inverse, 307

derivaƟve, 309
integraƟon, 309
logarithmic def., 308

implicit differenƟaƟon, 103, 693
improper integraƟon, 322, 325
increasing funcƟon, 134

finding intervals, 135
strictly, 134

indefinite integral, 185
indeterminate form, 2, 45, 316, 317
inflecƟon point, 143
iniƟal point, 543
iniƟal value problem, 190
Integral Test, 410
integraƟon

arc length, 357
area, 196, 728, 729
area between curves, 226, 334
average value, 229
by parts, 266
by subsƟtuƟon, 249
definite, 196

and subsƟtuƟon, 262
properƟes, 197
Riemann Sums, 217

displacement, 223
distance traveled, 626
double, 736
fluid force, 375, 377
Fun. Thm. of Calc., 221, 222
general applicaƟon technique, 333
hyperbolic funct., 306
improper, 322, 325, 327, 329
indefinite, 185
inverse hyper., 309
iterated, 727
Mean Value Theorem, 227
mulƟple, 727
notaƟon, 186, 196, 222, 727
numerical, 233

LeŌ/Right Hand Rule, 233, 240
Simpson’s Rule, 238, 240, 241
Trapezoidal Rule, 236, 240, 241

of mulƟvariable funcƟons, 725
of power series, 439
of trig. funcƟons, 255

of trig. powers, 276, 281
of vector–valued funcƟons, 613
parƟal fracƟon decomp., 296
Power Rule, 190
Sum/Difference Rule, 190
surface area, 361, 501, 524
trig. subst., 287
triple, 774, 785, 787
volume

cross-secƟonal area, 341
Disk Method, 342
Shell Method, 349, 353
Washer Method, 344, 353

work, 365
interior point, 658
Intermediate Value Theorem, 39
interval of convergence, 436
iterated integraƟon, 727, 736, 737, 774, 785, 787

changing order, 731
properƟes, 740, 781

L’Hôpital’s Rule, 313, 315
lamina, 753
LeŌ Hand Rule, 204, 209, 212, 233
LeŌ/Right Hand Rule, 240
level curves, 653, 699
level surface, 656, 712
limit

Absolute Value Theorem, 387
at infinity, 46
definiƟon, 10
difference quoƟent, 6
does not exist, 4, 29
indeterminate form, 2, 45, 316, 317
L’Hôpital’s Rule, 313, 315
leŌ handed, 27
of infinity, 43
of mulƟvariable funcƟon, 659, 660, 666
of sequence, 385
of vector–valued funcƟons, 605
one sided, 27
properƟes, 16, 660
pseudo-definiƟon, 2
right handed, 27
Squeeze Theorem, 20

Limit Comparison Test
for integraƟon, 329
for series, 414

lines, 580
distances between, 587
equaƟons for, 582
intersecƟng, 583
parallel, 583
skew, 583

logarithmic differenƟaƟon, 110

Maclaurin Polynomial, see Taylor Polynomial
definiƟon, 447

Maclaurin Series, see Taylor Series
definiƟon, 457



magnitude of vector, 543
mass, 753, 754, 788

center of, 757
maximum

absolute, 121, 715
and First Deriv. Test, 137
and Second Deriv. Test, 146
relaƟve/local, 122, 715, 718

Mean Value Theorem
of differenƟaƟon, 130
of integraƟon, 227

Midpoint Rule, 204, 209, 212
minimum

absolute, 121, 715
and First Deriv. Test, 137, 146
relaƟve/local, 122, 715, 718

moment, 759, 761, 788
monotonic sequence, 390
mulƟple integraƟon, see iterated integraƟon
mulƟvariable funcƟon, 651, 655

conƟnuity, 664–666, 682, 687
differenƟability, 681, 682, 686, 687
domain, 651, 655
level curves, 653
level surface, 656
limit, 659, 660, 666
range, 651, 655

Newton’s Method, 158
norm, 543
normal line, 59, 493, 708
normal vector, 590
nth–term test, 406
numerical integraƟon, 233

LeŌ/Right Hand Rule, 233, 240
Simpson’s Rule, 238, 240

error bounds, 241
Trapezoidal Rule, 236, 240

error bounds, 241

open, 658
open ball, 666
open disk, 658
opƟmizaƟon, 171

constrained, 720
orthogonal, 561, 708

decomposiƟon, 565
orthogonal decomposiƟon of vectors, 565
orthogonal projecƟon, 563
osculaƟng circle, 645

p-series, 399
parabola

definiƟon, 470
general equaƟon, 471
reflecƟve property, 473

parallel vectors, 551
Parallelogram Law, 547
parametric equaƟons

arc length, 499
concavity, 496

definiƟon, 483
finding d2y

dx2 , 497
finding dy

dx , 493
normal line, 493
surface area, 501
tangent line, 493

parƟal derivaƟve, 668, 676
high order, 676
meaning, 670
mixed, 672
second derivaƟve, 672
total differenƟal, 680, 686

perpendicular, see orthogonal
planes

coordinate plane, 531
distance between point and plane, 595
equaƟons of, 591
introducƟon, 531
normal vector, 590
tangent, 711

point of inflecƟon, 143
polar

coordinates, 503
funcƟon

arc length, 523
gallery of graphs, 510
surface area, 524

funcƟons, 506
area, 519
area between curves, 521
finding dy

dx , 516
graphing, 506

polar coordinates, 503
ploƫng points, 503

Power Rule
differenƟaƟon, 76, 83, 89, 108
integraƟon, 190

power series, 434
algebra of, 462
convergence, 435
derivaƟves and integrals, 439

projecƟle moƟon, 623, 624, 637

quadric surface
definiƟon, 535
ellipsoid, 538
ellipƟc cone, 537
ellipƟc paraboloid, 537
gallery, 537–539
hyperbolic paraboloid, 539
hyperboloid of one sheet, 538
hyperboloid of two sheets, 539
sphere, 538
trace, 536

QuoƟent Rule, 86

R, 543
radius of convergence, 436
radius of curvature, 645
RaƟo Comparison Test



for series, 419
rearrangements of series, 430, 431
related rates, 164
Riemann Sum, 204, 208, 211

and definite integral, 217
Right Hand Rule, 204, 209, 212, 233
right hand rule

of Cartesian coordinates, 529
Rolle’s Theorem, 130
Root Comparison Test

for series, 422

saddle point, 717, 718
Second DerivaƟve Test, 146, 718
sensiƟvity analysis, 685
sequence

Absolute Value Theorem, 387
posiƟve, 413

sequences
boundedness, 389
convergent, 385, 390, 393
definiƟon, 383
divergent, 385
limit, 385
limit properƟes, 388
monotonic, 390

series
absolute convergence, 429
Absolute Convergence Theorem, 431
alternaƟng, 424

ApproximaƟon Theorem, 427
AlternaƟng Series Test, 425
Binomial, 460
condiƟonal convergence, 429
convergent, 395
definiƟon, 395
Direct Comparison Test, 413
divergent, 395
geometric, 397, 398
Integral Test, 410
interval of convergence, 436
Limit Comparison Test, 414
Maclaurin, 457
nth–term test, 406
p-series, 399
parƟal sums, 395
power, 434, 435

derivaƟves and integrals, 439
properƟes, 403
radius of convergence, 436
RaƟo Comparison Test, 419
rearrangements, 430, 431
Root Comparison Test, 422
Taylor, 457
telescoping, 400, 401

Shell Method, 349, 353
signed area, 196
signed volume, 736, 737
Simpson’s Rule, 238, 240

error bounds, 241

smooth, 610
smooth curve, 489
speed, 618
sphere, 530
Squeeze Theorem, 20
Sum/Difference Rule

of derivaƟves, 78
of integraƟon, 190
of series, 403

summaƟon
notaƟon, 205
properƟes, 207

surface area, 766
solid of revoluƟon, 361, 501, 524

surface of revoluƟon, 534, 535

tangent line, 58, 493, 516, 609
direcƟonal, 705

tangent plane, 711
Taylor Polynomial

definiƟon, 447
Taylor’s Theorem, 450

Taylor Series
common series, 462
definiƟon, 457
equality with generaƟng funcƟon, 459

Taylor’s Theorem, 450
telescoping series, 400, 401
terminal point, 543
total differenƟal, 680, 686

sensiƟvity analysis, 685
total signed area, 196
trace, 536
Trapezoidal Rule, 236, 240

error bounds, 241
triple integral, 774, 785, 787

properƟes, 781

unbounded sequence, 389
unbounded set, 658
unit normal vector

aN, 636
and acceleraƟon, 635, 636
and curvature, 646
definiƟon, 633
in R2, 635

unit tangent vector
and acceleraƟon, 635, 636
and curvature, 642, 646
aT, 636
definiƟon, 631
in R2, 635

unit vector, 549
properƟes, 551
standard unit vector, 553
unit normal vector, 633
unit tangent vector, 631

vector–valued funcƟon
algebra of, 600
arc length, 615



average rate of change, 603
conƟnuity, 606
definiƟon, 599
derivaƟves, 607, 608, 611
describing moƟon, 618
displacement, 602
distance traveled, 626
graphing, 599
integraƟon, 613
limits, 605
of constant length, 613, 622, 623, 632
projecƟle moƟon, 623, 624
smooth, 610
tangent line, 609

vectors, 543
algebra of, 546
algebraic properƟes, 549
component form, 544
cross product, 570, 572, 573
definiƟon, 543
dot product, 557–559
Head To Tail Rule, 547
magnitude, 543
norm, 543
normal vector, 590
orthogonal, 561
orthogonal decomposiƟon, 565
orthogonal projecƟon, 563
parallel, 551
Parallelogram Law, 547
resultant, 547
standard unit vector, 553
unit vector, 549, 551
zero vector, 547

velocity, 71, 618
volume, 736, 737, 772

Washer Method, 344, 353
work, 365, 567



DifferenƟaƟon Rules

1.
d
dx

(cx) = c

2.
d
dx

(u± v) = u′ ± v′

3.
d
dx

(u · v) = uv′ + u′v

4.
d
dx

(
u
v

)
=

vu′ − uv′

v2

5.
d
dx

(u(v)) = u′(v)v′

6.
d
dx

(c) = 0

7.
d
dx

(x) = 1

8.
d
dx

(xn) = nxn−1

9.
d
dx

(ex) = ex

10.
d
dx

(ax) = ln a · ax

11.
d
dx

(ln x) =
1
x

12.
d
dx

(loga x) =
1
ln a

·
1
x

13.
d
dx

(sin x) = cos x

14.
d
dx

(cos x) = − sin x

15.
d
dx

(csc x) = − csc x cot x

16.
d
dx

(sec x) = sec x tan x

17.
d
dx

(tan x) = sec2 x

18.
d
dx

(cot x) = − csc2 x

19.
d
dx
(
sin−1 x

)
=

1
√
1− x2

20.
d
dx
(
cos−1 x

)
=

−1
√
1− x2

21.
d
dx
(
csc−1 x

)
=

−1
|x|

√
x2 − 1

22.
d
dx
(
sec−1 x

)
=

1
|x|

√
x2 − 1

23.
d
dx
(
tan−1 x

)
=

1
1+ x2

24.
d
dx
(
cot−1 x

)
=

−1
1+ x2

25.
d
dx

(cosh x) = sinh x

26.
d
dx

(sinh x) = cosh x

27.
d
dx

(tanh x) = sech2 x

28.
d
dx

(sech x) = − sech x tanh x

29.
d
dx

(csch x) = − csch x coth x

30.
d
dx

(coth x) = − csch2 x

31.
d
dx
(
cosh−1 x

)
=

1
√
x2 − 1

32.
d
dx
(
sinh−1 x

)
=

1
√
x2 + 1

33.
d
dx
(
sech−1 x

)
=

−1
x
√
1− x2

34.
d
dx
(
csch−1 x

)
=

−1
|x|

√
1+ x2

35.
d
dx
(
tanh−1 x

)
=

1
1− x2

36.
d
dx
(
coth−1 x

)
=

1
1− x2

IntegraƟon Rules

1.
∫

c · f(x) dx = c
∫

f(x) dx

2.
∫

f(x)± g(x) dx =∫
f(x) dx±

∫
g(x) dx

3.
∫

0 dx = C

4.
∫

1 dx = x+ C

5.
∫

xn dx =
1

n+ 1
xn+1 + C, n ̸= −1

n ̸= −1

6.
∫

ex dx = ex + C

7.
∫

ax dx =
1
ln a

· ax + C

8.
∫

1
x
dx = ln |x|+ C

9.
∫

cos x dx = sin x+ C

10.
∫

sin x dx =− cos x+ C

11.
∫

tan x dx =− ln | cos x|+ C

12.
∫

sec x dx = ln | sec x+ tan x|+ C

13.
∫

csc x dx =− ln | csc x+ cot x|+ C

14.
∫

cot x dx = ln | sin x|+ C

15.
∫

sec2 x dx = tan x+ C

16.
∫

csc2 x dx =− cot x+ C

17.
∫

sec x tan x dx = sec x+ C

18.
∫

csc x cot x dx =− csc x+ C

19.
∫

cos2 x dx =
1
2
x+

1
4
sin
(
2x
)
+ C

20.
∫

sin2 x dx =
1
2
x−

1
4
sin
(
2x
)
+ C

21.
∫

1
x2 + a2

dx =
1
a
tan−1

(
x
a

)
+ C

22.
∫

1
√
a2 − x2

dx = sin−1
(
x
a

)
+ C

23.
∫

1
x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

24.
∫

cosh x dx = sinh x+ C

25.
∫

sinh x dx = cosh x+ C

26.
∫

tanh x dx = ln(cosh x) + C

27.
∫

coth x dx = ln | sinh x|+ C

28.
∫

1
√
x2 − a2

dx = ln
∣∣x+√x2 − a2

∣∣+ C

29.
∫

1
√
x2 + a2

dx = ln
∣∣x+√x2 + a2

∣∣+ C

30.
∫

1
a2 − x2

dx =
1
2
ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

31.
∫

1
x
√
a2 − x2

dx =
1
a
ln
(

x
a+

√
a2 − x2

)
+ C

32.
∫

1
x
√
x2 + a2

dx =
1
a
ln
∣∣∣∣ x
a+

√
x2 + a2

∣∣∣∣+ C
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DefiniƟons of the Trigonometric FuncƟons

Unit Circle DefiniƟon

.. x.

y

.

(x, y)

.

y

.
x

.

θ

sin θ = y cos θ = x

csc θ =
1
y

sec θ =
1
x

tan θ =
y
x

cot θ =
x
y

Right Triangle DefiniƟon

..
Adjacent

.

O
pposite

.

Hy
po
ten

use

. θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

Common Trigonometric IdenƟƟes

Pythagorean IdenƟƟes

sin2 x+ cos2 x = 1

tan2 x+ 1 = sec2 x

1+ cot2 x = csc2 x

CofuncƟon IdenƟƟes

sin
(π
2
− x
)
= cos x

cos
(π
2
− x
)
= sin x

tan
(π
2
− x
)
= cot x

csc
(π
2
− x
)
= sec x

sec
(π
2
− x
)
= csc x

cot
(π
2
− x
)
= tan x

Double Angle Formulas

sin 2x = 2 sin x cos x

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

tan 2x =
2 tan x

1− tan2 x

Sum to Product Formulas

sin x+ sin y = 2 sin
(
x+ y
2

)
cos
(
x− y
2

)
sin x− sin y = 2 sin

(
x− y
2

)
cos
(
x+ y
2

)
cos x+ cos y = 2 cos

(
x+ y
2

)
cos
(
x− y
2

)
cos x− cos y = −2 sin

(
x+ y
2

)
cos
(
x− y
2

)

Power–Reducing Formulas

sin2 x =
1− cos 2x

2

cos2 x =
1+ cos 2x

2

tan2 x =
1− cos 2x
1+ cos 2x

Even/Odd IdenƟƟes

sin(−x) = − sin x

cos(−x) = cos x

tan(−x) = − tan x

csc(−x) = − csc x

sec(−x) = sec x

cot(−x) = − cot x

Product to Sum Formulas

sin x sin y =
1
2
(
cos(x− y)− cos(x+ y)

)
cos x cos y =

1
2
(
cos(x− y) + cos(x+ y)

)
sin x cos y =

1
2
(
sin(x+ y) + sin(x− y)

)

Angle Sum/Difference Formulas

sin(x± y) = sin x cos y± cos x sin y

cos(x± y) = cos x cos y∓ sin x sin y

tan(x± y) =
tan x± tan y
1∓ tan x tan y



Areas and Volumes

Triangles

h = a sin θ

Area = 1
2bh

Law of Cosines:
c2 = a2 + b2 − 2ab cos θ

..
b

. θ.

a

.

c

.

h

Right Circular Cone

Volume = 1
3πr

2h

Surface Area =
πr
√
r2 + h2 + πr2 ..

h

. r

Parallelograms

Area = bh

..
b

.
h

Right Circular Cylinder

Volume = πr2h

Surface Area =
2πrh+ 2πr2 ..

h
.

r

Trapezoids

Area = 1
2 (a+ b)h

..
b

.

a

.
h

Sphere

Volume = 4
3πr

3

Surface Area =4πr2
.. r

Circles

Area = πr2

Circumference = 2πr .. r

General Cone

Area of Base = A

Volume = 1
3Ah ..

h

.
A

Sectors of Circles

θ in radians

Area = 1
2θr

2

s = rθ ..
r

.

s

. θ

General Right Cylinder

Area of Base = A

Volume = Ah

..

h

. A



Algebra

Factors and Zeros of Polynomials
Let p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a soluƟon of
the equaƟon p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily disƟnct) zeros. Although all of these zeros may be imaginary, a real
polynomial of odd degree must have at least one real zero.

QuadraƟc Formula
If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±

√
b2 − 4ac)/2a

Special Factors
x2 − a2 = (x− a)(x+ a) x3 − a3 = (x− a)(x2 + ax+ a2)
x3 + a3 = (x+ a)(x2 − ax+ a2) x4 − a4 = (x2 − a2)(x2 + a2)
(x+ y)n = xn + nxn−1y+ n(n−1)

2! xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y+ n(n−1)
2! xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem
(x+ y)2 = x2 + 2xy+ y2 (x− y)2 = x2 − 2xy+ y2
(x+ y)3 = x3 + 3x2y+ 3xy2 + y3 (x− y)3 = x3 − 3x2y+ 3xy2 − y3
(x+ y)4 = x4 + 4x3y+ 6x2y2 + 4xy3 + y4 (x− y)4 = x4 − 4x3y+ 6x2y2 − 4xy3 + y4

RaƟonal Zero Theorem
If p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 has integer coefficients, then every rational zero of p is of the form x = r/s,
where r is a factor of a0 and s is a factor of an.

Factoring by Grouping
acx3 + adx2 + bcx+ bd = ax2(cs+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

ArithmeƟc OperaƟons
ab+ ac = a(b+ c)

a
b
+

c
d
=

ad+ bc
bd

a+ b
c

=
a
c
+

b
c(a

b

)
( c
d

) =
(a
b

)(d
c

)
=

ad
bc

(a
b

)
c

=
a
bc

a(
b
c

) =
ac
b

a
(
b
c

)
=

ab
c

a− b
c− d

=
b− a
d− c

ab+ ac
a

= b+ c

Exponents and Radicals

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y √
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n a−x =

1
ax

n
√
ab = n

√
a n
√
b (ax)y = axy n

√
a
b
=

n
√
a

n
√
b



AddiƟonal Formulas

SummaƟon Formulas:
n∑

i=1

c = cn
n∑

i=1

i =
n(n+ 1)

2
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =
(
n(n+ 1)

2

)2

Trapezoidal Rule:∫ b

a
f(x) dx ≈ ∆x

2
[
f(x1) + 2f(x2) + 2f(x3) + ...+ 2f(xn) + f(xn+1)

]
with Error ≤ (b− a)3

12n2
[
max

∣∣f ′′(x)∣∣]

Simpson’s Rule:∫ b

a
f(x) dx ≈ ∆x

3
[
f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + ...+ 2f(xn−1) + 4f(xn) + f(xn+1)

]
with Error ≤ (b− a)5

180n4
[
max

∣∣f (4)(x)∣∣]

Arc Length:

L =
∫ b

a

√
1+ f ′(x)2 dx

Surface of RevoluƟon:

S = 2π
∫ b

a
f(x)
√

1+ f ′(x)2 dx

(where f(x) ≥ 0)

S = 2π
∫ b

a
x
√

1+ f ′(x)2 dx

(where a, b ≥ 0)

Work Done by a Variable Force:

W =

∫ b

a
F(x) dx

Force Exerted by a Fluid:

F =
∫ b

a
wd(y) ℓ(y) dy

Taylor Series Expansion for f(x):

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + ...+
f (n)(c)
n!

(x− c)n

Maclaurin Series Expansion for f(x), where c = 0:

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + ...+
f (n)(0)

n!
xn



Summary of Tests for Series:

Test Series CondiƟon(s) of
Convergence

CondiƟon(s) of
Divergence Comment

nth-Term
∞∑
n=1

an lim
n→∞

an ̸= 0 This test cannot be used to
show convergence.

Geometric Series
∞∑
n=0

rn |r| < 1 |r| ≥ 1 Sum =
1

1− r

Telescoping Series
∞∑
n=1

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=1

bn

)
− L

p-Series
∞∑
n=1

1
(an+ b)p

p > 1 p ≤ 1

Integral Test
∞∑
n=0

an

∫ ∞

1
a(n) dn

is convergent

∫ ∞

1
a(n) dn

is divergent

an = a(n) must be
conƟnuous

Direct Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
0 ≤ an ≤ bn

∞∑
n=0

bn

diverges and
0 ≤ bn ≤ an

Limit Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
lim

n→∞
an/bn ≥ 0

∞∑
n=0

bn

diverges and
lim

n→∞
an/bn > 0

Also diverges if
lim

n→∞
an/bn = ∞

RaƟo Test
∞∑
n=0

an lim
n→∞

an+1

an
< 1 lim

n→∞

an+1

an
> 1

{an}must be posiƟve
Also diverges if
lim

n→∞
an+1/an = ∞

Root Test
∞∑
n=0

an lim
n→∞

(
an
)1/n

< 1 lim
n→∞

(
an
)1/n

> 1

{an}must be posiƟve
Also diverges if

lim
n→∞

(
an
)1/n

= ∞
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