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PREFACE

A Note on Using this Text

Thank you for reading this short preface. Allow us to share a few key points
about the text so that you may better understand what you will find beyond this
page.

This text is Part Il of a three—text series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, derivatives, and the basics of
integration, found in Chapters 1 through 6.1. The second text covers material
often taught in “Calc 2:” integration and its applications, along with an introduc-
tion to sequences, series and Taylor Polynomials, found in Chapters 5 through
8. The third text covers topics common in “Calc 3” or “multivariable calc:” para-
metric equations, polar coordinates, vector—valued functions, and functions of
more than one variable, found in Chapters 9 through 13. All three are available
separately for free at www.vmi.edu/APEX. These three texts are intended to
work together and make one cohesive text, APEX Calculus, which can also be
downloaded from the website.

Printing the entire text as one volume makes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for about
$10 at Amazon.com.

A result of this splitting is that sometimes a concept is said to be explored in
an “earlier section,” though that section does not actually appear in this partic-
ular text. Also, the index makes reference to topics, and page numbers, that do
not appear in this text. This is done intentionally to show the reader what topics
are available for study. Downloading the .pdf of APEX Calculus will ensure that
you have all the content.

A%X — Affordable Print and Electronic teXts

A%X is a consortium of authors who collaborate to produce high—quality,
low—cost textbooks. The current textbook—writing paradigm is facing a poten-
tial revolution as desktop publishing and electronic formats increase in popular-
ity. However, writing a good textbook is no easy task, as the time requirements
alone are substantial. It takes countless hours of work to produce text, write


http://www.vmi.edu/APEX
http://amazon.com

examples and exercises, edit and publish. Through collaboration, however, the
cost to any individual can be lessened, allowing us to create texts that we freely
distribute electronically and sell in printed form for an incredibly low cost. Hav-
ing said that, nothing is entirely free; someone always bears some cost. This
text “cost” the authors of this book their time, and that was not enough. APEX
Calculus would not exist had not the Virginia Military Institute, through a gen-
erous Jackson—Hope grant, given one of the authors significant time away from
teaching so he could focus on this text.

Each text is available as a free .pdf, protected by a Creative Commons At-
tribution - Noncommercial 3.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the latter, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add sections that are “missing” or remove sections that your students won’t
need. The source files can be found at github. com/APEXCalculus.

You can learn more at www.vmi . edu/APEX.


https://github.com/APEXCalculus
http://www.vmi.edu/APEX
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9: CURVES IN THE PLANE

9.1 Conic Sections

The ancient Greeks recognized that interesting shapes can be formed by inter-
secting a plane with a double napped cone (i.e., two identical cones placed tip—
to—tip as shown in the following figures). As these shapes are formed as sections
of conics, they have earned the official name “conic sections.”

The three “most interesting” conic sections are given in the top row of Figure
9.1. They are the parabola, the ellipse (which includes circles) and the hyper-
bola. In each of these cases, the plane does not intersect the tips of the cones
(usually taken to be the origin).

<  —
- L&

Parabola Ellipse Circle Hyperbola

i ~

Point Line Crossed Lines

Figure 9.1: Nondegenerate Conic Sections

When the plane does contain the origin, three degenerate cones can be
formed as shown the bottom row of Figure 9.1: a point, a line, and crossed
lines. We focus here on the nondegenerate cases.

While the above geometric constructs define the conics in an intuitive, visual
way, these constructs are not very helpful when trying to analyze the shapes
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P

Figure 9.2: lllustrating the definition of
the parabola and establishing an alge-
braic formula.
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algebraically or consider them as the graph of a function. It can be shown that
all conics can be defined by the general second—degree equation

Ax2+Bxy—|—Cy2—|—Dx+Ey+F:0.

While this algebraic definition has its uses, most find another geometric per-
spective of the conics more beneficial.

Each nondegenerate conic can be defined as the locus, or set, of points that
satisfy a certain distance property. These distance properties can be used to
generate an algebraic formula, allowing us to study each conic as the graph of a
function.

Parabolas

Definition 40 Parabola

A parabola is the locus of all points equidistant from a point (called a
focus) and a line (called the directrix) that does not contain the focus.

Figure 9.2 illustrates this definition. The point halfway between the focus
and the directrix is the vertex. The line through the focus, perpendicular to the
directrix, is the axis of symmetry, as the portion of the parabola on one side of
this line is the mirror—image of the portion on the opposite side.

The definition leads us to an algebraic formula for the parabola. Let P =
(x,y) be a point on a parabola whose focus is at F = (0, p) and whose directrix
isaty = —p. (We'll assume for now that the focus lies on the y-axis; by placing
the focus p units above the x-axis and the directrix p units below this axis, the
vertex will be at (0, 0).)

We use the Distance Formula to find the distance d; between F and P:

d =/ (x=02+ (y —p).

The distance d, from P to the directrix is more straightforward:
dy=y—(=p)=y+p.
These two distances are equal. Setting d; = d,, we can solve for y in terms of x:

di=d;

V¥ (y—pP=y+p

Notes:



Now square both sides.

X+ (y—p?=y+p?
2 2 2 _ .2 2
Xty —2yp+p =y +2yp+p

x* = dyp
1
y = —x°.
4p

The geometric definition of the parabola has led us to the familiar quadratic
function whose graph is a parabola with vertex at the origin. When we allow the
vertex to not be at (0, 0), we get the following standard form of the parabola.

Key Idea 33 General Equation of a Parabola

1. Vertical Axis of Symmetry: The equation of the parabola with ver-
tex at (h, k) and directrix y = k — p in standard form is

1
= —(x—h?2+k
y=gpxht
The focus is at (h, k + p).

2. Horizontal Axis of Symmetry: The equation of the parabola with
vertex at (h, k) and directrix x = h — p in standard form is

1

_ = _ 2
= 4p(y k)* + h.

X

The focus is at (h + p, k).

Note: p is not necessarily a positive number.

Example 273 Finding the equation of a parabola
Give the equation of the parabola with focus at (1,2) and directrix at y = 3.

SOLUTION The vertex is located halfway between the focus and direc-
trix, so (h, k) = (1,2.5). This gives p = —0.5. Using Key Idea 33 we have the
equation of the parabola as

1
y = (x—1)2+2.5:—5(x—1)2+2.5.

4(—0.5)

The parabola is sketched in Figure 9.3.

Notes:

9.1 Conic Sections

Figure 9.3: The parabola described in Ex-
ample 273.

471
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10 +

Figure 9.4: The parabola described in Ex-
ample 274. The distances from a point on
the parabola to the focus and directrix is

given.

o
A

Figure 9.5: lllustrating the parabola’s re-

flective property.
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Example 274 Finding the focus and directrix of a parabola

Find the focus and directrix of the parabola x = %yz — y+ 1. The point (7,12)
lies on the graph of this parabola; verify that it is equidistant from the focus and
directrix.

SOLUTION We need to put the equation of the parabola in its general
form. This requires us to complete the square:
_ 12
x=2y —y+1
(y* — 8y +8)
(y* — 8y +16 — 16 + 8)

(y—4)? -1

00| 0| 0| 0| |

Hence the vertex is located at (—1, 4). We have % = 4p, sop = 2. We conclude
that the focus is located at (1,4) and the directrix is x = —3. The parabola is
graphed in Figure 9.4, along with its focus and directrix.

The point (7,12) lies on the graph and is 7 — (—3) = 10 units from the

directrix. The distance from (7, 12) to the focus is:

V(7 —1)2 + (12— 4)2 = V100 = 10.

Indeed, the point on the parabola is equidistant from the focus and directrix.
Reflective Property

One of the fascinating things about the nondegenerate conic sections is their
reflective properties. Parabolas have the following reflective property:

Any ray emanating from the focus that intersects the parabola
reflects off along a line perpendicular to the directrix.

This is illustrated in Figure 9.5. The following theorem states this more rig-
orously.

Notes:



Theorem 79 Reflective Property of the Parabola

Let P be a point on a parabola. The tangent line to the parabola at P
makes equal angles with the following two lines:

1. The line containing P and the focus F, and

2. The line perpendicular to the directrix through P.

Because of this reflective property, paraboloids (the 3D analogue of parabo-
las) make for useful flashlight reflectors as the light from the bulb, ideally located
at the focus, is reflected along parallel rays. Satellite dishes also have paraboloid
shapes. Signals coming from satellites effectively approach the dish along par-
allel rays. The dish then focuses these rays at the focus, where the sensor is
located.

Ellipses

Definition 41 Ellipse

An ellipse is the locus of all points whose sum of distances from two fixed
points, each a focus of the ellipse, is constant.

An easy way to visualize this construction of an ellipse is to pin both ends of
a string to a board. The pins become the foci. Holding a pencil tight against the
string places the pencil on the ellipse; the sum of distances from the pencil to
the pins is constant: the length of the string. See Figure 9.6.

We can again find an algebraic equation for an ellipse using this geometric
definition. Let the foci be located along the x-axis, ¢ units from the origin. Let
these foci be labeled as F; = (—¢,0) and F, = (c,0). Let P = (x,y) be a point
on the ellipse. The sum of distances from F; to P (d;) and from F, to P (d,) is a
constant d. That is, d; + d, = d. Using the Distance Formula, we have

Vo) +y2 +V/x—c)2 +y2 =d.

Using a fair amount of algebra can produce the following equation of an ellipse
(note that the equation is an implicitly defined function; it has to be, as an ellipse
fails the Vertical Line Test):

Notes:

9.1 Conic Sections

Figure 9.6: lllustrating the construction of
an ellipse with pins, pencil and string.
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Vertices Foci

Major axis Minor axis

Figure 9.7: Labeling the significant fea-
tures of an ellipse.

Figure 9.8: The ellipse used in Example
275.
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This is not particularly illuminating, but by making the substitution a = d/2 and
b = v/a? — c%, we can rewrite the above equation as

2 2

X
This choice of a and b is not without reason; as shown in Figure 9.7, the values
of @ and b have geometric meaning in the graph of the ellipse.

In general, the two foci of an ellipse lie on the major axis of the ellipse, and
the midpoint of the segment joining the two foci is the center. The major axis
intersects the ellipse at two points, each of which is a vertex. The line segment
through the center and perpendicular to the major axis is the minor axis. The
“constant sum of distances” that defines the ellipse is the length of the major
axis, i.e., 2a.

Allowing for the shifting of the ellipse gives the following standard equations.

Key Idea 34 Standard Equation of the Ellipse

The equation of an ellipse centered at (h, k) with major axis of length 2a
and minor axis of length 2b in standard form is:

x—=h?  (y—Kk?*
a? + p2
(x—=h?  (y—k?

2. Vertical major axis: b2 + = =1.

1. Horizontal major axis: 1.

The foci lie along the major axis, ¢ units from the center, where ¢ =
2 2
a‘ — b°.

Example 275 Finding the equation of an ellipse
Find the general equation of the ellipse graphed in Figure 9.8.

SOLUTION The center is located at (—3, 1). The distance from the cen-
ter to a vertex is 5 units, hence a = 5. The minor axis seems to have length 4,
so b = 2. Thus the equation of the ellipse is

32 _12
+3)° -
4 25

Example 276 Graphing an ellipse
Graph the ellipse defined by 4x? + 9y?> — 8x — 36y = —4.

Notes:



SOLUTION It is simple to graph an ellipse once it is in standard form. In
order to put the given equation in standard form, we must complete the square
with both the x and y terms. We first rewrite the equation by regrouping:

4 +9y° —8—36y=—4 = (4 —8x)+ (9’ —36y) = —4.

Now we complete the squares.

(4x* — 8x) + (9y* — 36y) = —4
4(x* —2x) +9(y* — 4y) = —4
40 —2x+1—-1)+9(*  —4y +4—-4)= -4
4((x—1*-1)+9((y—2°—4)=-4
4x—12—-4+9(y—2)*-36=—-4
4x—1)* +9(y —2)* =
(-1 -2

9 4

We see the center of the ellipse is at (1,2). We have a = 3 and b = 2; the ma-
jor axis is horizontal, so the vertices are located at (—2,2) and (4,2). We find
¢ =19 —4 = /5 = 2.24. The foci are located along the major axis, approxi-
mately 2.24 units from the center, at (1 & 2.24,2). This is all graphed in Figure
9.9.

Eccentricity

When a = b, we have a circle. The general equation becomes

(x=h? | (v

= i = (x—h?+(y—k?=d,

the familiar equation of the circle centered at (h, k) with radius a. The circle has
“two” foci, but they lie on the same point, the center of the circle.

Consider Figure 9.10, where several ellipses are graphed with a = 1. In (a),
we have ¢ = 0 and the ellipse is a circle. As c grows, the resulting ellipses look
less and less circular. A measure of this “noncircularness” is eccentricity.

Definition 42 Eccentricity of an Ellipse

- . . c
The eccentricity e of an ellipseise = —.
a

Notes:

9.1 Conic Sections

Figure 9.9: Graphing the ellipse in Exam-

ple 276.

A
-
~
.

K\X
*\/‘

e=0.38
(c)
y
14
X
e —
e =0.99

(d)

Figure 9.10: Understanding the eccentric-
ity of an ellipse.
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Figure 9.11: lllustrating the reflective
property of an ellipse.
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The eccentricity of a circle is 0; that is, a circle has no “noncircularness.” As
c approaches g, e approaches 1, giving rise to a very noncircular ellipse, as seen
in Figure 9.10 (d).

It was long assumed that planets had circular orbits. This is known to be
incorrect; the orbits are elliptical. Earth has an eccentricity of 0.0167 — it has
a nearly circular orbit. Mercury’s orbit is the most eccentric, with e = 0.2056.
(Pluto’s eccentricity is greater, at e = 0.248, the greatest of all the currently
known dwarf planets.) The planet with the most circular orbit is Venus, with
e = 0.0068. The Earth’s moon has an eccentricity of e = 0.0549, also very cir-
cular.

Reflective Property

The ellipse also possesses an interesting reflective property. Any ray ema-
nating from one focus of an ellipse reflects off the ellipse along a line through
the other focus, as illustrated in Figure 9.11. This property is given formally in
the following theorem.

Theorem 80 Reflective Property of an Ellipse

Let P be a point on a ellipse with foci F; and F,. The tangent line to the
ellipse at P makes equal angles with the following two lines:

1. The line through F; and P, and

2. The line through F, and P.

This reflective property is useful in optics and is the basis of the phenomena
experienced in whispering halls.

Hyperbolas

The definition of a hyperbola is very similar to the definition of an ellipse; we
essentially just change the word “sum” to “difference.”

Definition 43 Hyperbola

A hyperbola is the locus of all points where the absolute value of differ-
ence of distances from two fixed points, each a focus of the hyperbola,
is constant.

Notes:



9.1 Conic Sections

We do not have a convenient way of visualizing the construction of a hyper-
bola as we did for the ellipse. The geometric definition does allow us to find an
algebraic expression that describes it. It will be useful to define some terms first.

} s Conjugate

The two foci lie on the transverse axis of the hyperbola; the midpoint of Transverse

the line segment joining the foci is the center of the hyperbola. The transverse
axis intersects the hyperbola at two points, each a vertex of the hyperbola. The
line through the center and perpendicular to the transverse axis is the conju-
gate axis. This is illustrated in Figure 9.12. It is easy to show that the constant
difference of distances used in the definition of the hyperbola is the distance

between the vertices, i.e., 2a. Figure 9.12: Labeling the significant fea-
tures of a hyperbola.

axis

Vertices Foci

Key Idea 35 Standard Equation of a Hyperbola

The equation of a hyperbola centered at (h, k) in standard form is:

. o (x=h? (y—k? ,
1. Horizontal Transverse Axis: 7 — =1.
a b?
5 1
i . (y—k? (x=h)?
2. Vertical Transverse Axis: > — =1.
a b2
The vertices are located a units from the center and the foci are located _‘5 5 X

¢ units from the center, where ¢ = a? + b2.

Graphing Hyperbolas
Figure 9.13: Graphing the hyperbola % —
2

Consider the hyperbola %—% = 1. Solving fory, we findy = +/x2/9 — 1. T = 1along with its asymptotes, y =
As x grows large, the “—1” part of the equation for y becomes less significant and +x/3.
y &~ £./x*/9 = £+x/3. That is, as x gets large, the graph of the hyperbola looks
very much like the lines y = 4x/3. These lines are asymptotes of the hyperbola,
as shown in Figure 9.13.

y

This is a valuable tool in sketching. Given the equation of a hyperbola in
general form, draw a rectangle centered at (h, k) with sides of length 2a parallel
to the transverse axis and sides of length 2b parallel to the conjugate axis. (See
Figure 9.14 for an example with a horizontal transverse axis.) The diagonals of
the rectangle lie on the asymptotes.

These lines pass through (h, k). When the transverse axis is horizontal, the
slopes are +b/a; when the transverse axis is vertical, their slopes are +a/b. This
gives equations:

Figure 9.14: Using the asymptotes of a hy-
perbola as a graphing aid.

Notes:
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Figure 9.15: Graphing the hyperbola in
Example 277.

Figure 9.16: Graphing the hyperbola in
Example 278.
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Horizontal Vertical
Transverse Axis Transverse Axis
b a
y::lza(x—h)—kk y:j:E(x—h)—Fk.
Example 277 Graphing a hyperbola
-2 (x—1)
Sketch the hyperbola given by v ) — ( ) =1.
25 4
SOLUTION The hyperbola is centered at (1,2); a = 5and b = 2. In

Figure 9.15 we draw the prescribed rectangle centered at (1, 2) along with the
asymptotes defined by its diagonals. The hyperbola has a vertical transverse
axis, so the vertices are located at (1,7) and (1, —3). This is enough to make a
good sketch.

We also find the location of the foci: as ¢2 = a2 + b?, we have ¢ = /29 ~
5.4. Thus the foci are located at (1,2 + 5.4) as shown in the figure.

Example 278 Graphing a hyperbola
Sketch the hyperbola given by 9x2 — y? + 2y = 10.

SOLUTION We must complete the square to put the equation in general
form. (We recognize this as a hyperbola since it is a general quadratic equation
and the x? and y? terms have opposite signs.)

9> —y* +2y =10

9 — (y* —2y) =10

9 — (P —2y+1-1)=10
o —((y—1)2-1) =10
9w —(y—1°=9

—1)?
XZ,(y ) -1
9

We see the hyperbola is centered at (0, 1), with a horizontal transverse axis,
where a = 1 and b = 3. The appropriate rectangle is sketched in Figure 9.16
along with the asymptotes of the hyperbola. The vertices are located at (£1, 1).
We have ¢ = v/10 = 3.2, so the foci are located at (£3.2,1) as shown in the
figure.

Notes:



9.1 Conic Sections

Eccentricity

Definition 44 Eccentricity of a Hyperbola

c
The eccentricity of a hyperbolais e = P \

Note that this is the definition of eccentricity as used for the ellipse. When
c is close in value to a (i.e., e ~ 1), the hyperbola is very narrow (looking al-
most like crossed lines). Figure 9.17 shows hyperbolas centered at the origin (a)
with @ = 1. The graph in (a) has ¢ = 1.05, giving an eccentricity of e = 1.05,
which is close to 1. As c grows larger, the hyperbola widens and begins to look
like parallel lines, as shown in part (d) of the figure.

Reflective Property

Hyperbolas share a similar reflective property with ellipses. However, in the
case of a hyperbola, a ray emanating from a focus that intersects the hyperbola
reflects along a line containing the other focus, but moving away from that fo-
cus. This is illustrated in Figure 9.19 (on the next page). Hyperbolic mirrors are
commonly used in telescopes because of this reflective property. It is stated
formally in the following theorem.

Theorem 81 Reflective Property of Hyperbolas

Let P be a point on a hyperbola with foci F; and F,. The tangent line to
the hyperbola at P makes equal angles with the following two lines:

1. The line through F; and P, and

2. The line through F, and P.

Location Determination

Determining the location of a known event has many practical uses (locating
the epicenter of an earthquake, an airplane crash site, the position of the person
speaking in a large room, etc.).

To determine the location of an earthquake’s epicenter, seismologists use
trilateration (not to be confused with triangulation). A seismograph allows one

Notes:

Figure 9.17: Understanding the eccentric-
ity of a hyperbola.
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o [ ] [ ]
F1 F2
Figure 9.19: lllustrating the reflective

property of a hyperbola.
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to determine how far away the epicenter was; using three separate readings,
the location of the epicenter can be approximated.

A key to this method is knowing distances. What if this information is not
available? Consider three microphones at positions A, B and C which all record
a noise (a person’s voice, an explosion, etc.) created at unknown location D.
The microphone does not “know” when the sound was created, only when the
sound was detected. How can the location be determined in such a situation?

If each location has a clock set to the same time, hyperbolas can be used
to determine the location. Suppose the microphone at position A records the
sound at exactly 12:00, location B records the time exactly 1 second later, and
location C records the noise exactly 2 seconds after that. We are interested in
the difference of times. Since the speed of sound is approximately 340 m/s, we
can conclude quickly that the sound was created 340 meters closer to position A
than position B. If A and B are a known distance apart (as shown in Figure 9.18
(a)), then we can determine a hyperbola on which D must lie.

The “difference of distances” is 340; this is also the distance between vertices
of the hyperbola. So we know 2a = 340. Positions A and B lie on the foci, so
2¢ = 1000. From this we can find b =~ 470 and can sketch the hyperbola, given
in part (b) of the figure. We only care about the side closest to A. (Why?)

We can also find the hyperbola defined by positions B and C. In this case,
2a = 680 as the sound traveled an extra 2 seconds to get to C. We still have
2c¢ = 1000, centering this hyperbola at (—500,500). We find b ~ 367. This
hyperbola is sketched in part (c) of the figure. The intersection point of the two
graphs is the location of the sound, at approximately (188, —222.5).

~

Ce11,000 4 ~_ ce 1,007
\ ~ -
) -
\
%00 | 500 -
\
B\
1
—1,000 —500 1 500 1,000 ;I,ooo —500
1
—200 | —500 |
1
1
1
~1,000 | —1,000 -

(b) (c)

Figure 9.18: Using hyperbolas in location detection.

Notes:



Exercises 9.1

Terms and Concepts

1. Whatis the difference between degenerate and nondegen-
erate conics?

2. Use your own words to explain what the eccentricity of an
ellipse measures.

3. What has the largest eccentricity: an ellipse or a hyper-
bola?

4. Explain why the following s true: “If the coefficient of the x*
termin the equation of an ellipse in standard form is smaller
than the coefficient of the y? term, then the ellipse has a
horizontal major axis.”

5. Explain how one can quickly look at the equation of a hy-
perbola in standard form and determine whether the trans-
verse axis is horizontal or vertical.

Problems

In Exercises 6 — 13, find the equation of the parabola defined
by the given information. Sketch the parabola.

6. Focus: (3,2); directrix: y = 1

7. Focus: (—1,—4); directrix: y = 2

:(
8. Focus: (1,5); directrix: x = 3
9. Focus: (1/4,0); directrix: x = —1/4
10. Focus: (1,1); vertex: (1,2)
11. Focus: (—3,0); vertex: (0, 0)
12. Vertex: (0,0); directrix: y = —1/16
13. Vertex: (2, 3); directrix: x = 4
In Exercises 14 — 15, the equation of a parabola and a point
on its graph are given. Find the focus and directrix of the

parabola, and verify that the given point is equidistant from
the focus and directrix.

14. y =334 pP=(2,1)

1
4
15. x = 1(y—2)* +3,P = (11,10)

In Exercises 16 — 17, sketch the ellipse defined by the given
equation. Label the center, foci and vertices.
x—1)  (y—2? _

16. =1
3 + 5

1, 1 2
17. — — 3)"=1
X t gy +3)
In Exercises 18 — 19, find the equation of the ellipse shown in
the graph. Give the location of the foci and the eccentricity
of the ellipse.

<

18.

19.

In Exercises 20 — 23, find the equation of the ellipse defined
by the given information. Sketch the elllipse.

20. Foci: (£2,0); vertices: (+3,0)

21. Foci: (—1,3) and (5, 3); vertices: (—3,3) and (7, 3)
22. Foci: (2,42); vertices: (2,£7)

23. Focus: (—1,5); vertex: (—1, —4); center: (—1,1)

In Exercises 24 — 27, write the equation of the given ellipse in
standard form.

24. X* —2x 42y — 8y = —7

25. 5x* +3y* =15

26. 3 +2y —12y+6=0

27. X +y* —4x—4y+4=0

(x=1?  (y—=3)° _
4 + 12

1.

28. Consider the ellipse given by

(a) Verify that the foci are located at (1,3 + 2/2).

(b) ThepointsP; = (2,6)and P, = (1++/2,3+6) =
(2.414,5.449) lie on the ellipse. Verify that the sum
of distances from each point to the foci is the same.

In Exercises 29 — 32, find the equation of the hyperbola shown
in the graph.

29.
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In Exercises 33 — 34, sketch the hyperbola defined by the
given equation. Label the center and foci.

(-1 (y+2° _

33. 1
16 9
+1)°
30, (y—ap - XFEY
(y—4) 7

In Exercises 35 — 38, find the equation of the hyperbola de-
fined by the given information. Sketch the hyperbola.

35. Foci: (£3, 0); vertices: (£2,0)
36. Foci: (0, £3); vertices: (0, +2)
37. Foci: (—2,3) and (8, 3); vertices: (—1,3) and (7, 3)

38

. Foci: (3,—2) and (3, 8); vertices: (3,0) and (3, 6)

In Exercises 39 — 42, write the equation of the hyperbola in
standard form.

39

40.
41.
42.
43.

44

L3 -4y =12

3x* —y* +2y =10
x> — 10y* 4 40y = 30
(dy —x)(dy+x) =4

Johannes Kepler discovered that the planets of our solar
system have elliptical orbits with the Sun at one focus. The
Earth’s elliptical orbit is used as a standard unit of distance;
the distance from the center of Earth’s elliptical orbit to one
vertex is 1 Astronomical Unit, or A.U.

The following table gives information about the orbits of
three planets.
Distance from

eccentricity
center to vertex

Mercury 0.387 A.U. 0.2056
Earth 1A.U. 0.0167
Mars 1.524 A.U. 0.0934

(a) In an ellipse, knowing & = o* — b*and e = c/a
allows us to find b in terms of @ and e. Show b =
av/1— e

(b) Foreach planet, find equations of their elliptical orbit
2 2

of the form X—z + y _ 1. (This places the center at
a b?

(0,0), but the Sun is in a different location for each
planet.)

(c) Shift the equations so that the Sun lies at the origin.
Plot the three elliptical orbits.

. Aloud sound is recorded at three stations that lie on a line

as shown in the figure below. Station A recorded the sound
1 second after Station B, and Station C recorded the sound
3 seconds after B. Using the speed of sound as 340m/s,
determine the location of the sound’s origination.

— o
A 1000m B 2000m Cc



9.2 Parametric Equations

We are familiar with sketching shapes, such as parabolas, by following this basic
procedure:

Use a function
Choose ftofindy

X (v =£x) )

Plot point

The rectangular equation y = f(x) works well for some shapes like a parabola
with a vertical axis of symmetry, but in the previous section we encountered sev-
eral shapes that could not be sketched in this manner. (To plot an ellipse using
the above procedure, we need to plot the “top” and “bottom” separately.)

In this section we introduce a new sketching procedure:

Use a function
ftofind x

x = f(t)
Choose / ( ) \ Plot point
‘ T~ Useafunction — )

gtofindy

(y=4g(1)

Here, x and y are found separately but then plotted together. This leads us
to a definition.

Definition 45 Parametric Equations and Curves

Let f and g be continuous functions on an interval I. The set of all points
(x,¥) = (f(t), g(t)) in the Cartesian plane, as t varies over , is the graph
of the parametric equations x = f(t) and y = g(t), where tis the param-
eter. A curve is a graph along with the parametric equations that define
it.

This is a formal definition of the word curve. When a curve lies in a plane
(such as the Cartesian plane), it is often referred to as a plane curve. Examples
will help us understand the concepts introduced in the definition.

Example 279 Plotting parametric functions

Plot the graph of the parametric equations x = 2, y = t + 1 for t in [—2,2].

Notes:

9.2

Parametric Equations
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t X y
-2 4 -1
-1 1 0

0 0 1

1 1 2

2 4 3

Figure 9.20: A table of values of the para-
metric equations in Example 279 along
with a sketch of their graph.

Figure 9.21: A table of values of the para-
metric equations in Example 280 along
with a sketch of their graph.

484

SOLUTION We plot the graphs of parametric equations in much the
same manner as we plotted graphs of functions like y = f(x): we make a table of
values, plot points, then connect these points with a “reasonable” looking curve.
Figure 9.20(a) shows such a table of values; note how we have 3 columns.

The points (x, y) from the table are plotted in Figure 9.20(b). The points have
been connected with a smooth curve. Each point has been labeled with its cor-
responding t-value. These values, along with the two arrows along the curve,
are used to indicate the orientation of the graph. This information helps us de-
termine the direction in which the graph is “moving.”

We often use the letter t as the parameter as we often regard t as represent-
ing time. Certainly there are many contexts in which the parameter is not time,
but it can be helpful to think in terms of time as one makes sense of parametric
plots and their orientation (for instance, “At time t = 0 the position is (1, 2) and
at time t = 3 the position is (5,1).”).

Example 280 Plotting parametric functions

Sketch the graph of the parametric equations x = cos’t, y = cost + 1 for t
in [0, 7].

SOLUTION We again start by making a table of values in Figure 9.21(a),
then plot the points (x, y) on the Cartesian plane in Figure 9.21(b).

Itis not difficult to show that the curves in Examples 279 and 280 are portions
of the same parabola. While the parabola is the same, the curves are different.
In Example 279, if we let t vary over all real numbers, we’d obtain the entire
parabola. In this example, letting t vary over all real numbers would still produce
the same graph; this portion of the parabola would be traced, and re—traced,
infinitely. The orientation shown in Figure 9.21 shows the orientation on [0, 7],
but this orientation is reversed on [, 27].

These examples begin to illustrate the powerful nature of parametric equa-
tions. Their graphs are far more diverse than the graphs of functions produced
by “y = f(x)” functions.

Technology Note: Most graphing utilities can graph functions given in paramet-
ric form. Often the word “parametric” is abbreviated as “PAR” or “PARAM” in
the options. The user usually needs to determine the graphing window (i.e, the
minimum and maximum x- and y-values), along with the values of t that are to
be plotted. The user is often prompted to give a t minimum, a t maximum, and
a “t-step” or “At.” Graphing utilities effectively plot parametric functions just as
we’ve shown here: they plots lots of points. A smaller t-step plots more points,
making for a smoother graph (but may take longer). In Figure 9.20, the t-step is

Notes:



1; in Figure 9.21, the t-step is 7/4.

One nice feature of parametric equations is that their graphs are easy to
shift. While this is not too difficult in the “y = f(x)” context, the resulting func-
tion can look rather messy. (Plus, to shift to the right by two, we replace x with
x — 2, which is counter—intuitive.) The following example demonstrates this.

Example 281 Shifting the graph of parametric functions
Sketch the graph of the parametric equations x = t> +t, y = t*> — t. Find new
parametric equations that shift this graph to the right 3 places and down 2.

SOLUTION The graph of the parametric equations is given in Figure 9.22
(a). Itis a parabola with a axis of symmetry along the line y = x; the vertex is at
(0,0).

In order to shift the graph to the right 3 units, we need to increase the x-
value by 3 for every point. The straightforward way to accomplish this is simply
to add 3 to the function defining x: x = t> + t + 3. To shift the graph down by 2
units, we wish to decrease each y-value by 2, so we subtract 2 from the function
defining y: y = t> — t — 2. Thus our parametric equations for the shifted graph
arex =t> +t+3,y = t> — t — 2. This is graphed in Figure 9.22 (b). Notice how
the vertex is now at (3, —2).

Because the x- and y-values of a graph are determined independently, the
graphs of parametric functions often possess features not seen on “y = f(x)”
type graphs. The next example demonstrates how such graphs can arrive at the
same point more than once.

Example 282 Graphs that cross themselves
Plot the parametric functions x = t3 — 5t + 3t + 11andy = £ — 2t + 3 and
determine the t-values where the graph crosses itself.

SOLUTION Using the methods developed in this section, we again plot
points and graph the parametric equations as shown in Figure 9.23. It appears
that the graph crosses itself at the point (2,6), but we'll need to analytically
determine this.

We are looking for two different values, say, s and t, where x(s) = x(t) and
y(s) = y(t). Thatis, the x-values are the same precisely when the y-values are
the same. This gives us a system of 2 equations with 2 unknowns:

3 —5524+354+11 =1t -5t +3t+11
2 —-2s+3=t>—-2t+3

Notes:

9.2 Parametric Equations

x=1t+t

(a)

x=t+t+3
y=t—t—2

Figure 9.22: lllustrating how to shift
graphs in Example 281.

15 + x=+£ -5t +3t+11
y=t—2t+3

10 +

Figure 9.23: A graph of the parametric
equations from Example 282.
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Solving this system is not trivial but involves only algebra. Using the quadratic
formula, one can solve for t in the second equation and find that t = 1 +
v/s2 — 2s + 1. This can be substituted into the first equation, revealing that the
graph crosses itself at t = —1 and t = 3. We confirm our result by computing
x(—=1) =x(3)=2andy(—1) =y(3) =6.

Converting between rectangular and parametric equations

Itis sometimes useful to rewrite equations in rectangular form (i.e., y = f(x))
into parametric form, and vice—versa. Converting from rectangular to paramet-
ric can be very simple: given y = f(x), the parametric equations x = t, y = f(t)
produce the same graph. As an example, given y = x2, the parametric equations
x = t, y = t? produce the familiar parabola. However, other parametrizations
can be used. The following example demonstrates one possible alternative.

Example 283 Converting from rectangular to parametric

Consider y = x*. Find parametric equations x = f(t), y = g(t) for the parabola
where t = %. That is, t = a corresponds to the point on the graph whose
tangent line has slope a.

SOLUTION We start by computing %: y' = 2x. Thus we set t = 2x. We
can solve for x and find x = t/2. Knowing that y = x?, we have y = t*>/4. Thus
parametric equations for the parabola y = x* are

x=t/2 y==t/a4.

To find the point where the tangent line has a slope of —2, we sett = —2. This
gives the point (—1,1). We can verify that the slope of the line tangent to the
curve at this point indeed has a slope of —2.

We sometimes chose the parameter to accurately model physical behavior.

Example 284 Converting from rectangular to parametric

An object is fired from a height of Oft and lands 6 seconds later, 192ft away. As-
suming ideal projectile motion, the height, in feet, of the object can be described
by h(x) = —x?/64 + 3x, where x is the distance in feet from the initial location.
(Thus h(0) = h(192) = Oft.) Find parametric equations x = f(t), y = g(t)
for the path of the projectile where x is the horizontal distance the object has
traveled at time t (in seconds) and y is the height at time t.

SOLUTION Physics tells us that the horizontal motion of the projectile
is linear; that is, the horizontal speed of the projectile is constant. Since the
object travels 192ft in 6s, we deduce that the object is moving horizontally at

Notes:



a rate of 32ft/s, giving the equation x = 32t. Asy = —x?/64 + 3x, we find
y = —16t2 + 96t. We can quickly verify that y" = —32ft/s?, the acceleration
due to gravity, and that the projectile reaches its maximum at t = 3, halfway
along its path.

These parametric equations make certain determinations about the object’s
location easy: 2 seconds into the flight the object is at the point (X(Z), y(Z)) =
(64, 128). That is, it has traveled horizontally 64ft and is at a height of 128ft, as
shown in Figure 9.24.

It is sometimes necessary to convert given parametric equations into rect-
angular form. This can be decidedly more difficult, as some “simple” looking
parametric equations can have very “complicated” rectangular equations. This
conversion is often referred to as “eliminating the parameter,” as we are looking
for a relationship between x and y that does not involve the parameter t.

Example 285 Eliminating the parameter
Find a rectangular equation for the curve described by
2
X = and y= .
t2+1 2+1

SOLUTION There is not a set way to eliminate a parameter. One method
is to solve for t in one equation and then substitute that value in the second. We
use that technique here, then show a second, simpler method.

Starting with x = 1/(t* + 1), solve for t: t = +,/1/x — 1. Substitute this
value for t in the equation for y:

(i)

=1-—x.

Thus y = 1 — x. One may have recognized this earlier by manipulating the
equation for y:
t? 1
= =1—
t?+1

y

Notes:

150 +

100 +

50 +

9.2 Parametric Equations

x = 32t

y = —16t* + 96t

Figure 9.24: Graphing projectile motionin
Example 284.

?+1
tZ

241

Figure 9.25: Graphing parametric and
rectangular equations for a graph in Ex-
ample 285.
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Figure 9.26: Graphing the parametric
equationsx =4cost+ 3,y = 2sint+1
in Example 286.

488

This is a shortcut that is very specific to this problem; sometimes shortcuts exist
and are worth looking for.

We should be careful to limit the domain of the functiony = 1 — x. The
parametric equations limit x to values in (0, 1], thus to produce the same graph
we should limit the domain of y = 1 — x to the same.

The graphs of these functions is given in Figure 9.25. The portion of the graph
defined by the parametric equations is given in a thick line; the graph defined
by y = 1 — x with unrestricted domain is given in a thin line.

Example 286 Eliminating the parameter
Eliminate the parameterinx = 4cost+ 3,y = 2sint+ 1

SOLUTION We should not try to solve for t in this situation as the re-
sulting algebra/trig would be messy. Rather, we solve for cost and sint in each
equation, respectively. This gives

x—3 X
cost=—— and sint=——.
4 2

The Pythagorean Theorem gives cos? t + sin’ t = 1, so:

cos’t+sin®t=1

() () -
(37 (-1 _

=1
16 * 4

This final equation should look familiar — it is the equation of an ellipse! Figure
9.26 plots the parametric equations, demonstrating that the graph is indeed of
an ellipse with a horizontal major axis with center at (3, 1).

The Pythagorean Theorem can also be used to identify parametric equations
for hyperbolas. We give the parametric equations for ellipses and hyperbolas in
the following Key Ideas.

Notes:



9.2 Parametric Equations

y

Key Idea 36 Parametric Equations for Ellipses

The parametric equations
x=acost+h, y=bsint+k

define an ellipse with horizontal axis of length 2a and vertical axis of
length 2b, centered at (h, k).

Astroid
x = cos’ t
y =sint

Key Idea 37 Parametric Equations for Hyperbolas

The parametric equations 1 1
x=atant+h, y=ztbsect+k

define a hyperbola with vertical transverse axis centered at (h, k), and } X
x = tasect+h, y=btant+k 7

defines a hyperbola with horizontal transverse axis. Each has asymptotes

aty = +b/a(x — h) + k. -1

Rose Curve
x = cos(t) sin(4t)
y = sin(t) sin(4t)

[

Special Curves

y
Figure 9.27 gives a small gallery of “interesting” and “famous” curves along
with parametric equations that produce them. Interested readers can begin 5
learning more about these curves through internet searches.
One might note a feature shared by two of these graphs: “sharp corners,”
el

or cusps. We have seen graphs with cusps before and determined that such
functions are not differentiable at these points. This leads us to a definition.

-5
Definition 46 Smooth
. . . ) Hypotrochoid
Acurve Cdefined by x = f(t), y = g(t) is smooth on an interval / if f" and X = 2cos(t) + 5 cos(2t/3)
g’ are continuous on / and not simultaneously 0 (except possibly at the y = 2sin(t) — 5sin(2t/3)
endpoints of /). A curve is piecewise smooth on / if / can be partitioned
into subintervals where Cis smooth on each subinterval. y
5 €1
w } |
- 5
Notes:
5 T

Epicycloid
x = 4cos(t) — cos(4t)
y = 4sin(t) — sin(4t)

Figure 9.27: A gallery of interesting planar
curves.
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t t X
5 10

Figure 9.28: Graphing the curve in Exam-
ple 287; note it is not smooth at (1, 4).

490

Consider the astroid, given by x = cos®t, y = sin® t. Taking derivatives, we
have:
x = —3cos’tsint and y' = 3sin’tcost.

Itis clear that eachisOwhent = 0, 7/2, m,.... Thus the astroid is not smooth
at these points, corresponding to the cusps seen in the figure.
We demonstrate this once more.

Example 287 Determine where a curve is not smooth
Let a curve C be defined by the parametric equations x = t> — 12t 4+ 17 and
y = t? — 4t + 8. Determine the points, if any, where it is not smooth.

SOLUTION We begin by taking derivatives.
X =3t2—-12, y =2t—4.
We set each equal to O:

X =0=3t2-12=0=t=42
Yy =0=2t—4=0=>t=2

We see at t = 2 both x’ and y’ are 0; thus Cis not smooth at t = 2, correspond-
ing to the point (1,4). The curve is graphed in Figure 9.28, illustrating the cusp
at (1,4).

If a curve is not smooth at t = t,, it means that x'(to) = y/'(to) = 0 as
defined. This, in turn, means that rate of change of x (and y) is 0; that is, at
that instant, neither x nor y is changing. If the parametric equations describe
the path of some object, this means the object is at rest at t5. An object at rest
can make a “sharp” change in direction, whereas moving objects tend to change
direction in a “smooth” fashion.

One should be careful to note that a “sharp corner” does not have to occur
when a curve is not smooth. For instance, one can verify that x = 3,y = t°
produce the familiar y = x? parabola. However, in this parametrization, the
curve is not smooth. A particle traveling along the parabola according to the
given parametric equations comes to rest at t = 0, though no sharp point is
created.

Notes:



Exercises 9.2

Terms and Concepts
1. T/F: When sketching the graph of parametric equations, the
x and y values are found separately, then plotted together.

2. Thedirection in which a graph is “moving” is called the
of the graph.

3. An equation written as y = f(x) is written in form.

4. Create parametric equations x = f(t), y = g(t) and sketch
their graph. Explain any interesting features of your graph
based on the functions fand g.

Problems

In Exercises 5 — 8, sketch the graph of the given parametric
equations by hand, making a table of points to plot. Be sure
to indicate the orientation of the graph.

5. x=t 4+t y=1-t, —-3<t<3

6. x=1, y=5sint, —w/2<t<mw/2
7.x=1t, y=2, —-2<t<2

8. x=01—t+3, y=t241, —2<t<2

In Exercises 9 — 17, sketch the graph of the given paramet-
ric equations; using a graphing utility is advisable. Be sure to
indicate the orientation of the graph.

9. x=t—-2t}, y=t, —2<t<3

10. x=1/t, y=sint, 0<t<10

11. x=13cost, y=>5sint, 0<t<2mw

12. x=3cost+2, y=5sint+3, 0<t<27w
13. x=cost, y=cos(2t), 0<t<m

14. x =cost, y=sin(2t), 0<t<2m

15. x =2sect, y=3tant, —7w/2<t<7/2

16. x = cost+ 1 cos(8t), y =sint+ 3 sin(8t),
17. x = cost+ 1sin(8t), y=sint+21cos(8t), 0<t< 2w

In Exercises 18 — 19, four sets of parametric equations are
given. Describe how their graphs are similar and different.
Be sure to discuss orientation and ranges.

18. (@) x=t y=¢t, —oo<t< oo
(b) x=sint y=sin’t, —oo<t< 0o
() x=e' y=e€*, —co<t<o
(d x=—-t y=#t, —-oo<t<oo

19. (a) x=cost y=sint, 0<t<2m
(b) x=cos(t?) y=sin(t?), 0<t<2nm

o<t<1
0<t<2n

(c) x=cos(1/t) y=sin(1/t),

(d) x =cos(cost) y=sin(cost),

In Exercises 20 — 29, eliminate the parameter in the given
parametric equations.

20. x=2t+5, y=-3t+1

21. x =sect, y=tant

22. x=4sint+1, y=3cost—2
23. x=¢t, y==¢
ZAXZ?%T y:?:f

25. x=¢', y=e*—-3

26. x =Int, y:tz—l

27. x =cott, y=csct

28. x =cosht, y =sinht

29. x = cos(2t), y=sint

In Exercises 30 — 33, eliminate the parameter in the given
parametric equations. Describe the curve defined by the
parametric equations based on its rectangular form.

30. x=at+xo, y=bt+y

31. x=rcost, y=rsint

32. x=acost+h, y=bsint+k
33. x=asect+h, y=btant+k

In Exercises 34 — 37, find parametric equations for the given
d
rectangular equation using the parametert = d—){ Verify that

att = 1, the point on the graph has a tangent line with slope
of 1.

34, y=3x> —11x+2
35. y=¢€*

36. y =sinxon [0, 7]

37. y = +y/xon [0, 0)

In Exercises 38 — 41, find the values of t where the graph of

the parametric equations crosses itself.
38. x=t—t+3, y=t*—3
39. x=8 -4 +t+7, y=t—t
40. x =cost, y=sin(2t)on [0, 27]
41. x = costcos(3t), y = sintcos(3t)on [0, 7]

In Exercises 42 — 45, find the value(s) of t where the curve

defined by the parametric equations is not smooth.
42, x=t2+t"—t y=t24+2t+3
43 x=t*—4t, y=1t —2t> — 4t
44. x =cost, y = 2cost

45. x = 2cost — cos(2t), y = 2sint — sin(2t)



In Exercises 46 — 54, find parametric equations that describe
the given situation.

46.

47.

48.

49.

A projectile is fired from a height of Oft, landing 16ft away
in 4s.

A projectile is fired from a height of Oft, landing 200ft away
in4s.

A projectile is fired from a height of Oft, landing 200ft away
in 20s.

A circle of radius 2, centered at the origin, that is traced
clockwise once on [0, 27].

50.

51.

52.

53.

54.

A circle of radius 3, centered at (1, 1), that is traced once
counter—clockwise on [0, 1].

An ellipse centered at (1,3) with vertical major axis of
length 6 and minor axis of length 2.

An ellipse with foci at (1, 0) and vertices at (5, 0).

A hyperbola with foci at (5, —3) and (—1, —3), and with
vertices at (1, —3) and (3, —3).

A hyperbola with vertices at (0, +6) and asymptotes y =
+3x.



9.3 Calculus and Parametric Equations

The previous section defined curves based on parametric equations. In this sec-
tion we’ll employ the techniques of calculus to study these curves.

We are still interested in lines tangent to points on a curve. They describe
how the y-values are changing with respect to the x-values, they are useful in
making approximations, and they indicate instantaneous direction of travel.

The slope of the tangent line is still %, and the Chain Rule allows us to cal-
culate this in the context of parametric equations. If x = f(t) and y = g(t), the

Chain Rule states that
dy dy dx

dt  dx dt’

dy

Solving for 7,

we get
dy _dy jdx _ g(t)

dx dt/ dt  f'(t)’
provided that f/(t) # 0. This is important so we label it a Key Idea.

Key Idea 38 Finding % with Parametric Equations.

Letx = f(t) and y = g(t), where fand g are differentiable on some open
interval / and f'(t) # 0 on I. Then

dy g'(t)
o f(e)

We use this to define the tangent line.

Definition 47 Tangent and Normal Lines

Let a curve C be parametrized by x = f(t) and y = g(t), where fand g
are differentiable functions on some interval I/ containing t = t;. The
tangent line to C at t = tq is the line through (f(to), g(to)) with slope
m = g'(ty) /f'(to), provided f'(ty) # 0.

The normal line to Cat t = t, is the line through (f(to), g(to)) with slope
m = —f"(ty)/d'(to), provided g’(ty) # 0.

The definition leaves two special cases to consider. When the tangent line is
horizontal, the normal line is undefined by the above definition as g’(t;) = 0.

Notes:

9.3 Calculus and Parametric Equations
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20 +

—20

Figure 9.29: Graphing tangent and nor-
mal lines in Example 288.
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Likewise, when the normal line is horizontal, the tangent line is undefined. It
seems reasonable that these lines be defined (one can draw a line tangent to
the “right side” of a circle, for instance), so we add the following to the above
definition.
1. If the tangent line at t = ty has a slope of 0, the normal lineto Cat t =ty
is the line x = f(to).

2. If the normal line at t = tg has a slope of 0, the tangent lineto Catt = t,
is the line x = f(to).

Example 288 Tangent and Normal Lines to Curves
Letx = 5t> —6t+4andy = t> + 6t — 1, and let C be the curve defined by these
equations.

1. Find the equations of the tangent and normal linesto Catt = 3.

2. Find where C has vertical and horizontal tangent lines.

SOLUTION
1. We start by computing f'(t) = 10t — 6 and g’(t) = 2t + 6. Thus

dy 2t+6
dx 10t—6"

Make note of something that might seem unusual: % is a function of ¢,
not x. Just as points on the curve are found in terms of t, so are the slopes
of the tangent lines.

The pointon Catt = 3is (31, 26). The slope of the tangent lineism = 1/2
and the slope of the normal line is m = —2. Thus,

1
¢ the equation of the tangent lineisy = E(X —31) 4 26, and
e the equation of the normal lineisy = —2(x — 31) + 26.
This is illustrated in Figure 9.29.

2. To find where C has a horizontal tangent line, we set % = 0 and solve
for t. In this case, this amounts to setting g’(t) = 0 and solving for t (and
making sure that f'(t) # 0).

git)=0 = 2t+6=0 = t=-3.

The point on C corresponding to t = —3 is (67, —10); the tangent line at
that point is horizontal (hence with equation y = —10).

Notes:
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To find where Chas a vertical tangent line, we find where it has a horizontal

normal line, and set —g:gg = 0. This amounts to setting f'(t) = 0 and

solving for t (and making sure that g’ (t) # 0).

f/t)=0 = 10t—-6=0 = t=0.6.

The point on C corresponding to t = 0.6 is (2.2,2.96). The tangent line at
that pointis x = 2.2.

The points where the tangent lines are vertical and horizontal are indi-
cated on the graph in Figure 9.29.

Example 289 Tangent and Normal Lines to a Circle

1. Find where the circle, defined by x = cost and y = sint on [0, 27], has
vertical and horizontal tangent lines.

2. Find the equation of the normal line at t = t,.

SOLUTION
1. We compute the derivative following Key Idea 38:
dy g'(t)  cost
dx  f'(t)  sint’
The derivative is 0 when cost = 0; that is, when t = 7/2, 37/2. These
are the points (0, 1) and (0, —1) on the circle.

The normal line is horizontal (and hence, the tangent line is vertical) when
sint = 0; thatis, whent = 0, 7, 27, corresponding to the points (—1,0)

and (0, 1) on the circle. These results should make intuitive sense.
. . sin o .
2. Theslope of the normal lineatt =tgism = : = tan ty. This normal
cos ty
line goes through the point (cos ty, sin ty), giving the line X
1
sin t
y= % (x — costy) + sinto
cos tg
= (tantp)x, ~

as long as costy # 0. It is an important fact to recognize that the nor-
mal lines to a circle pass through its center, as illustrated in Figure 9.30.
Stated in another way, any line that passes through the center of a circle
intersects the circle at right angles.

Figure 9.30: Illustrating how a circle’s nor-
mal lines pass through its center.

Notes:
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Figure 9.31: A graph of an astroid.
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Example 290 Tangent lines when 2 is not defined

dx
Find the equation of the tangent line to the astroid x = cos®t, y = sin®t at

t = 0, shown in Figure 9.31.

SOLUTION We start by finding x’(t) and y/(t):
X (t) = —3sintcos’t, y'(t) = 3costsin’ t.

Note that both of these are 0 at t = 0; the curve is not smooth at t = 0 forming
a cusp on the graph. Evaluating % at this point returns the indeterminate form
of “0/0”.

We can, however, examine the slopes of tangent lines near t = 0, and take
the limitast — 0.

__y(t) . 3costsin’t
lim = lim - (We can cancel ast £ 0.)
t—0 x'(t)  t—0 —3sintcos?t
. sint
= lim ———
t—0 cost
=0.

d

We have accomplished something significant. When the derivative E{ returns an

d
indeterminate form at t = to, we can define its value by setting it to be tlin; %,
— o

if that limit exists. This allows us to find slopes of tangent lines at cusps, which
can be very beneficial.

We found the slope of the tangent line at t = 0 to be 0; therefore the tan-
gent line is y = 0, the x-axis.

Concavity

We continue to analyze curves in the plane by considering their concavity;

2
that is, we are interested in %, “the second derivative of y with respect to x.”
To find this, we need to find the derivative of % with respect to x; that is,

d?y d [dy
dx?  dx |dx|’
but recall that % is a function of t, not x, making this computation not straight-
forward.
To make the upcoming notation a bit simpler, let h(t) = E{' We want
d

2 [h(t)]; that is, we want 2. We again appeal to the Chain Rule. Note:

oh _dh dx _ dh _dh [ox
dt  dx dt dx dt/ dt’

Notes:



2
In words, to find %, we first take the derivative of % with respect to t, then
divide by x’(t). We restate this as a Key Idea.

Key Idea 39 Finding % with Parametric Equations

Let x = f(t) and y = g(t) be twice differentiable functions on an open
interval I. Then

dy  d[dy d«  d[dy] /,
pr dt[dx}/dt = df[dx]/f“)'

Examples will help us understand this Key Idea.

Example 291 Concavity of Plane Curves
letx = 5t2 — 6t +4 andy = t*> 4+ 6t — 1 as in Example 288. Determine the
t-intervals on which the graph is concave up/down.

SOLUTION Concavity is determined by the second derivative of y with
2
respect to x, %, so we compute that here following Key Idea 39.
dy 2t+6

In Example 288, we found —— = and f'(t) = 10t — 6. So:

dx 10t—6
d’y d[2t+6
— = — 10t — 6
dx? dt[lOts ( )

= _(Stl_gg)z/(wt— 6)

9
(5t —3)3

2
The graph of the parametric functions is concave up when % > 0 and con-

cave down when % < 0. We determine the intervals when the second deriva-
tive is greater/less than 0 by first finding when it is 0 or undefined.
As the numerator of —L is never 0, i{ = 0 for all t. It is undefined
(5t—3)3 o
when 5t — 3 = 0; that is, when t = 3/5. Following the work established in
Section 3.4, we look at values of t greater/less than 3/5 on a number line:

Notes:

9.3 Calculus and Parametric Equations

t < 3/5; concave up

—20
Figure 9.32: Graphing the parametric

equations in Example 291 to demonstrate
concavity.
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Figure

y = 2cost — 4tsint

9.33: A graph of &y showing

dx2’

where it is approximately 0.
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UL

9.34: A graph of the parametric
ons in Example 292 along with the
of inflection.

d?y d’y
-~ >0 — <
dx? > dx?
c. up ‘ c. down
3/5

Reviewing Example 288, we see that when t = 3/5 = 0.6, the graph of the
parametric equations has a vertical tangent line. This point is also a point of in-
flection for the graph, illustrated in Figure 9.32.

Example 292 Concavity of Plane Curves
Find the points of inflection of the graph of the parametric equations x = 1/,
y =sint, for0 <t < 16.

2
SOLUTION We need to compute % and %.

d '(t cost
y:y() :7:2\/&051‘.

o X0 1/(2vh)

Py & (%] cost/v/t—2v/tsint
de  X(t) 1/(2v/t)

The points of inflection are found by setting % = 0. This is not trivial, as equa-
tions that mix polynomials and trigonometric functions generally do not have
“nice” solutions.

In Figure 9.33 we see a plot of the second derivative. It shows that it has zeros
at approximately t = 0.5, 3.5, 6.5, 9.5, 12.5and 16. These approximations are
not very good, made only by looking at the graph. Newton’s Method provides
more accurate approximations. Accurate to 2 decimal places, we have:

= 2cost — 4tsint.

t = 0.65, 3.29, 6.36, 9.48, 12.61 and 15.74.

The corresponding points have been plotted on the graph of the parametric
equations in Figure 9.34. Note how most occur near the x-axis, but not exactly
on the axis.

Arc Length
We continue our study of the features of the graphs of parametric equations

by computing their arc length.
Recall in Section 7.4 we found the arc length of the graph of a function, from

X=atox=b,tobe
b 2
dy
L= 1 — ] dx.
/,,\/ +(o/x> )

Notes:



We can use this equation and convert it to the parametric equation context.
Letting x = f(t) and y = g(t), we know that % = g'(t)/f'(t). 1t will also be
useful to calculate the differential of x:

dx = f'(t)dt = dt =

Starting with the arc length formula above, consider:

b 2
/ dy
L—/a 1+<dX> dX

B b g’(t)z
7/0 1+f’(t)2 dx.

Factor out the f/(t)%:

b
:/ fr(t)?+g(t)?*- f’tt) dx
a N—_——

=dt

o RVAGETIC

Note the new bounds (no longer “x” bounds, but “t” bounds). They are found

by finding t; and t, such that a = f(t;) and b = f(t,). This formula is important,
so we restate it as a theorem.

Theorem 82 Arc Length of Parametric Curves

Let x = f(t) and y = g(t) be parametric equations with f’ and g’ con-
tinuous on some open interval / containing t; and t, on which the graph
traces itself only once. The arc length of the graph, fromt = t; tot = t5,
is

L= / VIO + g/ (t)? dt.

As before, these integrals are often not easy to compute. We start with a
simple example, then give another where we approximate the solution.

Notes:

9.3 Calculus and Parametric Equations
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Figure 9.35: A graph of the parametric
equations in Example 294, where the arc
length of the teardrop is calculated.
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Example 293 Arc Length of a Circle
Find the arc length of the circle parametrized by x = 3cost, y = 3sint on
[0,37/2].

SOLUTION By direct application of Theorem 82, we have
37/2

L= V/(—3sint)? + (3cos t)? dt.
0

Apply the Pythagorean Theorem.

37/2
— [ e
0

3m/2

=3t  =97/2.

0

This should make sense; we know from geometry that the circumference of
a circle with radius 3 is 6; since we are finding the arc length of 3/4 of a circle,
the arclengthis 3/4 - 6 = 97/2.

Example 294 Arc Length of a Parametric Curve
The graph of the parametric equations x = t(t> — 1), y = t2 — 1 crosses itself as
shown in Figure 9.35, forming a “teardrop.” Find the arc length of the teardrop.

SOLUTION We can see by the parametrizations of x and y that when
t = £1,x = 0and y = 0. This means we'll integrate fromt = —1tot = 1.
Applying Theorem 82, we have

1
L= / V(32 —1)2 + (2t)2 dt
—1
1
:/ Vo4 — 282 + 1 dt.
—1

Unfortunately, the integrand does not have an antiderivative expressible by el-
ementary functions. We turn to numerical integration to approximate its value.
Using 4 subintervals, Simpson’s Rule approximates the value of the integral as
2.65051. Using a computer, more subintervals are easy to employ, and n = 20
gives a value of 2.71559. Increasing n shows that this value is stable and a good
approximation of the actual value.

Notes:
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Surface Area of a Solid of Revolution

Related to the formula for finding arc length is the formula for finding surface
area. We can adapt the formula found in Key Idea 28 from Section 7.4 in a similar
way as done to produce the formula for arc length done before.

Key Idea 40 Surface Area of a Solid of Revolution

Consider the graph of the parametric equations x = f(t) and y = g(t), where f’ and g’ are
continuous on an open interval / containing t; and t, on which the graph does not cross itself.

1. The surface area of the solid formed by revolving the graph about the x-axis is (where
g(t) > Oon [ty,t,]):

ty
Surface Area = 27r/ g(t)/f'(t)? + g'(t)? dt.
ty

2. The surface area of the solid formed by revolving the graph about the y-axis is (where
f(t) > 0on [ty t;]):

Surface Area = 277/ 2f(l“)\/f’(l“)2 + g/ (t)? dt.

Example 295 Surface Area of a Solid of Revolution y
Consider the teardrop shape formed by the parametric equations x = t(t* — 1),
y = t> — 1 as seen in Example 294. Find the surface area if this shape is rotated

about the x-axis, as shown in Figure 9.36. \
\

SOLUTION The teardrop shape is formed betweent = —1andt = 1.
Using Key Idea 40, we see we need for g(t) > 0 on [—1,1], and this is not the X
case. To fix this, we simplify replace g(t) with —g(t), which flips the whole graph
about the x-axis (and does not change the surface area of the resulting solid).
The surface area is:

1 . .
Figure 9.36: Rotating a teardrop shape
— _ 42 2 _1)2 2
Area s = 277/71(1 t )\/(Bt 1) + (Zt) dt about the x-axis in Example 295.

1
:m/ (1 —t%)/9t* — 2t2 + 1 dt.
-1
Once again we arrive at an integral that we cannot compute in terms of ele-
mentary functions. Using Simpson’s Rule with n = 20, we find the area to be
S = 9.44. Using larger values of n shows this is accurate to 2 places after the
decimal.

Notes:
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Exercises 9.3

Terms and Concepts

1. T/F: Given parametric equations x = f(t) and y = g(t),
@ _ £1(1)/g/(t), as long as g (t) # 0.

2. Given parametric equations x = f(t) and y = g(t),
the derivative % as given in Key Idea 38 is a function of
?

3. T/F: Given parametric equations x = f(t) and y = g(t), to

ind & i d(dy
find 5, one simply computes dt(dx .

4. T/F:If % — 0att = ty, then the normal line to the curve at

t = to is a vertical line.

Problems

In Exercises 5 —12, parametric equations for a curve are given.
dy
i
(b) Find the equations of the tangent and normal line(s)
at the point(s) given.

(a) Find

(c) Sketch the graph of the parametric functions along
with the found tangent and normal lines.

5.x=t,y:t2; t=1

6. x=+ty=5t+2, t=4

7.x= —ty=t2+t t=1

8. x=t!—1y=t—t t=0andt=1

9. x=sect,y =tanton (—7/2,7/2); t=n/4

10. x =cost,y =sin(2t)on [0,27|; t=7/4

11. x = costsin(2t), y = sintsin(2t) on [0,27]; t=37/4
12. x=e""cost,y = e/sint; t=m/2

In Exercises 13 — 20, find t-values where the curve defined by
the given parametric equations has a horizontal tangent line.
Note: these are the same equations as in Exercises 5 — 12.

13. x=ty=1=t

14. x=+/t,y=5t+2
15. x=t? —t,y=t"+t
16. x=t"—1,y=t—t
17. x =sect,y =tanton (—m/2,7/2)

18. x = cost, y = sin(2t) on [0, 27]

19. x = cos tsin(2t), y = sintsin(2t) on [0, 27]
t/10

20. x = e/ cost,y = e/ Psint

In Exercises 21 — 24, find t = t, where the graph of the given
. L . dy
parametric equations is not smooth, then find lim e
t—to

21, x = y=1=

_1
2+1’
22. x=—t2 472 —16t+13, y=t —52+8t—2
23. x=t -3 +3t—1, y=t—-2t+1

24. x = cos’t, y=1—sin’t

In Exercises 25 — 32, parametric equations for a curve are

2
given. Find %, then determine the intervals on which the
graph of the curve is concave up/down. Note: these are the

same equations as in Exercises 5 - 12.

25. x=t, y=*¢t

26. x=+/t, y=5t+2
27. x=0P —t, y=t*+t
28. x=t"—1, y=+t—t

29. x =sect, y=tanton (—7/2,7/2)
y = sin(2t) on [0, 27]
31. x = costsin(2t), y =sintsin(2t)on [—7/2,7/2]

32. x = e/ cost, t/10

30. x = cost,

y=e’/"sint
In Exercises 33 — 36, find the arc length of the graph of the
parametric equations on the given interval(s).

33. x = —3sin(2t), y = 3cos(2t) on [0, 7]

34. x=ecost, y=esinton [0,27]and [27, 47]
35 x=5t+2, y=1-3ton|[-1,1]

36. x=2t*%, y=3ton|0,1]

In Exercises 37 — 40, numerically approximate the given arc
length.

37. Approximate the arc length of one petal of the rose curve
x = costcos(2t), y = sintcos(2t) using Simpson’s Rule
andn = 4.

38. Approximate the arc length of the “bow tie curve” x =
cost, y = sin(2t) using Simpson’s Rule and n = 6.

39. Approximate the arc length of the parabola x = t* — t,
= t* + ton [—1, 1] using Simpson’s Rule and n = 4.
40. A common approximate of the circumference of an ellipse
a? + b?
y = bsintis C = 2w ; .
Use this formula to approximate the circumference of x =
5cost, y = 3sintand compare this to the approxima-

tion given by Simpson’s Rule and n = 6.

given by x = acost,

In Exercises 41 — 44, a solid of revolution is described. Find or
approximate its surface area as specified.

41. Find the surface area of the sphere formed by rotating the
circlex = 2cost, y = 2sintabout:

(a) the x-axis and
(b) the y-axis.

42. Find the surface area of the torus (or “donut”) formed by
rotating the circle x = cost 4+ 2, y = sint about the y-
axis.

43. Approximate the surface area of the solid formed by rotat-
ing the “upper right half” of the bow tie curve x = cost,
y = sin(2t) on [0, 7/2] about the x-axis, using Simpson’s
Ruleand n = 4.

44. Approximate the surface area of the solid formed by ro-
tating the one petal of the rose curve x = costcos(2t),
y = sintcos(2t) on [0, /4] about the x-axis, using Simp-
son’s Rule and n = 4.



9.4 Introduction to Polar Coordinates

We are generally introduced to the idea of graphing curves by relating x-values
to y-values through a function f. That is, we set y = f(x), and plot lots of point
pairs (x, y) to get a good notion of how the curve looks. This method is useful
but has limitations, not least of which is that curves that “fail the vertical line
test” cannot be graphed without using multiple functions.

The previous two sections introduced and studied a new way of plotting
points in the x, y-plane. Using parametric equations, x and y values are com-
puted independently and then plotted together. This method allows us to graph
an extraordinary range of curves. This section introduces yet another way to plot
points in the plane: using polar coordinates.

Polar Coordinates

Start with a point O in the plane called the pole (we will always identify this
point with the origin). From the pole, draw a ray, called the initial ray (we will
always draw this ray horizontally, identifying it with the positive x-axis). A point
P in the plane is determined by the distance r that P is from O, and the an-
gle 0 formed between the initial ray and the segment OP (measured counter-
clockwise). We record the distance and angle as an ordered pair (r, §). To avoid
confusion with rectangular coordinates, we will denote polar coordinates with
the letter P, as in P(r, #). This is illustrated in Figure 9.37

Practice will make this process more clear.

Example 296 Plotting Polar Coordinates
Plot the following polar coordinates:

A=P(1,7/4) B=P(15x) C=P2,—7/3) D=P(—1,1/4)

SOLUTION To aid in the drawing, a polar grid is provided at the bottom
of this page. To place the point A, go out 1 unit along the initial ray (putting
you on the inner circle shown on the grid), then rotate counter-clockwise 7 /4
radians (or 45°). Alternately, one can consider the rotation first: think about the
ray from O that forms an angle of 7/4 with the initial ray, then move out 1 unit
along this ray (again placing you on the inner circle of the grid).

To plot B, go out 1.5 units along the initial ray and rotate 7 radians (180°).

To plot C, go out 2 units along the initial ray then rotate clockwise /3 radi-
ans, as the angle given is negative.

To plot D, move along the initial ray “—1” units —in other words, “back up” 1
unit, then rotate counter-clockwise by 7 /4. The results are given in Figure 9.38.

Notes:

9.4 Introduction to Polar Coordinates

P =P(r,0)

0]

initial ray

Figure 9.37: |lllustrating polar coordi-

nates.

Figure 9.38: Plotting polar points in Exam-

ple 296.
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0
0 X

Figure 9.39: Converting between rectan-
gular and polar coordinates.
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Consider the following two points: A = P(1, ) and B = P(—1,0). To locate
A, go out 1 unit on the initial ray then rotate 7 radians; to locate B, go out —1
units on the initial ray and don’t rotate. One should see that A and B are located
at the same point in the plane. We can also consider C = P(1,37), or D =
P(1, —); all four of these points share the same location.

This ability to identify a point in the plane with multiple polar coordinates is
both a “blessing” and a “curse.” We will see that it is beneficial as we can plot
beautiful functions that intersect themselves (much like we saw with parametric
functions). The unfortunate part of this is that it can be difficult to determine
when this happens. We’ll explore this more later in this section.

Polar to Rectangular Conversion

It is useful to recognize both the rectangular (or, Cartesian) coordinates of a
point in the plane and its polar coordinates. Figure 9.39 shows a point P in the
plane with rectangular coordinates (x, y) and polar coordinates P(r, ). Using
trigonometry, we can make the identities given in the following Key Idea.

Key Idea 41 Converting Between Rectangular and Polar Coordi-
nates

Given the polar point P(r, #), the rectangular coordinates are determined
by

X =rcosf y =rsiné.
Given the rectangular coordinates (x, y), the polar coordinates are de-
termined by

rr=x* +y? tan@:)%.

Example 297 Converting Between Polar and Rectangular Coordinates

1. Convert the polar coordinates P(2, 27w /3) and P(—1, 57 /4) to rectangular
coordinates.
2. Convert the rectangular coordinates (1,2) and (—1,1) to polar coordi-

nates.

SOLUTION

Notes:



1. (a) We start with P(2,27/3). Using Key Idea 41, we have
x=2cos(2n/3) = -1  y=2sin(2w/3) = /3.

So the rectangular coordinates are (—1,v/3) ~ (—1,1.732).
(b) The polar point P(—1,57/4) is converted to rectangular with:

x = —1cos(57/4) =V2/2  y=—1sin(57/4) = /2/2.

So the rectangular coordinates are (v/2/2,1/2/2) ~ (0.707,0.707).
These points are plotted in Figure 9.40 (a). The rectangular coordinate

system is drawn lightly under the polar coordinate system so that the re-
lationship between the two can be seen.

2. (a) To convert the rectangular point (1, 2) to polar coordinates, we use
the Key Idea to form the following two equations:

2
12422=7 tanG:I.

The first equation tells us that r = /5. Using the inverse tangent
function, we find

tand=2 = 6H=tan" 12~ 1.11~ 63.43°.

Thus polar coordinates of (1,2) are P(1/5,1.11).
(b) To convert (—1,1) to polar coordinates, we form the equations

1
(12 +12 =1 tanf = -
Thus r = /2. We need to be careful in computing 6: using the
inverse tangent function, we have

tanf=-1 = O=tan (-1)=—7/4=—45°.

This is not the angle we desire. The range of tan~ ! xis (—7/2, 7/2);
that is, it returns angles that lie in the 1%t and 4" quadrants. To
find locations in the 2" and 3™ quadrants, add 7 to the result of
tan~lx. So 7 + (—7/4) puts the angle at 37/4. Thus the polar
point is P(v/2,37/4).
An alternate method is to use the angle 6 given by arctangent, but
change the sign of r. Thus we could also refer to (—1,1) as
P(—\/2,—/4).
These points are plotted in Figure 9.40 (b). The polar system is drawn
lightly under the rectangular grid with rays to demonstrate the angles
used.

Notes:

9.4 Introduction to Polar Coordinates
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Figure 9.40: Plotting rectangular and po-
lar points in Example 297.
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%)

Figure 9.41: Plotting standard polar plots.
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Polar Functions and Polar Graphs

Defining a new coordinate system allows us to create a new kind of func-
tion, a polar function. Rectangular coordinates lent themselves well to creating
functions that related x and y, such as y = x%. Polar coordinates allow us to cre-
ate functions that relate r and 6. Normally these functions look like r = £(9),
although we can create functions of the form 6 = f(r). The following examples
introduce us to this concept.

Example 298 Introduction to Graphing Polar Functions
Describe the graphs of the following polar functions.

1. r=15
2.0=m/4
SOLUTION

1. The equation r = 1.5 describes all points that are 1.5 units from the pole;
as the angle is not specified, any 0 is allowable. All points 1.5 units from
the pole describes a circle of radius 1.5.

We can consider the rectangular equivalent of this equation; using r* =
x* +y?, we see that 1.52 = x? +y?, which we recognize as the equation of
a circle centered at (0, 0) with radius 1.5. This is sketched in Figure 9.41.

2. The equation § = 7 /4 describes all points such that the line through them
and the pole make an angle of 7 /4 with the initial ray. As the radius ris not
specified, it can be any value (even negative). Thus § = 7/4 describes the
line through the pole that makes an angle of 7/4 = 45° with the initial
ray.

We can again consider the rectangular equivalent of this equation. Com-
binetand = y/xand 0 = 7 /4:

tanmt/4d=y/x =xtanw/d=y =y=x.

This graph is also plotted in Figure 9.41.

The basic rectangular equations of the form x = h and y = k create vertical
and horizontal lines, respectively; the basic polar equations r = hand 0 = «
create circles and lines through the pole, respectively. With this as a foundation,
we can create more complicated polar functions of the form r = f(6). The input
is an angle; the output is a length, how far in the direction of the angle to go out.

Notes:



We sketch these functions much like we sketch rectangular and parametric
functions: we plot lots of points and “connect the dots” with curves. We demon-
strate this in the following example.

Example 299 Sketching Polar Functions
Sketch the polar function r = 1 + cos 6 on [0, 27| by plotting points.

SOLUTION A common question when sketching curves by plotting points
is “Which points should | plot?” With rectangular equations, we often choose
“easy” values —integers, then added more if needed. When plotting polar equa-
tions, start with the “common” angles — multiples of 7/6 and 7 /4. Figure 9.42
gives a table of just a few values of 6 in [0, 7].

Consider the point P(0, 2) determined by the first line of the table. The angle
is 0 radians —we do not rotate from the initial ray — then we go out 2 units from
the pole. When 6 = 7/6, r = 1.866 (actually, it is 1 + v/3/2); so rotate by /6
radians and go out 1.866 units.

The graph shown uses more points, connected with straight lines. (The points
on the graph that correspond to points in the table are signified with larger dots.)
Such a sketch is likely good enough to give one an idea of what the graph looks
like.

Technology Note: Plotting functions in this way can be tedious, just as it was
with rectangular functions. To obtain very accurate graphs, technology is a great
aid. Most graphing calculators can plot polar functions; in the menu, set the
plotting mode to something like polar or POL, depending on one’s calculator.
As with plotting parametric functions, the viewing “window” no longer deter-
mines the x-values that are plotted, so additional information needs to be pro-
vided. Often with the “window” settings are the settings for the beginning and
ending ¢ values (often called 0y, and Oy.,) as well as the Og¢ep — that is, how far
apart the ¢ values are spaced. The smaller the 6., value, the more accurate
the graph (which also increases plotting time). Using technology, we graphed
the polar function r = 1 + cos 6 from Example 299 in Figure 9.43.

Example 300 Sketching Polar Functions
Sketch the polar function r = cos(26) on [0, 27] by plotting points.

SOLUTION We start by making a table of cos(26) evaluated at common
angles 6, as shown in Figure 9.44. These points are then plotted in Figure 9.45
(a). This particular graph “moves” around quite a bit and one can easily forget
which points should be connected to each other. To help us with this, we num-
bered each point in the table and on the graph.

Notes:

9.4 Introduction to Polar Coordinates

0 r=1+ cosf

0 2
/6 1.86603
/2 1
4r/3 0.5

7w /4 1.70711

Figure 9.42: Graphing a polar function in
Example 299 by plotting points.

Figure 9.43: Using technology to graph a
polar function.
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Pt. 6  cos(26) Pt. 0 cos(26)
1 0 1. 10 7x/6 0.5

2 w/6 05 11 57/4 0.
3 7/ 0. 12 4r/3 —05
4 7/3 —05 13 37/2 -1
5 /2 -1 14 57/3 —05
6 27/3 —05 15 77/4 0.
7 37/4 0. 16 117/6 0.5
8 57/6 0.5 17 2w 1.

9 T 1.

Figure 9.44: Tables of points for plotting a polar curve.

Using more points (and the aid of technology) a smoother plot can be made as
shown in Figure 9.45 (b). This plot is an example of a rose curve.

It is sometimes desirable to refer to a graph via a polar equation, and other
times by a rectangular equation. Therefore it is necessary to be able to convert
between polar and rectangular functions, which we practice in the following ex-
ample. We will make frequent use of the identities found in Key Idea 41.

(b) Example 301 Converting between rectangular and polar equations.
Figure 9.45: Polar plots from Example Convert from rectangular to polar. Convert from polar to rectangular.
300.
1. y=x* 3 = 2
sinf — cos ¢
2. xy=1
4. r=2cosf
SOLUTION

1. Replace y with rsin 8 and replace x with r cos 6, giving:

y=x
rsin@ = r’ cos?
sin 6
cos?0

We have found that r = sinf/ cos? § = tan 6 secf. The domain of this
polar function is [—m/2, 7/2]; plot a few points to see how the familiar
parabola is traced out by the polar equation.

Notes:
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2. We again replace x and y using the standard identities and work to solve

forr: 54
xy=1
rcosf-rsinf =1
2 _ 1 ‘ 5 x
cosfsind -5 5
1
v/cos fsin @
—5

This function is valid only when the product of cos @ sin 8 is positive. This
occurs in the first and third quadrants, meaning the domain of this polar
function is (0, 7/2) U (m,37/2).

We can rewrite the original rectangular equation xy = lasy = 1/x.

This is graphed in Figure 9.46; note how it only exists in the first and third
quadrants.

Figure 9.46: Graphing xy = 1 from Exam-
ple 301.

3. There is no set way to convert from polar to rectangular; in general, we
look to form the products rcos 8 and rsin 6, and then replace these with
x and y, respectively. We start in this problem by multiplying both sides

by sinf — cos 6:
2
~ sinf — cosf
r(sinf — cos ) = 2
rsinf —rcosf = 2. Now replace with y and x:
y—x=2
y=x+2.

The original polar equation, r = 2/(sin § — cos #) does not easily reveal
that its graph is simply a line. However, our conversion shows that it is.
The upcoming gallery of polar curves gives the general equations of lines
in polar form.

4. By multiplying both sides by r, we obtain both an r? term and an rcos 6
term, which we replace with x? + y? and x, respectively.

r=2cosf
r? = 2rcos 6
X +y2 = 2x.

Notes:
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We recognize this as a circle; by completing the square we can find its
radius and center.

X —2+y*=0
(x—12+y* =1

The circle is centered at (1,0) and has radius 1. The upcoming gallery
of polar curves gives the equations of some circles in polar form; circles
with arbitrary centers have a complicated polar equation that we do not
consider here.

Some curves have very simple polar equations but rather complicated rect-
angular ones. For instance, the equation r = 1 + cos 6 describes a cardiod
(a shape important the sensitivity of microphones, among other things; one is
graphed in the gallery in the Limagon section). It’s rectangular form is not nearly
as simple; it is the implicit equation x* 4 y* + 2x?y? — 2xy? — 2x3> — y?> = 0. The
conversion is not “hard,” but takes several steps, and is left as a problem in the
Exercise section.

Gallery of Polar Curves

There are a number of basic and “classic” polar curves, famous for their
beauty and/or applicability to the sciences. This section ends with a small gallery
of some of these graphs. We encourage the reader to understand how these
graphs are formed, and to investigate with technology other types of polar func-
tions.

Lines
Through the origin:

0=a«a

r=acsch r=asect r=

Horizontal line: Vertical line: Not through origin:

b
" sinf —mcos#d
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Circles Spiral

Centered on x-axis: Centered on y-axis: Centered on origin: Archimedean spiral

| ————

r=acost r=asinf r=a r=2=0

o
N )

>

Limagons

Symmetric about x-axis: r = a = bcosf; Symmetric about y-axis: r = a £ bsinf; a,b>0

With inner loop: Cardiod: Dimpled: Convex:
91 91 1<2 <2 952
b b b b

—~
_

W

~
_/

/TN

Rose Curves

Symmetric about x-axis: r = acos(nf);  Symmetric about y-axis: r = asin(nf)
Curve contains 2n petals when n is even and n petals when n is odd.

r = acos(26) r=asin(26) r = acos(36) r =asin(36)

LY
CAD

Special Curves
Rose curves Lemniscate: Eight Curve:

r=asin(0/5) r=asin(260/5) r* = a? cos(20) r? = g?sec* 0 cos(20)
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y
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(a

y
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//
N

(b)
Figure 9.47: Graphs to help determine

the points of intersection of the polar
functions given in Example 302.
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Earlier we discussed how each point in the plane does not have a unique
representation in polar form. This can be a “good” thing, as it allows for the
beautiful and interesting curves seen in the preceding gallery. However, it can
also be a “bad” thing, as it can be difficult to determine where two curves inter-
sect.

Example 302 Finding points of intersection with polar curves
Determine where the graphs of the polar equationsr = 1+3 cosf and r = cos 6
intersect.

SOLUTION As technology is generally readily available, it is generally a
good idea to start with a graph. We have graphed the two functions in Figure
9.47 (a); to better discern the intersection points, part (b) of the figure zooms
in around the origin. We start by setting the two functions equal to each other
and solving for 6:

1+ 3cosf = cost

2cosf = —1
1
cosf = ——
2

2w 4w

0=—,—

3°3

(There are, of course, infinite solutions to the equation cos§ = —1/2; as the

limagon is traced out once on [0, 27|, we restrict our solutions to this interval.)

We need to analyze this solution. When 6 = 27/3 we obtain the point of
intersection that lies in the 4" quadrant. When 6 = 47 /3, we get the point of
intersection that lies in the 2" quadrant. There is more to say about this second
intersection point, however. The circle defined by r = cos @ is traced out once on
[0, 7], meaning that this point of intersection occurs while tracing out the circle
a second time. It seems strange to pass by the point once and then recognize
it as a point of intersection only when arriving there a “second time.” The first
time the circle arrives at this point is when 6 = 7/3. Itis key to understand that
these two points are the same: (cos7/3,7/3) and (cos4x/3,47/3).

To summarize what we have done so far, we have found two points of in-
tersection: when 6 = 27/3 and when 8 = 47/3. When referencing the circle
r = cos 6, the latter point is better referenced as when 6 = 7/3.

There is yet another point of intersection: the pole (or, the origin). We did
not recognize this intersection point using our work above as each graph arrives
at the pole at a different 6 value.

A graph intersects the pole when r = 0. Considering the circle r = cos ¥,
r = 0 when # = 7/2 (and odd multiples thereof, as the circle is repeatedly

Notes:



traced). The limacon intersects the pole when 1+ 3 cos # = 0; this occurs when
cosf = —1/3, or for § = cos~*(—1/3). This is a nonstandard angle, approxi-
mately § = 1.9106 = 109.47°. The limagon intersects the pole twice in [0, 27];
the other angle at which the limagon is at the pole is the reflection of the first
angle across the x-axis. That is, § = 4.3726 = 250.53°.

If all one is concerned with is the (x, y) coordinates at which the graphs inter-
sect, much of the above work is extraneous. We know they intersect at (0, 0);
we might not care at what 6 value. Likewise, using §# = 27/3 and 0 = 47/3
can give us the needed rectangular coordinates. However, in the next section
we apply calculus concepts to polar functions. When computing the area of a
region bounded by polar curves, understanding the nuances of the points of
intersection becomes important.

Notes:

9.4

Introduction to Polar Coordinates
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Exercises 9.4
Terms and Concepts

(@) A=P(3,m) (c) €=(0,4)
1. In your own words, describe how to plot the polar point (b) B=P(1,27/3) (d) D= (1,—V3)
P(r,0).
In Exercises 11 — 29, graph the polar function on the given

2. T/F: When plotting a point with polar coordinate P(r, ), r .
interval.

must be positive.
3. T/F: Every point in the Cartesian plane can be represented 1. r=2 0<0<m/2
by a polar coordinate. 12. 6=m7/6, —1<r<2
4. T/F: Every point in the Cartesian plane can be represented 13. r=1—cos, [0,2n]

uniquely by a polar coordinate.
14. r=2+sin6, [0,27]

Problems 15. r=2—sin6, [0,2n]

5. Plot the points with the given polar coordinates. 16. r=1-2siné, [0,2n]

17. r=1+42sin6, [0,27]
(a) A=P(2,0) (c)

C=P(-2,7/2)
(b) B=P(1,7) (d) D

P(1,7/4) 18. r = cos(26), [0, 2]

19. r=sin(36), [0, 7]
6. Plot the points with the given polar coordinates.
20. r =cos(A/3), [0,3m]

(@) A=P(2,3m) (c) P(1,2)

¢ 21. r = cos(20/3), [0, 6]
(b) B =P(L,—) (d) D= P(1/2,57/6)

22. r=40/2, [0,4n]
7. For each of the given points give two sets of polar coordi-

23. r=3sin(d), o,
nates that identify it, where 0 < 0 < 2. in(9), [0,7]

24. r =cosfsinf, [0,27]
25. r=0*—(7/2)%, [-m, 7]
. 3

"~ 5sinf —cosf’
. -2

" 3cosf —2sinf’
28. r=3secl, (—7/2,7/2)

26. r [0, 27]

27. r [0, 27]

8. For each of the given points give two sets of polar coordi-

29. r=
nates that identify it, where —7 < 0 < 7. 9. r=3cscf, (0,m)

In Exercises 30 — 38, convert the polar equation to a rectan-
gular equation.

30. r=2cosf
31. r= —4siné

32. r=cosf +sinf

7
3. r=——mm
5sin — 2cos 6
9. Convert each of the following polar coordinates to rectan- 3
gular, and each of the following rectangular coordinates to 34, r= 7
polar. cos
35. r= i
(@) A=P(2,7/8) () C=(2,-1) sinf
(b) B=P(2,—7/4) (d) D= (-2,1) 36. r=tand
37. r=2

10. Convert each of the following polar coordinates to rectan-
gular, and each of the following rectangular coordinates to 38. 0 =7/6
polar.



In Exercises 39 — 46, convert the rectangular equation to a
polar equation.

39. y=x

40. y=4x+7
41. x=5

42. y=5

43. X:y2

44. Xy =1

45. X +y* =7
46. (x+1)Y’+y =1

In Exercises 47 — 54, find the points of intersection of the po-
lar graphs.

47. r =sin(20) and r = cosf on [0, 7]

48.
49.
50.
51.
52.
53.
54.
55.

56.

r = cos(26) and r = cos 6 on [0, 7]
r=2cosfandr=2sinfon [0, ]
r=sinfandr=+/3+3sinfon|[0,27]
r =sin(36) and r = cos(36) on [0, 7]
r=3cosfandr =1+ cosfon[—m,n]
r=1landr = 2sin(20) on [0, 27]
r=1—cosfandr=1+sinfon [0, 2n]

Pick a integer value for n, where n # 2, 3, and use technol-
. m . .
ogy to plot r = sin [ —@ ) for three different integer values

n
of m. Sketch these and determine a minimal interval on
which the entire graph is shown.

Create your own polar function, r = f(6) and sketch it. De-
scribe why the graph looks as it does.
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9.5 Calculus and Polar Functions

The previous section defined polar coordinates, leading to polar functions. We
investigated plotting these functions and solving a fundamental question about
their graphs, namely, where do two polar graphs intersect?

We now turn our attention to answering other questions, whose solutions
require the use of calculus. A basis for much of what is done in this section is
the ability to turn a polar function r = f(6) into a set of parametric equations.
Using the identities x = rcosf and y = rsinf, we can create the parametric
equations x = f(#) cos 0, y = f(0) sin 6 and apply the concepts of Section 9.3.

d
Polar Functions and il d
dx

We are interested in the lines tangent a given graph, regardless of whether
that graph is produced by rectangular, parametric, or polar equations. In each
of these contexts, the slope of the tangent line is %. Given r = f(0), we are
generally not concerned with r’ = f'(6); that describes how fast r changes with
respect to 6. Instead, we will use x = f(0) cos 8, y = f(#) sin 6 to compute %.

Using Key Idea 38 we have

dy dy jdx

dx df/ df’

Each of the two derivatives on the right hand side of the equality requires the
use of the Product Rule. We state the important result as a Key Idea.

Key Idea 42 Finding % with Polar Functions

Let r = f(0) be a polar function. With x = f(#) cos § and y = f() sin 6,

dy  f'(6)sin0+f(6)cosd
dx  f/(f)cosf —f(0)sinf’

Example 303 Finding % with polar functions.
Consider the limagon r = 1+ 2sin 6 on [0, 27].

1. Find the equations of the tangent and normal lines to the graph at § =
/4.

2. Find where the graph has vertical and horizontal tangent lines.

Notes:
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SOLUTION
1. We start by computing %. With f'(0) = 2 cos 6, we have
dy  2cosfsinf 4+ cos (1 + 2sind) /2
dx  2cos? —sinf(1+ 2sinf)

B cosfO(4sinf + 1)
~ 2(cos20 —sin? ) —sinf’

When 6 = 7/4, % = —2+/2 — 1 (this requires a bit of simplification).
In rectangular coordinates, the point on the graph at 6 = 7/4is (1 +
v2/2,1 4 \/2/2). Thus the rectangular equation of the line tangent to

the limagon at @ = /4 s

y=(-2v2-1)(x - (1 +V2/2)) + 1+ v2/2 ~ —3.83x + 8.24.

The limagon and the tangent line are graphed in Figure 9.48. Figure 9.48: The limagon in Example 303
with its tangent line at 6 = /4 and

The normal line has the opposite—reciprocal slope as the tangent line, so points of vertical and horizontal tangency.

its equation is

1
~ ——x+ 1.26.
Y 3.83 *

2. To find the horizontal lines of tangency, we find where % = 0; thus we
d

find where the numerator of our equation for d—){ is 0.

cosf(4sinf+1)=0 = cosf#=0 or 4sinfd+1=0.

On [0, 27|, cos @ = Owhen § = /2, 37/2.

Setting 4sinf + 1 = 0 gives § = sin~*(—1/4) ~ —0.2527 = —14.48°.
We want the results in [0, 27]; we also recognize there are two solutions,
one in the 3" quadrant and one in the 4. Using reference angles, we
have our two solutions as # = 3.39 and 6.03 radians. The four points we
obtained where the limagon has a horizontal tangent line are given in Fig-
ure 9.48 with black—filled dots.

To find the vertical lines of tangency, we set the denominator of % =0.
2(cos? § — sin* @) —sinf = 0.
Convert the cos? § term to 1 — sin? 6:

2(1 —sin?f —sin?#) —sinf =0
4sin?f +sinf —1=0.

Notes:
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/2
0.5
~ : > 1 < 0
T—es— | ~—es— 1
—0.5

Figure 9.49: Graphing the tangent lines at
the pole in Example 304.
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Recognize this as a quadratic in the variable sin . Using the quadratic
formula, we have

. —-1++33
sinf = ————.
8
We solve sin§ = %\/ﬁ and sinf = *1%\/5:
. —1+\/§ ) -1— \/ﬁ
sin = ———— sin = —————
8 8
~1+ /33 ~1-— /33
f—sin—t (2T V33 0 — sin—1 -1-+33
8 8
6 = 0.6399 § = —1.0030

In each of the solutions above, we only get one of the possible two so-
lutions as sin~* x only returns solutions in [—7/2,7/2], the 4" and 1%
qguadrants. Again using reference angles, we have:

—1++/33
sinf = % 0 = 0.6399, 3.7815 radians
and
—1-—+/33
sinf = — 5 0 = 4.1446, 5.2802 radians.

These points are also shown in Figure 9.48 with white—filled dots.

When the graph of the polar function r = f(0) intersects the pole, it means
that f(«r) = 0 for some angle «. Thus the formula for % in such instances is very
simple, reducing simply to

dy

— =tana.
dx

This equation makes an interesting point. It tells us the slope of the tangent
line at the pole is tan «;; some of our previous work (see, for instance, Example
298) shows us that the line through the pole with slope tan « has polar equation
0 = «. Thus when a polar graph touches the pole at # = «, the equation of the
tangent line at the poleis § = a.

Example 304 Finding tangent lines at the pole.
Letr = 1 + 2sin#, a limagon. Find the equations of the lines tangent to the
graph at the pole.

Notes:



SOLUTION We need to know when r = 0.
1+2sinf=0
sinf = —1/2
7 11
p="" =8
6 6

Thus the equations of the tangent lines, in polar, are § = 77/6 and § = 117/6.
In rectangular form, the tangent lines arey = tan(77/6)xandy = tan(117/6)x.
The full limagon can be seen in Figure 9.48; we zoom in on the tangent lines in
Figure 9.49.

Area

When using rectangular coordinates, the equations x = hand y = k defined
vertical and horzontal lines, respectively, and combinations of these lines create
rectangles (hence the name “rectangular coordinates”). It is then somewhat
natural to use rectangles to approximate area as we did when learning about
the definite integral.

When using polar coordinates, the equations § = « and r = ¢ form lines
through the origin and circles centered at the origin, respectively, and combi-
nations of these curves form sectors of circles. It is then somewhat natural to
calculate the area of regions defined by polar functions by first approximating
with sectors of circles.

Consider Figure 9.50 (a) where a region defined by r = f() on [«, 3] is given.
(Note how the “sides” of the region are the lines # = o and 6§ = 3, whereas in
rectangular coordinates the “sides” of regions were often the vertical linesx = a
andx = b.)

Partition the interval [, (] into n equally spaced subintervals as « = 0; <
0, < -+ < Bpy1 = B. The length of each subinterval is A9 = (8 — a)/n,
representing a small change in angle. The area of the region defined by the it
subinterval [6;, 0;11] can be approximated with a sector of a circle with radius
f(c;), for some ¢; in [6;, 6;4-1]. The area of this sector is 3f(c;)2 Af. This is shown
in part (b) of the figure, where [«, 5] has been divided into 4 subintervals. We
approximate the area of the whole region by summing the areas of all sectors:

Area ~ Z %f(c,»)zA@.
i=1

This is a Riemann sum. By taking the limit of the sum as n — oo, we find the

Notes:

9.5 Calculus and Polar Functions

Note: Recall that the area of a sector of a
circle with radius r subtended by an angle
GisA = 161

/2
1,
r=f(0)
Q 4
/7
Vi , e
B 7 ,
Vi 7’
0.5 ’ e -
0 -
’ e -7
’ 4 P
4 -
o 5 -
¢ L7
¢ s _° .
o
7, 0=
I,’/
t t 0
0.5 1

0.5 1

(b)

Figure 9.50: Computing the area of a po-
lar region.
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Note: Example 305 requires the use of
the integral [ cos® 6 dé. This is handled

well by using the power reducing formula
as found in the back of this text. Due to
the nature of the area formula, integrat-
ing cos? 6 and sin®@ is required often.
We offer here these indefinite integrals
as a time—saving measure.

/cos2 0do = %0 + % sin(20) + C

2 1,1
/sm 6 do = 29 4sm(Z@)—l—C

Figure 9.51: Finding the area of the
shaded region of a cardiod in Example
306.
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exact area of the region in the form of a definite integral.

Theorem 83 Area of a Polar Region

Let f be continuous and non-negative on [, (], where 0 < 5 — v < 2.
The area A of the region bounded by the curve r = f(0) and the lines
0 =c«andf = fSis

16 1~7’
Azf 2 = - 2
Z/Qf(ﬁ)de Z/Ordﬁ

The theorem states that 0 < S — a < 2m. This ensures that region does not
overlap itself, giving a result that does not correspond directly to the area.

Example 305 Area of a polar region
Find the area of the circle defined by r = cos 6.

SOLUTION Thisis a direct application of Theorem 83. The circle is traced
out on [0, 7], leading to the integral

1 Vs
Area = f/ cos? 0 d
2 Jo

1 ("1
_ 7/ + cos(20) 40
2 Jo 2

ks

= %(9 + %sin(Z@))

0
1

= —T.

4

Of course, we already knew the area of a circle with radius 1/2. We did this ex-
ample to demonstrate that the area formula is correct.

Example 306 Area of a polar region
Find the area of the cardiod r = 1+-cos @ bound between § = w/6and § = /3,
as shown in Figure 9.51.

Notes:



SOLUTION This is again a direct appliation of Theorem 83.
1 /3
Area = = / (1+ cos6)* df
2 /6
1 /3
= —/ (1+2cos @ + cos® 6) db
2 /6
w/3
. 1 1
= (0 + 2sinf + 59 + 2 S|n(20)>
/6

(7 +4V3 — 4) ~0.7587.

Ok N|F

Area Between Curves

Our study of area in the context of rectangular functions led naturally to
finding area bounded between curves. We consider the same in the context of
polar functions.

Consider the shaded region shown in Figure 9.52. We can find the area of
this region by computing the area bounded by r, = f,(#) and subtracting the
area bounded by r; = f1() on [, §]. Thus

1 /B 1 (8 1 B
Area:E/ rzzdﬁ—i/ rfdG:E/ (r7 —rf) do.

Key Idea 43 Area Between Polar Curves

The area A of the region bounded by r; = f1(0) and r, = f,(0), 0 = «
and 6 = B, where f1(0) < f2(0) on [« (], is

A*1 ﬁ(rz—rz)dﬁ
=3 ) i —ri)dl.

Example 307 Area between polar curves
Find the area bounded between the curvesr = 1 + cosf and r = 3 cos¥, as
shown in Figure 9.53.

SOLUTION We need to find the points of intersection between these

Notes:

9.5 Calculus and Polar Functions

w/2

rn = fi(9) 2 = £2(6)

0.5
7

0.5 1

Figure 9.52: lllustrating area bound be-
tween two polar curves.

/2

Figure 9.53: Finding the area between po-
lar curves in Example 307.
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w/2

0.5 +

Figure 9.54:

0.5 1

(b)

Graphing the region

bounded by the functions in Example

308.
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two functions. Setting them equal to each other, we find:

1+ cosf = 3cosd
cosf =1/2
0=+7/3

Thus we integrate 1 ((3 cos #)? — (1 + cos §)?) on [—7/3,7/3].

1 /3
Area = 5/ ((3cos6)> — (1 + cos6)*) df
—7/3

1 /3
:7/ (8cos® —2cos — 1) df
2 —7/3
/3
= (2sin(20) — 2sin 6 + 30)
—m/3

= 2.
Amazingly enough, the area between these curves has a “nice” value.

Example 308 Area defined by polar curves
Find the area bounded between the polar curves r = 1 and r = 2 cos(26), as
shown in Figure 9.54 (a).

SOLUTION We need to find the point of intersection between the two
curves. Setting the two functions equal to each other, we have

2cos(20) =1 = cos(29):% = 20=7/3 = 0=m/6.

In part (b) of the figure, we zoom in on the region and note that it is not really
bounded between two polar curves, but rather by two polar curves, along with
@ = 0. The dashed line breaks the region into its component parts. Below
the dashed line, the region is defined by r = 1, 0 = 0and § = 7/6. (Note:
the dashed line lies on the line § = 7/6.) Above the dashed line the region is
bounded by r = 2cos(260) and § = 7/6. Since we have two separate regions,
we find the area using two separate integrals.

Call the area below the dashed line A; and the area above the dashed line
A,. They are determined by the following integrals:

1 /6 1 /4 2
A — ,/ (1)2d§ A, = 7/ (2cos(26))” df.
2 0 2 7T/6

Notes:



(The upper bound of the integral computing A; is /4 as r = 2 cos(26) is at the
pole when 6 = 7 /4.)

We omit the integration details and let the reader verify that A; = /12 and
A, = /12 — \/3/8; the total areais A = /6 — \/3/8.

Arc Length

As we have already considered the arc length of curves defined by rectangu-
lar and parametric equations, we now consider it in the context of polar equa-
tions. Recall that the arc length L of the graph defined by the parametric equa-
tions x = f(t),y = g(t) on [a, b] is

b b
L= / f(t)? +g'(t)? dt = / X (t)2 +y'(t)? dt. (9.1)

Now consider the polar function r = f(#). We again use the identities x =
f(0) cos 8 and y = f(0) sin 0 to create parametric equations based on the polar
function. We compute x'(#) and y’(#) as done before when computing %, then
apply Equation (9.1).

The expression x'(0)? + y/(6)? can be simplified a great deal; we leave this
as an exercise and state that

X (0)* +y'(0) =£'(6)* + (0).

This leads us to the arc length formula.

Key Idea 44 Arc Length of Polar Curves

Let r = f(0) be a polar function with f’ continuous on an open interval
I containing [«, 3], on which the graph traces itself only once. The arc
length L of the graph on [«, 3] is

B B
L:/ f’(9)2+f(9)2d9:/ V()2 + 2 do.

Example 309 Arc length of a limagon
Find the arc length of the limagonr = 1 + 2sint.

SOLUTION With r = 1 + 2sint, we have r’ = 2cost. The limacon is
traced out once on [0, 27], giving us our bounds of integration. Applying Key

Notes:

9.5 Calculus and Polar Functions
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Idea 44, we have
/2
2T
L= V/(2cos0)2 + (1 + 2sin0)2 db
0

27
:/ V/4cos20 + 4sin?6 + 4sinf + 1do
0

27
— V4sing 4 5do

0
0 =~ 13.3649.

-2 -1 1 2

The final integral cannot be solved in terms of elementary functions, so we re-
sorted to a numerical approximation. (Simpson’s Rule, with n = 4, approximates
the value with 13.0608. Using n = 22 gives the value above, which is accurate
to 4 places after the decimal.)

Figure 9.55: The limagon in Example 309
whose arc length is measured.

Surface Area

The formula for arc length leads us to a formula for surface area. The follow-
ing Key Idea is based on Key Idea 40.

Key Idea 45 Surface Area of a Solid of Revolution

Consider the graph of the polar equation r = f(6), where f’ is continuous
on an open interval containing [«, 5] on which the graph does not cross
itself.

1. The surface area of the solid formed by revolving the graph about
the initial ray (# = 0) is:

B
Surface Area = 277/ f(0)sin0+\/f'(0)% + f(0)? d6.

2. The surface area of the solid formed by revolving the graph about
the line = w/2is:

3
Surface Area = 27r/ f(0) cos 0+/f'(0)2 + £(0)? db.

Notes:
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Example 310 Surface area determined by a polar curve
Find the surface area formed by revolving one petal of the rose curve r = cos(26) /2
about its central axis (see Figure 9.56). 14

SOLUTION We choose, as implied by the figure, to revolve the portion
of the curve that lies on [0, w/4] about the initial ray. Using Key Idea 45 and the
fact that f'(6) = —25sin(26), we have { A 0

—1 1
/4 3 3
Surface Area = 27r/ cos(20) sin(9)\/( — 2sin(26))" + (cos(26))" df
0
~ 1.36707. -

(a)
The integral is another that cannot be evaluated in terms of elementary func-
tions. Simpson’s Rule, with n = 4, approximates the value at 1.36751.

(b)

Figure 9.56: Finding the surface area of a
rose—curve petal that is revolved around
its central axis.

Notes:
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Exercises 9.5

Terms and Concepts

1. Given polar equation r = f(6), how can one create para-
metric equations of the same curve?

2. With rectangular coordinates, it is natural to approximate

area with ; with polar coordinates, it is natural to
approximate area with

Problems
In Exercises 3 — 10, find:

dy
(a) a

(b) the equation of the tangent and normal lines to the
curve at the indicated 6-value.

3.r=1, 6=mn/4
4. r=cosb; O0=mn/4
5. r=1+sinf; 0=m7/6

6. r=1—3cos; 0=37/4

7.r=0, 6=m/2
8. r=cos(30); 0=m7/6
9. r=sin(40); 0=x/3

1
0. r=————; 0=
0. r sinf — cos 6’ i

In Exercises 11 — 14, find the values of 6 in the given inter-
val where the graph of the polar function has horizontal and
vertical tangent lines.

11. r=3; [0,27]

12. r=2sin6; [0, 7]

13. r = cos(26); [0, 2]
14. r=1+4cos6; [0,2n7]

In Exercises 15 — 16, find the equation of the lines tangent to
the graph at the pole.
15. r=sin6; [0, 7]

16. r =sin(30); [0, ]

In Exercises 17 — 27, find the area of the described region.

17. Enclosed by the circle: r = 4sin 0

18. Enclosed by the circler =5

19. Enclosed by one petal of r = sin(36)

20. Enclosed by the cardiodr =1 — sin 6

21. Enclosed by the inner loop of the limagonr = 1 + 2 cost

22. Enclosed by the outer loop of the limagconr = 1 4+ 2 cost
(including area enclosed by the inner loop)

23. Enclosed between the inner and outer loop of the limagon
r=142cost

24. Enclosed by r = 2 cos @ and r = 2sin 0, as shown:

25. Enclosed by r = cos(36) and r = sin(36), as shown:

y

0.5 +

26. Enclosed by r = cos  and r = sin(26), as shown:

y

14

A



27.

Enclosed by r = 3cosf and r = 1 — cos 6, as shown:
y

In Exercises 28 — 32, answer the questions involving arc
length.

28.

29.

30.

Let x(0) = f(6) cos 0 and y(0) = f(0) sin 6. Show, as sug-
gested by the text, that

x'(0) +y'(0)" = £'(6) +£(6)".

Use the arc length formula to compute the arc length of the
circler = 2.

Use the arc length formula to compute the arc length of the
circler = 4sin .

31.

32.

Approximate the arc length of one petal of the rose curve
r = sin(36) with Simpson’s Rule and n = 4.

Approximate the arc length of the cardiod r = 1 + cos @
with Simpson’s Rule and n = 6.

In Exercises 33 — 37, answer the questions involving surface
area.

33.

34.

35.

36.

37.

Use Key Idea 45 to find the surface area of the sphere
formed by revolving the circle r = 2 about the initial ray.

Use Key Idea 45 to find the surface area of the sphere
formed by revolving the circle r = 2 cos 6 about the initial
ray.

Find the surface area of the solid formed by revolving the
cardiod r = 1 4 cos # about the initial ray.

Find the surface area of the solid formed by revolving the
circle r = 2 cos 6 about the line § = /2.

Find the surface area of the solid formed by revolving the
line r = 3secd, —w/4 < 6 < 7/4, about the line
0=m/2.






10: VECTORS

10.1 Introduction to Cartesian Coordinates in Space

Up to this point in this text we have considered mathematics in a 2—dimensional
world. We have plotted graphs on the x-y plane using rectangular and polar
coordinates and found the area of regions in the plane. We have considered
properties of solid objects, such as volume and surface area, but only by first
defining a curve in the plane and then rotating it out of the plane.

While there is wonderful mathematics to explore in “2D,” we live in a “3D”
world and eventually we will want to apply mathematics involving this third di-
mension. In this section we introduce Cartesian coordinates in space and ex-
plore basic surfaces. This will lay a foundation for much of what we do in the
remainder of the text.

Each point Pin space can be represented with an ordered triple, P = (a, b, ¢),
where a, b and c represent the relative position of P to the x-, y- and z-axes, re-
spectively. Each axis is perpendicular to the other two.

Visualizing points in space on paper can be problematic, as we are trying
to represent a 3-dimensional concept on a 2—dimensional medium. We cannot
draw three line representing the three axes in which each line is perpendicular to
the other two. Despite this issue, standard conventions exist for plotting shapes
in space that we will discuss that are more than adequate.

One convention is that the axes must conform to the right hand rule. This
rule states that when the index finger of the right hand is extended in the direc-
tion of the positive x-axis, and the middle finger (bent “inward” so it is perpen-
dicular to the palm) points along the positive y axis, then the extended thumb
will point in the direction of the positive z-axis. (It may take some thought to
verify this, but this system is inherently different from the one created by using
the “left hand rule.”)

As long as the coordinate axes are positioned so that they follow this rule,
it does not matter how the axes are drawn on paper. There are two popular
methods that we briefly discuss.

In Figure 10.1 we see the point P = (2,1, 3) plotted on a set of axes. The
basic convention here is that the x-y plane is drawn in its standard way, with the
z-axis down to the left. The perspective is that the paper represents the x-y plane
and the positive z axis is coming up, off the page. This method is preferred by
many engineers. Because it can be hard to tell where a single point lies in relation

Figure 10.1:
(2,1,3) in space.

Plotting the point P
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Figure 10.2: Plotting the point P =
(2,1, 3) in space with a perspective used
in this text.

Figure 10.3: Plotting points P and Q in Ex-
ample 311.

530

to all the axes, dashed lines have been added to let one see how far along each
axis the point lies.

One can also consider the x-y plane as being a horizontal plane in, say, a
room, where the positive z-axis is pointing up. When one steps back and looks
at this room, one might draw the axes as shown in Figure 10.2. The same point P
is drawn, again with dashed lines. This point of view is preferred by most math-
ematicians, and is the convention adopted by this text.

Measuring Distances
Itis of critical importance to know how to measure distances between points

in space. The formula for doing so is based on measuring distance in the plane,
and is known (in both contexts) as the Euclidean measure of distance.

Definition 48 Distance In Space

Let P = (x1,y1,21) and Q = (X2, ¥2,2,) be points in space. The distance
D between P and Q is

D=+(x—x1)2+ (ya — 1)+ (22 — z1).

We refer to the line segment that connects points P and Q in space as PQ,
and refer to the length of this segment as ||PQ||. The above distance formula
allows us to compute the length of this segment.

Example 311 Length of a line segment
Let P = (1,4,—1) and let Q = (2,1, 1). Draw the line segment PQ and find its
length.

SOLUTION The points Pand Q are plotted in Figure 10.3; no special con-
sideration need be made to draw the line segment connecting these two points;
simply connect them with a straight line. One cannot actually measure this line
on the page and deduce anything meaningful; its true length must be measured
analytically. Applying Definition 48, we have

PQ| = V(212 +(1-4)+(1—(-1))> = V14~ 3.74.

Spheres

Just as a circle is the set of all points in the plane equidistant from a given

Notes:
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point (its center), a sphere is the set of all points in space that are equidistant
from a given point. Definition 48 allows us to write an equation of the sphere.

We start with a point C = (a, b, ¢) which is to be the center of a sphere with
radius r. If a point P = (x,y, z) lies on the sphere, then P is r units from C; that
is,

IPCll = V/(x —a)* + (y = b)2 + (z—c)2 =r.

Squaring both sides, we get the standard equation of a sphere in space with
center at C = (a, b, ¢) with radius r, as given in the following Key Idea.

Key Idea 46 Standard Equation of a Sphere in Space
The standard equation of the sphere with radius r, centered at C =
(a,b,c),is

(x—a)l+(y—b’+(z—c)=r.

Example 312 Equation of a sphere
Find the center and radius of the sphere defined by x*> +2x—+y? —4y+22—6z = 2.

SOLUTION To determine the center and radius, we must put the equa-
tion in standard form. This requires us to complete the square (three times).

x2+2x+y2—4y—|—zz—6z:2
(X +2x+1)+ (Y —dy+48)+ (22 —62z+9)—14=2
(x+1)2+(y—2%+(z—3%=16

The sphere is centered at (—1, 2, 3) and has a radius of 4.

The equation of a sphere is an example of an implicit function defining a sur-
face in space. In the case of a sphere, the variables x, y and z are all used. We
now consider situations where surfaces are defined where one or two of these
variables are absent.

Introduction to Planes in Space

The coordinate axes naturally define three planes (shown in Figure 10.4), the
coordinate planes: the x-y plane, the y-z plane and the x-z plane. The x-y plane
is characterized as the set of all points in space where the z-value is 0. This,
in fact, gives us an equation that describes this plane: z = 0. Likewise, the x-z
plane is all points where the y-value is 0, characterized by y = 0.

Notes:

X y
the x-y plane
z
X y
the y-z plane
z
X y

the x-z plane

Figure 10.4: The coordinate planes.
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Figure 10.5: The plane x = 2.

Figure 10.6: Sketching the boundaries of
a region in Example 313.

z

D
=2

Figure 10.7: Sketching x* + y* = 1.
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The equation x = 2 describes all points in space where the x-value is 2. This
is a plane, parallel to the y-z coordinate plane, shown in Figure 10.5.

Example 313 Regions defined by planes
Sketch the region defined by the inequalities —1 < y < 2.

SOLUTION The region is all points between the planes y = —1 and
y = 2. These planes are sketched in Figure 10.6, which are parallel to the x-z
plane. Thus the region extends infinitely in the x and z directions, and is bounded
by planes in the y direction.

Cylinders

The equation x = 1 obviously lacks the y and z variables, meaning it defines
points where the y and z coordinates can take on any value. Now consider the
equation X2 4+ y?> = 1 in space. In the plane, this equation describes a circle
of radius 1, centered at the origin. In space, the z coordinate is not specified,
meaning it can take on any value. In Figure 10.7 (a), we show part of the graph
of the equation x* 4-y? = 1 by sketching 3 circles: the bottom one has a constant
z-value of —1.5, the middle one has a z-value of 0 and the top circle has a z-value
of 1. By plotting all possible z-values, we get the surface shown in Figure 10.7
(b).

This surface looks like a “tube,” or a “cylinder”; mathematicians call this sur-
face a cylinder for an entirely different reason.

Definition 49 Cylinder

Let Cbe a curve in a plane and let L be a line not parallel to C. A cylinder
is the set of all lines parallel to L that pass through C. The curve Cis the
directrix of the cylinder, and the lines are the rulings.

In this text, we consider curves C that lie in planes parallel to one of the
coordinate planes, and lines L that are perpendicular to these planes, forming
right cylinders. Thus the directrix can be defined using equations involving 2
variables, and the rulings will be parallel to the axis of the 3™ variable.

In the example preceding the definition, the curve x> + y*> = 1 in the x-y
plane is the directrix and the rulings are lines parallel to the z-axis. (Any circle
shown in Figure 10.7 can be considered a directrix; we simply choose the one
where z = 0.) Sample rulings can also be viewed in part (b) of the figure. More
examples will help us understand this definition.

Notes:
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Example 314 Graphing cylinders
Graph the cylinder following cylinders.
1. z=y°
2. x =sinz
SOLUTION

1. We can view the equation z = y? as a parabola in the y-z plane, as illus-
trated in Figure 10.8 (a). As x does not appear in the equation, the rulings
are lines through this parabola parallel to the x-axis, shown in (b). These
rulings give a general idea as to what the surface looks like, drawn in (c).

X (a) y
Figure 10.8: Sketching the cylinder defined by z = y2.

2. We can view the equation x = sinz as a sine curve that exists in the x-z
plane, as shown in Figure 10.9 (a). The rules are parallel to the y axis as
the variable y does not appear in the equation x = sin z; some of these
are shown in part (b). The surface is shown in part (c) of the figure.

z

z
g P

X - y X e y

(a) (b) (c)

Figure 10.9: Sketching the cylinder defined by x = sin z.

Notes:
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(a)

Figure 10.10: Introducing surfaces of rev-
olution.

(b)

Figure 10.11: Revolving y = sinz about
the z-axis in Example 315.
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Surfaces of Revolution

One of the applications of integration we learned previously was to find the
volume of solids of revolution — solids formed by revolving a curve about a hori-
zontal or vertical axis. We now consider how to find the equation of the surface
of such a solid.

Consider the surface formed by revolving y = +/x about the x-axis. Cross—
sections of this surface parallel to the y-z plane are circles, as shown in Figure
10.10a. Each circle has equation of the form y? 4 z> = r? for some radius r. The
radius is a function of x; in fact, it is r(x) = v/x. Thus the equation of the surface
shown in Figure 10.10b is y* + 22 = (/).

We generalize the above principles to give the equations of surfaces formed
by revolving curves about the coordinate axes.

Key Idea 47 Surfaces of Revolution, Part 1

Let r be a radius function.

1. The equation of the surface formed by revolving y = r(x) orz =
r(x) about the x-axis is y* + 2% = r(x).

2. The equation of the surface formed by revolving x = r(y) orz =
r(y) about the y-axis is x> + 2> = r(y)?.

3. The equation of the surface formed by revolving x = r(z) ory =
r(z) about the z-axis is x> + y* = r(z)*.

Example 315 Finding equation of a surface of revolution
Let y = sinz on [0, 7]. Find the equation of the surface of revolution formed by
revolving y = sin z about the z-axis.

SOLUTION Using Key Idea 47, we find the surface has equation x> +y? =
sin® z. The curve is sketched in Figure 10.11a and the surface is drawn in Figure
10.11b.

Note how the surface (and hence the resulting equation) is the same if we
began with the curve x = sin z, which is also drawn in Figure 10.11a.

This particular method of creating surfaces of revolution is limited. For in-
stance, in Example 210 of Section 7.3 we found the volume of the solid formed
by revolving y = sin x about the y-axis. Our current method of forming surfaces
can only rotate y = sin x about the x-axis. Trying to rewrite y = sinx as a func-
tion of y is not trivial, as simply writing x = sin~! y only gives part of the region

Notes:
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we desire.

What we desire is a way of writing the surface of revolution formed by ro-
tating y = f(x) about the y-axis. We start by first recognizing this surface is the
same as revolving z = f(x) about the z-axis. This will give us a more natural way
of viewing the surface.

A value of x is a measurement of distance from the z-axis. At the distance r,
we plot a z-height of f(r). When rotating f(x) about the z-axis, we want all points
a distance of r from the z-axis in the x-y plane to have a z-height of f(r). All such
points satisfy the equation r> = x* 4 y?; hence r = \/x2 + y2. Replacing r with

V/x* 4+ y%in f(r) gives z = f(1/X? + y?). This is the equation of the surface.

Key Idea 48 Surfaces of Revolution, Part 2

Let z = f(x), x > 0, be a curve in the x-z plane. The surface formed by
revolving this curve about the z-axis has equation z = f(\/x2 + yz).

Example 316 Finding equation of surface of revolution
Find the equation of the surface found by revolving z = sin x about the z-axis.

SOLUTION Using Key Idea 48, the surface has equation z = sin (\/x2 + y2).

The curve and surface are graphed in Figure 10.12.
Quadric Surfaces

Spheres, planes and cylinders are important surfaces to understand. We
now consider one last type of surface, a quadric surface. The definition may
look intimidating, but we will show how to analyze these surfaces in an illumi-
nating way.

Definition 50 Quadric Surface

A quadric surface is the graph of the general second—degree equation in
three variables:

AX* + By? 4 C2* + Dxy + Exz + Fyz + Gx + Hy + Iz +J = 0.

When the coefficients D, E or F are not zero, the basic shapes of the quadric
surfaces are rotated in space. We will focus on quadric surfaces where these co-
effiecients are 0; we will not consider rotations. There are six basic quadric sur-

Notes:

(b)

Figure 10.12: Revolving z = sinx about
the z-axis in Example 316.
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In plane
In plane x=0
y=20

Figure 10.13: The elliptic paraboloid z =
/44y
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faces: the elliptic paraboloid, elliptic cone, ellipsoid, hyperboloid of one sheet,
hyperboloid of two sheets, and the hyperbolic paraboloid.

We study each shape by considering traces, that is, intersections of each
surface with a plane parallel to a coordinate plane. For instance, consider the
elliptic paraboloid z = x2/4 + y?, shown in Figure 10.13. If we intersect this
shape with the plane z = d (i.e., replace z with d), we have the equation:

d==+y
2 +vy
Divide both sides by d:
X2
1=—+=.
4d + d

This describes an ellipse — so cross sections parallel to the x-y coordinate plane
are ellipses. This ellipse is drawn in the figure.

Now consider cross sections parallel to the x-z plane. For instance, letting
y = 0 gives the equation z = x2/4, clearly a parabola. Intersecting with the
plane x = 0 gives a cross section defined by z = y?, another parabola. These
parabolas are also sketched in the figure.

Thus we see where the elliptic paraboloid gets its name: some cross sections
are ellipses, and others are parabolas.

Such an analysis can be made with each of the quadric surfaces. We give a
sample equation of each, provide a sketch with representative traces, and de-
scribe these traces.

Notes:
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Elliptic Paraboloid, z= X + Y
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Plane Trace
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y=d Parabola y=0

z=d Ellipse

e
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One variable in the equation of the elliptic paraboloid will be raised to the first power; above,
this is the z variable. The paraboloid will “open” in the direction of this variable’s axis. Thus
x = y?/a* + 2% /b? is an elliptic paraboloid that opens along the x-axis.

Multiplying the right hand side by (—1) defines an elliptic paraboloid that “opens” in the opposite
direction.

%
Elliptic Cone, 2> == + =

z Plane Trace A
x=0 Crossed Lines < //\
p— i /
y=0 Crossed Lines 7\ in plane

in plane
y=d 4=

y=0
x=d Hyperbola \<, y >
y=d Hyperbola X NN x
5 d in plane 4 __)

Ellipse s—d

One can rewrite the equation as 22 — x?/a*> — y?/b?> = 0. The one variable with a positive
coefficient corresponds to the axis that the cones “open” along.
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N y z
Ellipsoid, ol + b + 2 =1
4 Plane Trace
) x=d Ellipse
y=d Ellipse
z=d Ellipse
=)
in plane
y=20

If a = b = c # 0, the ellipsoid is a sphere with radius a; compare to Key |dea 46.

in plane
z=20

in plane
x=20

Hyperboloid of One Sheet, );— + yo_z_ 1

! Plane Trace
x=d Hyperbola
y=d Hyperbola
z=d Ellipse

) —— |

The one variable with a negative coefficient corresponds to the axis that the hyperboloid “opens”

along.

-

in plane
z=0

in plane
x=0



Hyperboloid of Two Sheets,

—

—

X y

a?  b?
Plane Trace
x=d Hyperbola
y=d Hyperbola
z=d Ellipse

in plane
y=20

The one variable with a positive coefficient corresponds to the axis that the hyperboloid “opens”
along. In the case illustrated, when |d| < |c|, there is no trace.

in plane
x=20

in plane
z=d

Hyperbolic Paraboloid,

in plane
x=20

=

L
o

2 2

x
<

2

Plane Trace
x=d Parabola
y=d Parabola
z=d Hyperbola
in plane
z=d z

(d>0)\

in plane

z=d \)/

(d <0)

The parabolic traces will open along the axis of the one variable that is raised to the first power.
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N

(b)

Figure 10.14:  Sketching an elliptic
paraboloid.

z

3
- —3
X3 y
-3
X

(a)

z

e

(b)

Figure 10.15: Sketching an ellipsoid.

540

Example 317 Sketching quadric surfaces
Sketch the quadric surface defined by the given equation.
XZ ZZ yZ 22
l.y="+>= 2.4+ += =1, 3.2=y% — X
=716 t9ty Y
SOLUTION
x 7
lL.y=—+4 —:
V=7 16
We first identify the quadric by pattern—matching with the equations given
previously. Only two surfaces have equations where one variable is raised
to the first power, the elliptic paraboloid and the hyperbolic paraboloid.
In the latter case, the other variables have different signs, so we conclude
that this describes a hyperbolic paraboloid. As the variable with the first
power is y, we note the parboloid opens along the y-axis.
To make a decent sketch by hand, we need only draw a few traces. In this
case, the traces x = 0 and z = 0 form parabolas that outline the shape.
x = 0: The trace is the parabolay = 22/16
z = 0: The trace is the parabola y = x2/4.
Graphing each trace in the respective plane creates a sketch as shown in
Figure 10.14 (a). This is enough to give an idea of what the paraboloid
looks like. The surface is filled in in (b).
2 2
y z
2.0+ 4+ =1
9 4
This is an ellipsoid. We can get a good idea of its shape by drawing the
traces in the coordinate planes.
y2 ZZ
x = 0: The trace is the ellipse = + — = 1. The major axis is along the
y—axis with length 6 (as b = 3, the length of the axis is 6); the minor axis
is along the z-axis with length 4.
2
z
y = 0: The trace is the ellipse x* + 7 1. The major axis is along the
z-axis, and the minor axis has length 2 along the x-axis.
2
z = 0: The trace is the ellipse x* + % = 1, with major axis along the
y-axis.
Graphing each trace in the respective plane creates a sketch as shown in
Figure 10.15 (a). Filling in the surface gives Figure 10.15 (b).
3.z= y2 — X%
Notes:



10.1 Introduction to Cartesian Coordinates in Space

This defines a hyperbolic paraboloid, very similar to the one shown in the
gallery of quadric sections. Consider the traces inthe y—z and x—z planes:

x = 0: The trace is z = y?, a parabola opening up in the y — z plane.
y = 0: The trace is z = —x?, a parabola opening down in the x — z plane.

Sketching these two parabolas gives a sketch like that in Figure 10.16 (a),
and filling in the surface gives a sketch like (b).

Example 318 Identifying quadric surfaces
Consider the quadric surface shown in Figure 10.17. Which of the following
equations best fits this surface?

2

z
(a) xz—yz—E:O () Z2Z—-x*—-y*=1
2
z
b) -y -Z=1 () &-y-5=1
SOLUTION The image clearly displays a hyperboloid of two sheets. The
2
gallery informs us that the equation will have a form similar to Z—z — Z—i — % =

We can immediately eliminate option (a), as the constant in that equation is
not 1.

The hyperboloid “opens” along the x-axis, meaning x must be the only vari-
able with a positive coefficient, eliminating (c).

The hyperboloid is wider in the z-direction than in the y-direction, so we
need an equation where ¢ > b. This eliminates (b), leaving us with (d). We
should verify that the equation given in (d), 4x> — y?> — % = 1, fits.

We already established that this equation describes a hyperboloid of two
sheets that opens in the x-direction and is wider in the z-direction than in the
y. Now note the goefﬁcient of the x-term. Rewriting 4x? in standard form, we

X
(1/2)*
hyperboloid “starts” at x = 1/2. This matches our figure.

2

z
We conclude that 4x* — y? — 5= 1 best fits the graph.

have: 4x*> = Thus when y = 0 and z = 0, x must be 1/2; i.e., each

This section has introduced points in space and shown how equations can
describe surfaces. The next sections explore vectors, an important mathematical
object that we’ll use to explore curves in space.

Notes:

(b)

Figure 10.16: Sketching a hyperbolic
paraboloid.

z
3
(}<§
11 3 y
-3

Figure 10.17: A possible equation of this
quadric surface is found in Example 318.
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Exercises 10.1

Terms and Concepts

1. Axes drawn in space must conform to the

rule.

2. In the plane, the equation x = 2 defines a ; in
space, x = 2 defines a

3. In the plane, the equation y = x defines a ;in
space, y = x* defines a

4. Which quadric surface looks like a Pringles® chip?

5. Consider the hyperbola x> — y> = 1 in the plane. If this
hyperbola is rotated about the x-axis, what quadric surface
is formed?

6. Consider the hyperbola x> — y> = 1 in the plane. If this
hyperbola is rotated about the y-axis, what quadric surface
is formed?

Problems

7. The points A = (1,4,2), B = (2,6,3) and C = (4,3,1)
form a triangle in space. Find the distances between each
pair of points and determine if the triangle is a right trian-
gle.

8. The points A = (1,1,3), B = (3,2,7), C = (2,0,8) and
D = (0,—1,4) form a quadrilateral ABCD in space. Is this
a parallelogram?

9. Find the center and radius of the sphere defined by
X —8x+y2+2y+zz+8:0.
10. Find the center and radius of the sphere defined by
Ay +2+4x—2y—4z+4=0.

In Exercises 11 — 14, describe and sketch the regions in space
defined by the inequalities.

1. X +y* +72 <1
12. 0<x <3
13. x>0,y>0,z>0
14. y>3
In Exercises 15 — 18, sketch the cylinder in space.

15. z=x°

16. y =cosz
2 2
X y
17. —+—=1
4+9
1
18. y = —
X

In Exercises 19 — 22, give the equation of the surface of revo-
lution described.

1
19. Revolve z = —— about the y-axis.
142

20. Revolvey = x* about the x-axis.
21. Revolve z = x* about the z-axis.

22. Revolve z = 1/x about the z-axis.

In Exercises 23 — 26, a quadric surface is sketched. Determine
which of the given equations best fits the graph.

23.
2 2
2, Z 2
= — b — —
(@ «x vt (b) x vt 3
24,
(@) ¥*—y*—2=0 (b) ¥*—y*+22=0
25.
(a)
26.

VX -2 =1

@ y—-x¥-2=1 (b)
In Exercises 27 — 32, sketch the quadric surface.

27. z—y2—|—x2:0
2

y
28. 2 =x"+%
T
29. x = —y* — 2
30. 16x° — 16y° — 162 =1
2 2
X 2 V4
31. = — =1
s VT3

32. P+ 20+ =4



10.2 An Introduction to Vectors

Many quantities we think about daily can be described by a single number: tem-
perature, speed, cost, weight and height. There are also many other concepts
we encounter daily that cannot be described with just one number. For instance,
a weather forecaster often describes wind with its speed and its direction (“. ..
with winds from the southeast gusting up to 30 mph ...”). When applying a
force, we are concerned with both the magnitude and direction of that force.
In both of these examples, direction is important. Because of this, we study
vectors, mathematical objects that convey both magnitude and direction infor-
mation.

One “bare—bones” definition of a vector is based on what we wrote above:
“a vector is a mathematical object with magnitude and direction parameters.”
This definition leaves much to be desired, as it gives no indication as to how
such an object is to be used. Several other definitions exist; we choose here a
definition rooted in a geometric visualization of vectors. It is very simplistic but
readily permits further investigation.

Definition 51 Vector

A vector is a directed line segment.
Given points P and Q (either in the plane or in space), we denote with
PQ the vector from P to Q. The point P is said to be the initial point of

the vector, and the point Q is the terminal point.

Thimagnitl.ﬂe, or norm of PQ is the length of the line segment PQ:
lPall=Ilprall.

Two vectors are equal if they have the same magnitude and direction.

Figure 10.18 shows multiple instances of the same vector. Each directed line
segment has the same direction and length (magnitude), hence each is the same
vector.

We use R? (pronounced “r two”) to represent all the vectors in the plane,
and use R3 (pronounced “r three”) to represent all the vectors in space.

Consider the vectors PQ and RS as shown in Figure 10.19. The vectors look to
be equal; that is, they seem to have the same length and direction. Indeed, they
are. Both vectors move 2 units to the right and 1 unit up from the initial point
to reach the terminal point. One can analyze this movement to measure the

Notes:

10.2 An Introduction to Vectors

Figure 10.18: Drawing the same vector
with different initial points.

Figure 10.19: Illustrating how equal vec-
tors have the same displacement.
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Chapter 10 Vectors

magnitude of the vector, and the movement itself gives direction information
(one could also measure the slope of the line passing through P and Q or R and
S). Since they have the same length and direction, these two vectors are equal.
This demonstrates that inherently all we care about is displacement; that is,
how far in the x, y and p055|bly zd directions the terminal point is from the initial
point. Both the vectos PQ and RS in Figure 10.19 have an x-displacement of 2
and a y-displacement of 1. This suggests a standard way of describing vectors
in the plane. A vector whose x-displacement is a and whose y-displacement is
b will have terminal point (a, b) when the initial point is the origin, (0, 0). This
leads us to a definition of a standard and concise way of referring to vectors.

Definition 52 Component Form of a Vector

1. The component form of a vector v in R?, whose terminal point is
(a, b) when its initial point is (0, 0), is (a, b) .

2. The component form of a vector V in R3, whose terminal point is
(a, b, c) when its initial point is (0,0, 0), is {(a, b, c) .

The numbers g, b (and ¢, respectively) are the components of v.

It follows from the definition that the component form of the vector P_Q’,
where P = (x1,y1) and Q = (x,y5) is
P_d: <X2 — X1,Y2 —y1> ;

in space, where P = (xq,y1,21) and Q = (2, ¥», Z2), the component form of PQ
is
PQ= (X, —X1,¥2 — y1,22 — 21) -

We practice using this notation in the following example.

Example 319 Using component form notation for vectors

1. Sketch the vector V = (2, —1) starting at P = (3, 2) and find its magni-
tude.

2. Find the component form of the vector w whose initial pointis R = (—3, —2)
and whose terminal pointis S = (—1,2).

3. Sketch the vector & = (2, —1, 3) starting at the point Q = (1,1,1) and
find its magnitude.

Notes:
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SOLUTION

1. Using P as the initial point, we move 2 units in the positive x-direction and
—1 units in the positive y-direction to arrive at the terminal point P/ =
(5,1), as drawn in Figure 10.20 (a).

The magnitude of V is determined directly from the component form:

17]l = V22 + (-1 = V5.

2. Using the note following Definition 52, we have
RS = (-1—(-3),2—(-2)) = (2,4).
One can readily see from Figure 10.20 (a) that the x- and y-displacement
of RS is 2 and 4, respectively, as the component form suggests.

3. Using Q as the initial point, we move 2 units in the positive x-direction,
—1 unit in the positive y-direction, and 3 units in the positive z-direction
to arrive at the terminal point @ = (3,0, 4), illustrated in Figure 10.20
(b).

The magnitude of i is:

@] =22+ 02 + 32 = V13.

Now that we have defined vectors, and have created a nice notation by which
to describe them, we start considering how vectors interact with each other.
That is, we define an algebra on vectors.

Notes:

10.2 An Introduction to Vectors

(a)

(b)

Figure 10.20: Graphing vectors in Exam-
ple 319.
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Definition 53 Vector Algebra

1. Let ¥ = (u1,up) and V = (v1,v,) be vectors in R?, and let ¢ be a
scalar.

(a) The addition, or sum, of the vectors 4 and V is the vector
U+ V= (up+vi,us+vy).

(b) The scalar product of c and V'is the vector
oV = c(vi,vy) = (cvy,cva) .

2. Let U = (uy,uy,u3) and vV = (v, v,, v3) be vectors in R3, and let ¢
be a scalar.

(a) The addition, or sum, of the vectors  and v is the vector
U+\7: <U1 +V1,U2+V2,U3 +V3>.
(b) The scalar product of ¢ and V is the vector

eV = ¢ (v1,Vva) = (cvi, cva, Cv3) .

In short, we say addition and scalar multiplication are computed “component—

wise.”
Example 320 Adding vectors
Sketch the vectors i = (1,3), V = (2,1) and & + V all with initial point at the
origin.
SOLUTION We first compute i + V.

d+v

(1,3)+(2,1)

)

These are all sketched in Figure 10.21.

& v

As vectors convey magnitude and direction information, the sum of vectors

also convey length and magnitude information. Adding i + V suggests the fol-
Figure 10.21: Graphingthe sum of vectors lowing idea:

in Example 320.

Notes:
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“Starting at an initial point, go out U, then go out V.”

This idea is sketched in Figure 10.22, where the initial point of V is the termi-
nal point of i. This is known as the “Head to Tail Rule” of adding vectors. Vector
addition is very important. For instance, if the vectors i and V represent forces
acting on a body, the sum i/ + V gives the resulting force. Because of various
physical applications of vector addition, the sum i + V is often referred to as the
resultant vector, or just the “resultant.”

Analytically, it is easy to see that 4 + V = vV + 4. Figure 10.22 also gives a
graphical representation of this, using gray vectors. Note that the vectors & and
V, when arranged as in the figure, form a parallelogram. Because of this, the
Head to Tail Rule is also known as the Parallelogram Law: the vector 4 + V is
defined by forming the parallelogram defined by the vectors i and V; the initial
point of 4 + V is the common initial point of parallelogram, and the terminal
point of the sum is the common terminal point of the parallelogram.

While not illustrated here, the Head to Tail Rule and Parallelogram Law hold
for vectors in R3 as well.

It follows from the properties of the real numbers and Definition 53 that

i—V=i+(—1)V

The Parallelogram Law gives us a good way to visualize this subtraction. We
demonstrate this in the following example.

Example 321 Vector Subtraction
Let & = (3,1) and V = (1, 2) . Compute and sketch & — V.

SOLUTION The computation of 4 — V is straightforward, and we show
all steps below. Usually the formal step of multiplying by (—1) is omitted and
we “just subtract.”

Figure 10.23 illustrates, using the Head to Tail Rule, how the subtraction can be
viewed as the sum & + (—V). The figure also illustrates how & — V can be ob-
tained by looking only at the terminal points of & and v (when their initial points
are the same).

Example 322 Scaling vectors

1. Sketch the vectors vV = (2, 1) and 2V with initial point at the origin.

Notes:

10.2 An Introduction to Vectors

v

Figure 10.22: Illustrating how to add vec-
tors using the Head to Tail Rule and Paral-
lelogram Law.

Figure 10.23: lllustrating how to subtract
vectors graphically.
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PAY

N]
v

Figure 10.24: Graphing vectors vV and 2V
in Example 322.

548

2. Compute the magnitudes of V and 2v.

SOLUTION

1. We compute 2V:

20=2(2,1)
— (3,2).

These are sketched in Figure 10.24. Make note that 2V does not start at
the terminal point of V; rather, its initial point is also the origin.

2. The figure suggests that 2V is twice as long as V. We compute their mag-
nitudes to confirm this.

= V5.

| 27| = /42 + 22
=20
=4 .5=24/5.

As we suspected, 2V is twice as long as V.

The zero vector is the vector whose initial point is also its terminal point. It
is denoted by 0. Its component form, in R?, is (0,0); in R3, itis (0,0, 0). Usually
the context makes is clear whether O is referring to a vector in the plane or in
space.

Our examples have illustrated key principles in vector algebra: how to add
and subtract vectors and how to multiply vectors by a scalar. The following the-
orem states formally the properties of these operations.

Notes:
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Theorem 84 Properties of Vector Operations

The following are true for all scalars ¢ and d, and for all vectors i, vV and
w, where U, V and w are all in R? or where &, V and w are all in R3:

L i+v=v+i Commutative Property
2. (+V)+w=d+ {V+w) Associative Property
3. y+0=1v Additive Identity

5. c(U+ V) =cii+cv Distributive Property

Distributive Property

7.0.-v=0
8. |[ v = e[| V]|
9. || @] = 0if and only if, 7 = 0.

As stated before, each vector v conveys magnitude and direction informa-
tion. We have a method of extracting the magnitude, which we write as || V ||.
Unit vectors are a way of extracting just the direction information from a vector.

Definition 54 Unit Vector

A unit vector is a vector vV with a magnitude of 1; that is,

V][ = 1.

Consider this scenario: you are given a vector vVand are told to create a vector
of length 10 in the direction of V. How does one do that? If we knew that i was
the unit vector in the direction of v/, the answer would be easy: 10u. So how do
we find 4 ?

Property 8 of Theorem 84 holds the key. If we divide V by its magnitude, it
becomes a vector of length 1. Consider:

v

[EEY

= [| V] (we can pull out ﬁ as it is a scalar)

<!

Notes:
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So the vector of length 10 in the direction of Vis 10 - - V. An example will

make this more clear.

Example 323 Using Unit Vectors
Let V= (3,1) and letw = (1,2, 2).

1. Find the unit vector in the direction of V.

al 2. Find the unit vector in the direction of w.
.l 3. Find the vector in the direction of V with magnitude 5.
Bl
11 SOLUTION
Q
% 1. We find || V || = v/10. So the unit vector 4 in the direction of Vis
t t X
2 4 R 1 < 3 1 >
u= V= , .
V10 4v/10 /10

Figure 10.25: Graphing vectors in Exam-
ple 323. All vectors shown have their ini-

o o 2. We find || W || = 3, so the unit vector Z in the direction of W is
tial point at the origin.

L 1 122
u=-—w-=— Ty Ty X .
3 3'3°3

3. To create a vector with magnitude 5 in the direction of v, we multiply the
unit vector & by 5. Thus 50 = (15/+/10,5/1/10) is the vector we seek.
This is sketched in Figure 10.25.

The basic formation of the unit vector & in the direction of a vector v leads
to a interesting equation. It is:

We rewrite the equation with parentheses to make a point:

. . 1
V=1Vl '<||V||”>'
—~— —

magnitude direction

This equation illustrates the fact that a vector has both magnitude and di-
rection, where we view a unit vector as supplying only direction information.
Identifying unit vectors with direction allows us to define parallel vectors.

Notes:
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Definition 55 Parallel Vectors

1. Unit vectors 4, and U, are parallel if 4y = £i>.

2. Nonzero vectors V; and v, are parallel if their respective unit vec-
tors are parallel.

It is equivalent to say that vectors V; and v, are parallel if there is a scalar
¢ # 0 such that v; = ¢V, (see marginal note).

If one graphed all unit vectors in R? with the initial point at the origin, then
the terminal points would all lie on the unit circle. Based on what we know from
trigonometry, we can then say that the component form of all unit vectors in R?
is {(cos 8, sin &) for some angle 6.

A similar construction in R3 shows that the terminal points all lie on the unit
sphere. These vectors also have a particular component form, but its derivation
is not as straightforward as the one for unit vectors in R2. Important concepts
about unit vectors are given in the following Key Idea.

Key Idea 49 Unit Vectors

1. The unit vector in the direction of V is

[EEY

U= V.

<i{

2. Avector i in R? is a unit vector if, and only if, its component form
is (cos 0, sin ) for some angle 6.

3. Avector i in R? is a unit vector if, and only if, its component form
is (sin @ cos v, sin @ sin @, cos #) for some angles 6 and .

These formulas can come in handy in a variety of situations, especially the
formula for unit vectors in the plane.

Example 324 Finding Component Forces

Consider a weight of 50lb hanging from two chains, as shown in Figure 10.26.
One chain makes an angle of 30° with the vertical, and the other an angle of
45°. Find the force applied to each chain.

SOLUTION Knowing that gravity is pulling the 501b weight straight down,

Notes:

10.2 An Introduction to Vectors

Note: 0 is directionless; because || 0 || =
0, there is no unit vector in the “direction”
of 0.

Some texts define two vectors as being
parallel if one is a scalar multiple of the
other. By this definition, 0is parallel to
all vectors as 0 = 0V for all V.

We prefer the given definition of parallel
as it is grounded in the fact that unit vec-
tors provide direction information. One
may adopt the convention that 0 is paral-
lel to all vectors if they desire. (See also
the marginal note on page 573.)

Figure 10.26: A diagram of a weight hang-
ing from 2 chains in Example 324.
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Figure 10.27: A diagram of the force vec-
tors from Example 324.

552

we can create a vector F to represent this force.
F=50(0,—1) = (0, —50) .

We can view each chain as “pulling” the weight up, preventing it from falling.
We can represent the force from each chain with a vector. Let F; represent the
force from the chain making an angle of 30° with the vertical, and let F, repre-
sent the force form the other chain. Convert all angles to be measured from the
horizontal (as shown in Figure 10.27), and apply Key Idea 49. As we do not yet
know the magnitudes of these vectors, (that is the problem at hand), we use m,
and m; to represent them.

Fr=m (cos 120°, sin 120°)
F, =m, (cos 45°, sin 45°)
As the weight is not moving, we know the sum of the forces is 0. This gives:
F+F+F=0
(0, —50) + m; (cos 120°, sin 120°) + m, (cos 45°, sin 45°) = 0

The sum of the entries in the first component is 0, and the sum of the entries
in the second component is also 0. This leads us to the following two equations:

mj cos 120° + m, cos45° = 0
my sin 120° + m; sin45° = 50

This is a simple 2-equation, 2-unkown system of linear equations. We leave it to
the reader to verify that the solution is

50v/2
1++3

It might seem odd that the sum of the forces applied to the chains is more
than 50lb. We leave it to a physics class to discuss the full details, but offer this
short explanation. Our equations were established so that the vertical compo-
nents of each force sums to 50Ib, thus supporting the weight. Since the chains
are at an angle, they also pull against each other, creating an “additional” hori-
zontal force while holding the weight in place.

my =50(v/3—-1)~366; m,= ~ 25.88.

Unit vectors were very important in the previous calculation; they allowed
us to define a vector in the proper direction but with an unknown magnitude.
Our computations were then computed component—wise. Because such calcu-
lations are often necessary, the standard unit vectors can be useful.

Notes:
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Definition 56 Standard Unit Vectors
1. In R?, the standard unit vectors are
=(1,0) and j=(0,1).
2. In R3, the standard unit vectors are

—=(1,0,0) and j=(0,1,0) and k= (0,0,1).

Example 325 Using standard unit vectors

1. Rewrite V = (2, —3) using the standard unit vectors.

2. Rewrite w = 47 — 5f+ 2k in component form.

SOLUTION
1 =(2,-3)
=(2,0) +(0,-3)
=2(1,0)—3(0,1)
=2i—3f
2. W =47 — 5]+ 2k
= (4,0,0) + (0, —5,0) + (0,0,2)
= (4,-5,2)

These two examples demonstrate that converting from component form to/from
using the standard unit vectors is rather straightforward. Many mathematicians
prefer component form, and it is the preferred notation in this text. Many en-
gineers prefer using the standard unit vectors, and many engineering text use
that notation.

Example 326 Finding Component Force

A weight of 25lb is suspended from a chain of length 2ft while a wind pushes the
weight to the right with constant force of 5lb as shown in Figure 10.28. What
angle will the chain make with the vertical as a result of the wind’s pushing?
How much higher will the weight be?

Figure 10.28: A figure of a weight being
pushed by the wind in Example 326.

Notes:
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SOLUTION The force of the wind is represented by the vector F,, = 51,
The force of gravity on the weight is represented by l?g = —25ﬁ The direction
and magnitude of the vector representing the force on the chain are both un-
known. We represent this force with

-

Fe = m (cos o, sinp) = mcos i+ msingj

for some magnitude m and some angle with the horizontal . (Note: @ is the
angle the chain makes with the vertical; ¢ is the angle with the horizontal.)
As the weight is at equilibrium, the sum of the forces is 0:

Fot+Fu+Fy=0
mecos @i+ msingj+ 5 — 25 =0

Thus the sum of the 7 and fcomponents are 0, leading us to the following
system of equations:

54+ mcosp =0
_ (10.1)

—25+4+msinp =0
This is enough to determine F. already, as we know mcosyp = —5 and
msing = 25. Thus F, = (—5,25). We can use this to find the magnitude

" m = \/(=5)% 4+ 252 = 51/26.

We can then use either equality from Equation (10.1) to solve for ¢. We choose
the first equality as using arccosine will return an angle in the 2" quadrant:

-5
54+5V26cosp=0 = @ =cos () ~ 1.7682 ~ 101.31°.

5v26

Subtracting 90° from this angle gives us an angle of 11.31° with the vertical.

We can now use trigonometry to find out how high the weight is lifted.
The diagram shows that a right triangle is formed with the 2ft chain as the hy-
potenuse with an interior angle of 11.31°. The length of the adjacent side (in
the diagram, the dashed vertical line) is 2 cos 11.31° ~ 1.96ft. Thus the weight
is lifted by about 0.04ft, almost 1/2in.

The algebra we have applied to vectors is already demonstrating itself to be
very useful. There are two more fundamental operations we can perform with
vectors, the dot product and the cross product. The next two sections explore
each in turn.

Notes:



Exercises 10.2

Terms and Concepts

1. Name two different things that cannot be described with
just one number, but rather need 2 or more numbers to
fully describe them.

2. What is the difference between (1, 2) and (1, 2)?
3. What is a unit vector?
4. What does it mean for two vectors to be parallel?

5. What effect does multiplying a vector by —2 have?

Problems

In Exercises 6 — 9, points P and Q are given. Write the vector
PQ in component form and using the standard unit vectors.

6. P=(2,-1), Q=(3,5)

7. P=(3,2), Q= (7,-2)

8. P=(0,3,-1), Q=(6,2,5)
9. P=(2,1,2), Q=(4,3,2)
10. Letd = (1,—2)and vV = (1,1).

(a) Findd +V, 4 —V, 24 — 3V.

(b) Sketch the above vectors on the same axes, along
with & and V.

(c) Find Xwhere i +xX = 2V — X.

11. Letd = (1,1,—1)and vV = (2,1, 2).

(@) Find@ + v, d — v, 7ii — /2.

(b) Sketch the above vectors on the same axes, along
with ¢ and V.

(c) Find Xwhere i +X = vV + 2X.

In Exercises 12 — 15, sketch 4, V, i + vV and 4 — V on the same
axes.

y
u
12.
X
v
y
u
13.
X
v
z
14. v
u
X y
z
u
15.
X v y



In Exercises 16 — 19, find || 4 ||, || V||, || G+ V|| and || 4 — V||. In Exercises 28 — 31, angles ¢ and ¢ are given. Find the force

16.
17.
18.
19.
20.

i=(2,1), v=(3,-2) applied to each chain.
i=(-3,22), v=(1,-11) 28. 6 =30°, ¢ =30°
i=(1,2), V=(-3,-6)

i=(2,-3,6), v=(10,—15,30)

Under what conditions is || & || + || 7|| = || @+ 7|2 30. 6 =20° ¢=15°

29. 0 =60°, ¢ =60°

In Exercises 21 — 24, find the unit vector i/ in the direction of 3. #=0° ©=0°

—

V.
21.
22.
23.
24,
25.

26.

27.

A weight of 100lb is suspended from two chains, making an-
gles with the vertical of  and ¢ as shown in the figure below.

V=(3,7) A weight of 1lb is suspended from a chain of length ¢ while
. ’ a constant force of F,, pushes the weight to the right, making
v=(6,8) an angle of § with the vertical, as shown in the figure below.
V= (1,-2,2)
V=1(2,-2,2)

Find the unit vector in the first quadrant of R? that makes
a 50° angle with the x-axis.

Find the unit vector in the second quadrant of R? that
makes a 30° angle with the y-axis.

Verify, from Key Idea 49, that & = (sin 6 cos i, sin @ sin p, cos )

is a unit vector for all angles 6 and .

In Exercises 32 — 35, a force F,, and length ¢ are given. Find
the angle 6 and the height the weight is lifted as it moves to
the right.

0 32. F,=1b, (=1ft, p=1lb

33. Fy =1lb, {=1ft, p=10Ib

m 34. Fy=1lb, ¢=10ft, p=1lb

35. F, =10lb, ¢=10ft, p=1lb



10.3 The Dot Product

The previous section introduced vectors and described how to add them to-
gether and how to multiply them by scalars. This section introduces a multi-
plication on vectors called the dot product.

Definition 57 Dot Product

1. Letd = (uy,u;) and V = (vq,v,) in R2. The dot product of i and
v, denoted i - V, is

u-v= Uqivy + Uz vy.

2. Letd = (uy,uy,us3) and V = (v1, vy, v3) in R3. The dot product of
U and v, denoted 4 - V, is

u-v= Uq1Vvq + Uavy + Uszvs.

Note how this product of vectors returns a scalar, not another vector. We
practice evaluating a dot product in the following example, then we will discuss
why this product is useful.

Example 327 Evaluating dot products

1. Letd = (1,2),v=(3,—-1) inR2 Find 4 - V.

2. letX=(2,-2,5)andy = (—1,0,3) in R3. Find X - y/.

SOLUTION

1. Using Definition 57, we have

G-v=103)+2(-1) = 1.

2. Using the definition, we have

X-§=2(—1) —2(0) + 5(3) = 13.

Notes:

10.3 The Dot Product
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(a)

(b)

Figure 10.29: lllustrating the angle
formed by two vectors with the same
initial point.
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The dot product, as shown by the preceding example, is very simple to eval-
uate. Itis only the sum of products. While the definition gives no hint as to why
we would care about this operation, there is an amazing connection between
the dot product and angles formed by the vectors. Before stating this connec-
tion, we give a theorem stating some of the properties of the dot product.

Theorem 85 Properties of the Dot Product

Let &, V and w be vectors in R? or R? and let ¢ be a scalar.
1. g-v=v-4 Commutative Property

2.0-(V+wW)=0d-V+id-w Distributive Property

The last statement of the theorem makes a handy connection between the
magnitude of a vector and the dot product with itself. Our definition and theo-
rem give properties of the dot product, but we are still likely wondering “What
does the dot product mean?” It is helpful to understand that the dot product of
a vector with itself is connected to its magnitude.

The next theorem extends this understanding by connecting the dot product
to magnitudes and angles. Given vectors i/ and Vin the plane, an angle is clearly
formed when i and V are drawn with the same initial point asillustrated in Figure
10.29 (a). (We always take 6 to be the angle in [0, 7] as two angles are actually
created.)

The same is also true of 2 vectors in space: given & and Vin R3 with the same
initial point, there is a plane that contains both ¢ and V. (When & and V are co-
linear, there are infinite planes that contain both vectors.) In that plane, we can
again find an angle 6 between them (and again, 0 < 0 < ). This is illustrated
in Figure 10.29 (b).

The following theorem connects this angle 6 to the dot product of ¢ and V.

Notes:



Theorem 86 The Dot Product and Angles

Let & and v be vectors in R? or R3. Then

U-v=||udl|||V]|cos®,

where 6,0 < 0 < T, is the angle between & and V.

When 6 is an acute angle (i.e., 0 < 6 < 7/2), cos @ is positive; when 6 =
7/2, cos@ = 0; when 0 is an obtuse angle (7/2 < 6 < ), cos is negative.
Thus the sign of the dot product gives a general indication of the angle between
the vectors, illustrated in Figure 10.30.

<i

v

9 0=rm/2 \Cﬁ
u a

i-v>0 u-v=0 u-v<o

Figure 10.30: lllustrating the relationship between the angle between vectors and the
sign of their dot product.

We can use Theorem 86 to compute the dot product, but generally this the-
orem is used to find the angle between known vectors (since the dot product is
generally easy to compute). To this end, we rewrite the theorem’s equation as

osf— UV L g5t ()
[alfll vl [aflllvil

We practice using this theorem in the following example.
Example 328 Using the dot product to find angles
Letd = (3,1), V= (—2,6) and w = (—4, 3), as shown in Figure 10.31. Find the

angles «, 5 and 6.

SOLUTION We start by computing the magnitude of each vector.

ld]l=vio; [|V][=2V10; [[w]|=5.

Notes:

U

10.3 The Dot Product

<l

Figure 10.31: Vectors used in Example

328.
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Figure 10.32: Vectors used in Example
329.
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We now apply Theorem 86 to find the angles.

o= cos ((JEL;(';JE))

=cos 1(0) = = = 90°.

N

_ cos-1 (26>
10v/10

~ 0.6055 ~ 34.7°.

- (57m)

~ 2.1763 ~ 124.7°

We see from our computation that o + 8 = 6, as indicated by Figure 10.31.
While we knew this should be the case, it is nice to see that this non-intuitive
formula indeed returns the results we expected.

We do a similar example next in the context of vectors in space.

Example 329 Using the dot product to find angles
Letd = (1,1,1), Vv = (—1,3,—2) and w = (-5, 1,4), as illustrated in Figure
10.32. Find the angle between each pair of vectors.

SOLUTION

1. Between i and V:

Notes:



2. Between dand w:

3. Between Vand w:

While our work shows that each angle is 7/2, i.e., 90°, none of these angles
looks to be a right angle in Figure 10.32. Such is the case when drawing three—
dimensional objects on the page.

All three angles between these vectors was 7/2, or 90°. We know from
geometry and everyday life that 90° angles are “nice” for a variety of reasons,
so it should seem significant that these angles are all /2. Notice the common
feature in each calculation (and also the calculation of « in Example 328): the
dot products of each pair of angles was 0. We use this as a basis for a definition
of the term orthogonal, which is essentially synonymous to perpendicular.

Definition 58 Orthogonal

Vectors 4 and v are orthogonal if their dot product is 0.

Example 330 Finding orthogonal vectors
Let i = (3,5)and vV = (1,2,3).

1. Find two vectors in R? that are orthogonal to 4.

2. Find two non—parallel vectors in R3 that are orthogonal to V.

SOLUTION

Notes:

10.3 The Dot Product

Note: The term perpendicular originally
referred to lines. As mathematics pro-
gressed, the concept of “being at right
angles to” was applied to other objects,
such as vectors and planes, and the term
orthogonal was introduced. It is espe-
cially used when discussing objects that
are hard, or impossible, to visualize: two
vectors in 5-dimensional space are or-
thogonal if their dot product is 0. It is not
wrong to say they are perpendicular, but
common convention gives preference to
the word orthogonal.
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(b)

Figure 10.33: Developing the construc-
tion of the orthogonal projection.
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1.

Recall that a line perpendicular to a line with slope m have slope —1/m,
the “opposite reciprocal slope.” We can think of the slope of & as 5/3, its
“rise over run.” A vector orthogonal to d will have slope —3/5. There are
many such choices, though all parallel:

(—5,3) or (5—-3) or (-10,6) or (15, —9), etc.

. There are infinite directions in space orthogonal to any given direction,

so there are an infinite number of non—parallel vectors orthogonal to V.
Since there are so many, we have great leeway in finding some.

One way is to arbitrarily pick values for the first two components, leaving
the third unknown. Forinstance, letV; = (2,7, 2). If V; is to be orthogonal
toV, thenvy -v=0, so

—16

Sov; = (2,7,—16/3) is orthogonal to V. We can apply a similar technique
by leaving the first or second component unknown.

Another method of finding a vector orthogonal to v mirrors what we did
inpart 1. Let v, = (—2,1,0). Here we switched the first two components
of v, changing the sign of one of them (similar to the “opposite reciprocal”
concept before). Letting the third component be 0 effectively ignores the
third component of v, and it is easy to see that

Vo V= (-2,1,0)-(1,2,3) = 0.

Clearly v; and v, are not parallel.

An important construction is illustrated in Figure 10.33, where vectors i and
V are sketched. In part (a), a dotted line is drawn from the tip of i to the line
containing V, where the dotted line is orthogonal to V. In part (b), the dotted
line is replaced with the vector Zand w is formed, parallel to V. It is clear by the
diagram that ¢ = w + Z. What is important about this construction is this: 4 is
decomposed as the sum of two vectors, one of which is parallel to Vand one that
is perpendicular to V. It is hard to overstate the importance of this construction
(as we'll see in upcoming examples).

The vectors w, 7 and &/ as shown in Figure 10.33 (b) form a right triangle,
where the angle between v and i is labeled 6. We can find w in terms of V and

u.

Using trigonometry, we can state that

W]l =|ld]|cos. (10.2)

Notes:



We also know that w is parallel to to V; that is, the direction of w is the
direction of v, described by the unit vector ﬁ\?. The vector w is the vector in

the direction él\ v with magnitude || i || cos 6:

1
v

W= (HJHCOS@)

Replace cos 6 using Theorem 86:

= (Wl o
IEIEIAK

u-v
= ——V.
INais

Now apply Theorem 85.

I
<t
<t

<i
<!

Since this construction is so important, it is given a special name.

Definition 59 Orthogonal Projection

Let 4 and V be given. The orthogonal projection of i onto v, denoted

proj; 4, is
L UV,
projyu = =—V.
V-v
Example 331 Computing the orthogonal projection

1. Letd = (—2,1) and V = (3,1). Find proj; d, and sketch all three vectors
with initial points at the origin.

2. Letw = (2,1,3) and X = (1,1,1). Find projzw, and sketch all three
vectors with initial points at the origin.

SOLUTION

Notes:

10.3 The Dot Product

563



Chapter 10 Vectors

1. Applying Definition 59, we have

A L d
projy; i = =——=Vv
2+ V-V
- - -5
u 1 v =— (3,1
- 1 1 ; X _ _§ _}
—2" 1 2 3 - 27 2/
projyi _q |
S Vectors 4, V and proj; U are sketched in Figure 10.34 (a). Note how the
projection is parallel to V/; that is, it lies on the same line through the origin
(@) as v, although it points in the opposite direction. That is because the angle
between & and V is obtuse (i.e., greater than 90°).

2. Apply the definition:

I
—~
N
~N

N
=

These vectors are sketched in Figure 10.34 (b), and again in part (c) from
a different perspective. Because of the nature of graphing these vectors,
the sketch in part (b) makes it difficult to recognize that the drawn projec-
tion has the geometric properties it should. The graph shown in part (c)
illustrates these properties better.

Consider Figure 10.35 where the concept of the orthogonal projection is
again illustrated. It is clear that

d=projyi+7Z. (10.3)

) ) This leads us to rewrite Equation (10.3) in a seemingly silly way:
Figure 10.34: Graphing the vectors used

in Example 331. i = projy i + (@ — proj ; i).

This is not nonsense, as pointed out in the following Key Idea. (Notation note:
the expression “|| ¥” means “is parallel to ¥” We can use this notation to state

Notes:

Figure 10.35: Illustrating the orthogonal
projection.
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“X || y” which means “X is parallel to y” The expression “L y” means “is or-
thogonal to y,” and is used similarly.)

Key Idea 50 Orthogonal Decomposition of Vectors

Let & and V be given. Then i can be written as the sum of two vectors,
one of which is parallel to v, and one of which is orthogonal to v:

U =projyd + (i — proj; ).
—— ———

| v 17

We illustrate the use of this equality in the following example.

Example 332 Orthogonal decomposition of vectors

1. Letd = (—2,1) and V = (3, 1) as in Example 331. Decompose i as the
sum of a vector parallel to V and a vector orthogonal to V.

2. Letw = (2,1,3) and X = (1,1,1) as in Example 331. Decompose w as
the sum of a vector parallel to X and a vector orthogonal to X.

SOLUTION

1. In Example 331, we found that proj; i = (—1.5,—0.5). Let
Z=1i—projyi=(—2,1) — (—1.5,-0.5) = (—0.5,1.5) .

Is Z orthogonal to v? (l.e, is Z L v ?) We check for orthogonality with the

dot product:
Z-v=(-0.5,1.5)-(3,1) = 0.

Since the dot product is 0, we know Z L V. Thus:
proj; U + (U — proj; )
(—1.5,-0.5) + (—0.5,1.5).

v v

<_27 1>

2. We found in Example 331 that proj; w = (2, 2,2). Applying the Key Idea,
we have:

F=w—projyw = (2,1,3) — (2,2,2) = (0, ~1,1).

Notes:

10.3 The Dot Product
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att

=~

- projzg
g

(b)
Figure 10.36: Sketching the ramp and box

in Example 333. Note: The vectors are not
drawn to scale.

We check to see if Z L X:
7-%¥=(0,-1,1)- (1,1,1) = 0.

Since the dot product is 0, we know the two vectors are orthogonal. We
now write w as the sum of two vectors, one parallel and one orthogonal
to X:

We give an example of where this decomposition is useful.

Example 333 Orthogonally decomposing a force vector

Consider Figure 10.36 (a), showing a box weighing 50lb on a ramp that rises 5ft
over a span of 20ft. Find the components of force, and their magnitudes, acting
on the box (as sketched in part (b) of the figure):

1. in the direction of the ramp, and

2. orthogonal to the ramp.

SOLUTION As the ramp rises 5ft over a horizontal distance of 20ft, we can
represent the direction of the ramp with the vector ¥ = (20, 5). Gravity pulls
down with a force of 50lb, which we represent with g = (0, —50).

1. Tofind the force of gravity in the direction of the ramp, we compute projg:

. g-r,
projzg = >—=
r-r
—250

= — (20,5

425 (20,5)

200 50

= (- -~ )~ (-11.76,-2.94).
17 17

The magnitude of projzg is || projzg || = 50/v/17 =~ 12.13Ib. Though
the box weighs 50Ib, a force of about 12lb is enough to keep the box from
sliding down the ramp.

2. To find the component Z of gravity orthogonal to the ramp, we use Key
Idea 50.

Z=g—proj;g
3 <2oo 800

= (=, —-== ) ~ (11.76, —47.06) .
17’ 17

Notes:



The magnitude of this force is || Z|| = 48.51Ib. In physics and engineering,
knowing this force is important when computing things like static frictional
force. (For instance, we could easily compute if the static frictional force
alone was enough to keep the box from sliding down the ramp.)

Application to Work

In physics, the application of a force F to move an object in a straight line a
distance d produces work; the amount of work Wis W = Fd, (where Fis in the
direction of travel). The orthogonal projection allows us to compute work when
the force is not in the direction of travel.

Consider Figure 10.37, where a force Fis being applied to an object moving
in the direction of d. (The distance the object travels is the magnitude of 3.) The
work done is the amount of force in the direction of d, || proj ‘;,E ||, times || d |:

o Eod.ll -
[lproigFll-I1d] = || =—d || -IId[|
F.d
=i Ndll-1d]|
Fod
= ——||d||
| d|
:\ﬁ.a‘.

The expression F . d will be positive if the angle between Fanddis acute;
when the angle is obtuse (hence F - dis negative), the force is causing motion
in the opposite direction of d, resulting in “negative work.” We want to capture
this sign, so we drop the absolute value and find that W = F - d.

Definition 60 Work

LetFbea constant force that moves an objectina stralght line from point
P to point Q. Let d = PQ. The work W done by F along disW=F-d.

Example 334 Computing work
A man slides a box along a ramp that rises 3ft over a distance of 15ft by applying
50Ib of force as shown in Figure 10.38. Compute the work done.

Notes:

10.3 The Dot Product

't

4—) projgl?

d

Figure 10.37: Finding work when the
force and direction of travel are given as
vectors.
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SOLUTION The figure indicates that the force applied makes a 30° an-
gle with the horizontal, so F = 50 (cos 30°,5in 30°) ~ (43.3,25). The ramp is
represented by d = (15, 3). The work done is simply

-

F-d =50 (cos 30°,sin30°) - (15,3) ~ 724.5ft-Ib.

Note how we did not actually compute the distance the object traveled, nor
the magnitude of the force in the direction of travel; this is all inherently com-
puted by the dot product!

Figure 10.38: Computing work when slid-

ing a box up a ramp in Example 334. The dot product is a powerful way of evaluating computations that depend
onangles without actually using angles. The next section explores another “prod-
uct” on vectors, the cross product. Once again, angles play an important role,
though in a much different way.

Notes:
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Exercises 10.3

Terms and Concepts

1. The dot product of two vectors is a , hot a vector.

2. How are the concepts of the dot product and vector mag-
nitude related?

3. How can one quickly tell if the angle between two vectors
is acute or obtuse?

Iu

4. Give a synonym for “orthogona

Problems

In Exercises 5 — 11, find the dot product of the given vectors.

5. 6= (2,-4),V=(3,7)
6.
7. =
8
9

vV

10. ¥ =(1,2,3),v=(0,0,0)

11. Create your own vectors i, ¥ and w in R? and show that
i-(V+w)=u0-v+ud-w.

12. Create your own vectors i and V'in R? and scalar c and show
that c(i - V) = u - (cv).

In Exercises 13 — 16, find the measure of the angle between
the two vectors in both radians and degrees.

13. = (1,1),7 = (1,2)
14, 0= (—2,1),V = (3,5)

15. 7= (8,1,—4),V = (2,2,0)
16. 4= (1,7,2),V = (4,—2,5)

In Exercises 17 — 20, a vector V is given. Give two vectors that
are orthogonal to V.

17. V= (4,7)
18. V= (—3,5)
19. V= (1,1,1)
20. V=(1,-2,3)

In Exercises 21 — 26, vectors U and v are given. Find proj; 0,
the orthogonal projection of i onto V, and sketch all three
vectors on the same axes.

21, 4=(1,2),v=(-1,3)

22. 4= (5,5),v=(1,3)

23. U=(-3,2),v={(1,1)

24, 4=(-3,2),v=1(2,3)

25. 4 =(1,5,1),v=(1,2,3)
(

26. U= (3,-1,2),v=(2,2,1)

In Exercises 27 — 32, vectors i/ and V are given. Write i/ as the
sum of two vectors, one of which is parallel to vV and one of
which is perpendicular to V. Note: these are the same pairs
of vectors as found in Exercises 21 — 26.

27. G=(1,2),V=(-1,3)

28. 4= (5,5),v=(1,3)

29. 0= (-3,2),v=(1,1)

30. U =(-3,2),V=1(2,3)

31. ¥ =(1,5,1),v=(1,2,3)
32. U= (3,-1,2),v=(2,2,1)

33. A 10lb box sits on a ramp that rises 4ft over a distance of
20ft. How much force is required to keep the box from slid-
ing down the ramp?

34. A 10lb box sits on a 15ft ramp that makes a 30° angle with
the horizontal. How much force is required to keep the box
from sliding down the ramp?

35. How much work is performed in moving a box horizontally
10ft with a force of 20lb applied at an angle of 45° to the
horizontal?

36. How much work is performed in moving a box horizontally
10ft with a force of 20lb applied at an angle of 10° to the
horizontal?

37. How much work is performed in moving a box up the length
of a ramp that rises 2ft over a distance of 10ft, with a force
of 50Ib applied horizontally?

38. How much work is performed in moving a box up the length
of a ramp that rises 2ft over a distance of 10ft, with a force
of 50lb applied at an angle of 45° to the horizontal?

39. How much work is performed in moving a box up the length
of a 10ft ramp that makes a 5° angle with the horizontal,
with 501b of force applied in the direction of the ramp?
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10.4 The Cross Product

“Orthogonality” is immensely important. A quick scan of your current environ-
ment will undoubtedly reveal numerous surfaces and edges that are perpendic-
ular to each other (including the edges of this page). The dot product provides
a quick test for orthogonality: vectors & and V are perpendicular if, and only if,
g-v=0.

Given two, non—parallel vectors 4 and V in space, it is very useful to find a
vector w that is perpendicular to both i and V. There is a operation, called the
cross product, that creates such a vector. This section defines the cross product,

then explores its properties and applications.

Definition 61 Cross Product

Let & = (u1,u,us3) and V = (vi,v,,v3) be vectors in R3. The cross
product of i and v/, denoted i/ x V, is the vector

Uxv= <U2V3 — UzVs, 7(U1V3 — U3V1), uivy; — U2V1> .

This definition can be a bit cumbersome to remember. After an example we
will give a convenient method for computing the cross product. For now, careful
examination of the products and differences given in the definition should reveal
a pattern that is not too difficult to remember. (For instance, in the first compo-
nent only 2 and 3 appear as subscripts; in the second component, only 1 and 3
appear as subscripts. Further study reveals the order in which they appear.)

Let’s practice using this definition by computing a cross product.

Example 335 Computing a cross product
Letd = (2,—1,4) and V = (3,2,5). Find i x v, and verify that it is orthogonal
to both i and v.

SOLUTION Using Definition 61, we have
ixvV=((-1)5-(4)2,—((2)5—(4)3),(2)2 — (-1)3) = (-13,2,7).

(We encourage the reader to compute this product on their own, then verify
their result.)
We test whether or not &7 x V is orthogonal to i and V using the dot product:

(GxV)-d=(-13,2,7)- (2,—1,4) =0,

(U x V) v=(-13,2,7) - (3,2,5) = 0.

Notes:



As each of these dot products is zero, i x Vis indeed orthogonal to both i and V..

A convenient method of computing the cross product starts with forming a
particular 3 x 3 matrix, or rectangular array. The first row comprises the stan-
dard unit vectorsf:ﬁ and k. The second and third rows are the vectors i and v,
respectively. Using i and vV from Example 335, we begin with:

iJ ok
2 -1 4
3 2 5

Now repeat the first two columns after the original three:

iq kT
2 -1 4 2 -1
3 2 53 2

This gives three full “upper left to lower right” diagonals, and three full “up-
per right to lower left” diagonals, as shown. Compute the products along each
diagonal, then add the products on the right and subtract the products on the
left:

—3k 8 10/ —5i 12] 4k
ixV=(—5+12/+4k) — (—3k+8+10]) = —13i+2/+ 7k = (~13,2,7).
We practice using this method.

Example 336 Computing a cross product
Letd = (1,3,6) and V= (—1,2,1). Compute both & X Vand V x &.

SOLUTION To compute i x V, we form the matrix as prescribed above,
complete with repeated first columns:

[ S
1 3 6 1 3
-1 2 1 -1 2

We let the reader compute the products of the diagonals; we give the result:

Ux V=31 —6+2k) — (—3k+127+]) = (-9,-7,5).

Notes:

10.4

The Cross Product
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To compute V x U, we switch the second and third rows of the above matrix,

then multiply along diagonals and subtract:

(e}
[EN

Note how with the rows being switched, the products that once appeared on

the right now appear on the left, and vice—versa. Thus the result is:

Vx b= (121 +]—3k) — (2k+ 37— &) = (9,7, -5),

which is the opposite of i x V. We leave it to the reader to verify that each of

these vectors is orthogonal to i and V.

Properties of the Cross Product

It is not coincidence that vV x & = — (i x V) in the preceding example; one
can show using Definition 61 that this will always be the case. The following
theorem states several useful properties of the cross product, each of which can

be verified by referring to the definition.

Theorem 87 Properties of the Cross Product

Let i, Vand w be vectors in R? and let ¢ be a scalar. The following identities hold:

1. Uxv=—(Vxi Anticommutative Property
2. (@ (+V)xw=0xw+Vxw Distributive Properties
(b) x (V+w)=UxvV+idxw

Orthogonality Properties

Triple Scalar Product

We introduced the cross product as a way to find a vector orthogonal to
two given vectors, but we did not give a proof that the construction given in

Notes:



10.4

Definition 61 satisfies this property. Theorem 87 asserts this property holds; we
leave it as a problem in the Exercise section to verify this.

Property 5 from the theorem is also left to the reader to prove in the Exercise
section, but it reveals something more interesting than “the cross product of a
vector with itselfis 0.” Let 4 and V be parallel vectors; that is, let there be a scalar
¢ such that vV = cu. Consider their cross product:

X
U xu) (byProperty 3 of Theorem 87)
=0. (by Property 5 of Theorem 87)

We have just shown that the cross product of parallel vectors is 0. This hints
at something deeper. Theorem 86 related the angle between two vectors and
their dot product; there is a similar relationship relating the cross product of two
vectors and the angle between them, given by the following theorem.

The Cross Product

Note: Definition 58 (through Theorem

Theorem 88 The Cross Product and Angles 86) defines @ and ¥ to be orthogonal if
Let & and V be vectors in R3. Then 4 -V = 0. We could use Theorem 88 to
define 4 and V are parallel if ¥ x V = 0. By

|| U x \7|| = || u || || \7|| sin @, such a definition, 0 would be both orthog-

onal and parallel to every vector. Appar-

where 6,0 < 0 < , is the angle between & and V. ent paradoxes such as this are not uncom-
mon in mathematics and can be very use-

ful. (See also the marginal note on page

551.)
Note that this theorem makes a statement about the magnitude of the cross
product. When the angle between iand Vis 0 or 7 (i.e., the vectors are parallel),
the magnitude of the cross product is 0. The only vector with a magnitude of 0
is 0 (see Property 9 of Theorem 84), hence the cross product of nonzero parallel
vectors is 0.

We demonstrate the truth of this theorem in the following example.

Example 337 The cross product and angles
Let i = (1,3,6) and V = (—1,2,1) as in Example 336. Verify Theorem 88 by
finding 0, the angle between ¢ and V, and the magnitude of 4 x V.

Notes:
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Figure 10.39: lllustrating the Right Hand
Rule of the cross product.
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SOLUTION We use Theorem 86 to find the angle between i and V.

iV
QZCOS_1 (_,_,>
all [l vl

o ()

~ 0.8471 = 48.54°.

Our work in Example 336 showed that ix vV = (—9, —7,5), hence || Ux V|| =

V155, Is || g x V|| = || d]||| V]| sin ? Using numerical approximations, we find:
[| 4 x V| =155 |G ||| V||sin6 = v461/65in0.8471
~ 12.45. ~ 12.45.

Numerically, they seem equal. Using a right triangle, one can show that

(o () 2

which allows us to verify the theorem exactly.

Right Hand Rule

The anticommutative property of the cross product demonstrates that 4 x vV
and vV x i differ only by a sign —these vectors have the same magnitude but point
in the opposite direction. When seeking a vector perpendicular to ¢ and vV, we
essentially have two directions to choose from, one in the direction of & x Vand
one in the direction of V x u. Does it matter which we choose? How can we tell
which one we will get without graphing, etc.?

Another wonderful property of the cross product, as defined, is that it fol-
lows the right hand rule. Given & and v in R? with the same initial point, point
the index finger of your right hand in the direction of & and let your middle finger
point in the direction of V (much as we did when establishing the right hand rule
for the 3-dimensional coordinate system). Your thumb will naturally extend in
the direction of i x V. One can “practice” this using Figure 10.39. If you switch,
and point the index finder in the direction of v and the middle finger in the di-
rection of U, your thumb will now point in the opposite direction, allowing you
to “visualize” the anticommutative property of the cross product.

Applications of the Cross Product
There are a number of ways in which the cross product is useful in mathe-

matics, physics and other areas of science beyond “just” finding a vector per-
pendicular to two others. We highlight a few here.

Notes:



Area of a Parallelogram

It is a standard geometry fact that the area of a parallelogram is A = bh,
where b is the length of the base and h is the height of the parallelogram, as
illustrated in Figure 10.40 (a). As shown when defining the Parallelogram Law of
vector addition, two vectors i and V define a parallelogram when drawn from
the same initial point, as illustrated in Figure 10.40 (b). Trigonometry tells us
that h = || i || sin 0, hence the area of the parallelogram is

A=|[dll[[v]lsing =[ldxVl], (10.4)
where the second equality comes from Theorem 88. We illustrate using Equa-
tion (10.4) in the following example.

Example 338 Finding the area of a parallelogram

1. Find the area of the parallelogram defined by the vectors & = (2,1) and
= (1,3).

2. Verify that the points A = (1,1,1), B = (2,3,2), C = (4,5,3) and
D = (3,3,2) are the vertices of a parallelogram. Find the area of the
parallelogram.

SOLUTION

1. Figure 10.41 (a) sketches the parallelogram defined by the vectors u and
V. We have a slight problem in that our vectors exist in R?, not R3, and
the cross product is only defined on vectors in R3. We skirt this issue by
viewing i and V as vectors in the x—y plane of R3, and rewrite them as i =
(2,1,0) and vV = (1,3,0). We can now compute the cross product. It is
easy to show that i x v = (0, 0, 5); therefore the area of the parallelogram
isSA=|lUxV| =5.

2. To show that the quadrilateral ABCD is a parallelogram (shown in Figure
10.41 (b)), we need to show that the opp05|te 5|des are parallel. We can
quickly show that AB = DC = (1,2,1) and BC = AD = (2,2 ,1). We find
the area by computing the magnitude of the cross product of AB and BC:

ABxBC=(0,1,—2) = ||ABxBC| =5~ 2.236.

This application is perhaps more useful in finding the area of a triangle (in
short, triangles are used more often than parallelograms). We illustrate this in
the following example.

Notes:

10.4 The Cross Product

(a)

<y

<i{

(b)

Figure 10.40: Using the cross product to
find the area of a parallelogram.

(b)

Figure 10.41: Sketching the parallelo-
grams in Example 338.
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Figure 10.42: Finding the area of a trian-
gle in Example 339.

Note: The word “parallelepiped” is pro-
nounced “parallel-eh—pipe-ed.”

W

<l

Figure 10.43: A parallelepiped is the three
dimensional analogue to the parallelo-
gram.

Figure 10.44: A parallelepiped in Example
340.
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Example 339 Area of a triangle
Find the area of the triangle with vertices A = (1,2), B = (2,3)and C = (3,1),
as pictured in Figure 10.42.

SOLUTION We found the area of this triangle in Example 200 to be 1.5
using integration. There we discussed the fact that finding the area of a triangle
can be inconvenient using the ”%bh" formula as one has to compute the height,
which generally involves finding angles, etc. Using a cross product is much more
direct.

We can choose any two sides of the triangle to use to form vectors; we
choose AB = (1,1) and AC = (2,—1). As in the previous example, we will
rewrite these vectors with a third component of 0 so that we can apply the cross
product. The area of the triangle is

1, - — 1 1 3
1148 x A || = Sl (1,1,0) x (2,-1,0) || = 51| (0,0,-3) || = >.

We arrive at the same answer as before with less work.

Volume of a Parallelepiped

The three dimensional analogue to the parallelogram is the parallelepiped.
Each face is parallel to the face opposite face, as illustrated in Figure 10.43. By
crossing vV and w, one gets a vector whose magnitude is the area of the base.
Dotting this vector with & computes the volume of parallelepiped! (Up to a sign;
take the absolute value.)

Thus the volume of a parallelepiped defined by vectors 4, vV and w is

V=i (Vxw). (10.5)

Note how this is the Triple Scalar Product, first seen in Theorem 87. Applying
the identities given in the theorem shows that we can apply the Triple Scalar
Product in any “order” we choose to find the volume. That is,

V =

|- (Vxw)|=|d-(wxV)|=]|(UxV) w, etc

Example 340 Finding the volume of parallelepiped

Find the volume of the parallepiped defined by the vectors & = (1,1,0), Vv =
(=1,1,0) and w = (0,1, 1).

SOLUTION We apply Equation (10.5). We first find vV x w = (1,1, —1).
Then
l0- (Vxw)|=](1,1,0) (1,1, -1)[ = 2.

So the volume of the parallelepiped is 2 cubic units.

Notes:



10.4 The Cross Product

While this application of the Triple Scalar Product is interesting, it is not used
all that often: parallelepipeds are not a common shape in physics and engineer-
ing. The last application of the cross product is very applicable in engineering.

Torque

Torque is a measure of the turning force applied to an object. A classic sce-
nario involving torque is the application of a wrench to a bolt. When a force is
applied to the wrench, the bolt turns. When we represent the force and wrench
with vectors F and E we see that the bolt moves (because of the threads) in a di-
rection orthogonal to F and ‘. Torque is usually represented by the Greek letter
T, or tau, and has units of N-m, a Newton—meter, or ft:Ib, a foot—pound.

While a fuII understanding of torque is beyond the purposes of this book,
when a force Fis applied to a lever arm E the resulting torque is

-

=IxF (10.6)

Example 341 Computing torque
Alever of length 2ft makes an angle with the horizontal of 45°. Find the resulting
torque when a force of 10lb is applied to the end of the level where:

1. the force is perpendicular to the lever, and

2. the force makes an angle of 60° with the lever, as shown in Figure 10.45.

Figure 10.45: Showing a force being ap-

plied to a lever in Example 341.
SOLUTION

1. We start by determining vectors for the force and lever arm. Since the
lever arm makes a 45° angle with the horizontal and is 2ft long, we can
state that £ = 2 (cos 45°,sin45°) = (v/2,/2) .

Since the force vector is perpendicular to the lever arm (as seen in the
left hand side of Figure 10.45), we can conclude it is making an angle of
—45° with the horizontal. As it has a magnitude of 10lb, we can state
F = 10 (cos —45°,sin —45°) = (51/2, —51/2)..

Using Equation (10.6) to find the torque requires a cross product. We
again let the third component of each vector be 0 and compute the cross

product:
—UxF
<ﬁ, ﬁ,o> x <5\f2, —5ﬁ7o>
= (0,0, —20)
Notes:
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This clearly has a magnitude of 20 ft-Ib.

We can view the force and lever arm vectors as lying “on the page”; our
computation of 7 shows that the torque goes “into the page.” This follows
the Right Hand Rule of the cross product, and it also matches well with the
example of the wrench turning the bolt. Turning a bolt clockwise moves
itin.

. Our lever arm can still be represented by 7= <ﬂ, \/§> As our force

vector makes a 60° angle with Z we can see (referencing the right hand
side of the figure) that F makes a —15° angle with the horizontal. Thus

5(1++/3) 5(1+\/§)>

F = 10 (cos —15°, sin —15°) = -
< ) > < \/i ) \/i
~ (9.659, —2.588) .

We again make the third component 0 and take the cross product to find
the torque:

—»

X F

5(1++3) 5(1++3)
) (B )

I
o~ Nl

0,0,—10v/3 >
~ (0,0,-17.321) .
As one might expect, when the force and lever arm vectors are orthogo-

nal, the magnitude of force is greater than when the vectors are not or-
thogonal.

While the cross product has a variety of applications (as noted in this chap-
ter), its fundamental use is finding a vector perpendicular to two others. Know-
ing a vector orthogonal to two others is of incredible importance, as it allows
us to find the equations of lines and planes in a variety of contexts. The impor-
tance of the cross product, in some sense, relies on the importance of lines and
planes, which see widespread use throughout engineering, physics and mathe-
matics. We study lines and planes in the next two sections.

Notes:



Exercises 10.4

Terms and Concepts

1. The cross product of two vectors is a not a
scalar.

2. One can visualize the direction of & X V using the

Iu

3. Give a synonym for “orthogonal.

4. T/F: A fundamental principle of the cross product is that
U x Vis orthogonal to ¢ and V.

5. is a measure of the turning force applied to an
object.

Problems

In Exercises 6 — 14, vectors i and V are given. Compute i/ X V

and show this is orthogonal to both i and V.

6. U= (3,2,-2), Vv=(0,1,5)

7. i=(5,-4,3), V=(2,-5,1)
8. U= (4,-5,—5), V=(3,3,4)
9. U= (—4,7,—-10), = (4,4,1)
10. @ = (1,0, > V= (5,0,7)

11. G = (1,5,—4), ¥=(—2,-10,8)
12. =1 V:f

13. G=1, v=k

14. G=j, v=k

15. Pickanyvectors i, vand winR® and show that i (V4-w) =
Uxv+iuxw.
16. Pickany vectors i, ¥and w in R® and show that - (Vx W) =
(U xV)-w.
In Exercises 17 — 20, the magnitudes of vectors & and vV in R?

are given, along with the angle 6 between them. Use this in-
formation to find the magnitude of i x V.

17. ||| =2, ||V]|=5 6=30°
18. [|id]| =3, ||V]l=7 6=n/2
19. [|d]| =3 ||V]=4 6=x

20. ||i@||=2 ||V||=5 6=51/6

In Exercises 21 — 24, find the area of the parallelogram de-
fined by the given vectors.

21. @ =(1,1,2), v=(2,0,3)
22. i =(-2,1,5), V=(-1,3,1)
23. G=(1,2), V=(21)

24. G =(2,0), V=1(0,3)

In Exercises 25 — 28, find the area of the triangle with the
given vertices.

25. Vertices: (0,0,0), (1,3,—1) and (2,1, 1).
)

26. Vertices: (5,2,—1), (3,6,2) and (1,0,4).

27. Vertices: (1,1), (1,3) and (2, 2).
28. Vertices: (3,1), (1,2) and (4, 3).

In Exercises 29 — 30, find the area of the quadrilateral with
the given vertices. (Hint: break the quadrilateral into 2 trian-
gles.)

29. Vertices: (0,0), (1,2), (3,0) and (4, 3).

30. Vertices: (0,0,0), (2,1,1), (—1,2,—8) and (1, —1,5).

In Exercises 31 — 32, find the volume of the parallelepiped
defined by the given vectors.

31 G=(1,1,1), v=(1,2,3), w=/(1,0,1)

32, U=(-1,2,1), v=(2,2,1), w=(3,1,3)

In Exercises 33 — 36, find a unit vector orthogonal to both &/
and V.

33. U= (1,1,1),

35. 0=

(
34. = (1,-2,1),
(
36. U= (

37. A bicycle rider applies 150lb of force, straight down,
onto a pedal that extends 7in horizontally from the
crankshaft. Find the magnitude of the torque applied to
the crankshaft.

38. A bicycle rider applies 150lb of force, straight down, onto
a pedal that extends 7in from the crankshaft, making a 30°
angle with the horizontal. Find the magnitude of the torque
applied to the crankshaft.

39. To turn a stubborn bolt, 80lb of force is applied to a 10in
wrench. What is the maximum amount of torque that can
be applied to the bolt?

40. To turn a stubborn bolt, 80lb of force is applied to a 10in
wrench in a confined space, where the direction of ap-
plied force makes a 10° angle with the wrench. How much
torque is subsequently applied to the wrench?

41. Show, using the definition of the Cross Product, that 4 (i x
V) = 0; that is, that i is orthogonal to the cross product of
dandV.

42. Show, using the definition of the Cross Product, that i x i =
0.
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Figure 10.47: Defining a line in space.
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10.5 Lines

To find the equation of a line in the x — y plane, we need two pieces of informa-
tion: a point and the slope. The slope conveys direction information. As vertical
lines have an undefined slope, the following statement is more accurate:

To define a line, one needs a point on the line and the direction of
the line.

This holds true for lines in space.

Let P be a point in space, let g be the vector with initial point at the origin
and terminal point at P (i.e., g “points” to P), and let d be a vector. Consider the
points on the line through P in the direction of d.

Clearly one point on the line is P; we can say that the vector p lies at this
point on the line. To find another point on the line, we can start at g and move
in a direction parallel to d. For instance, starting at p and traveling one length of
d places one at another point on the line. Consider Figure 10.47 where certain
points along the line are indicated.

The figure illustrates how every point on the line can be obtained by starting
with p and moving a certain distance in the direction of d. That is, we can define
the line as a function of t:

0ty =p+td. (10.7)

In many ways, this is not a new concept. Compare Equation (10.7) to the
familiar “y = mx + b” equation of a line:

Starting

=b + mx t p + td
How Far To /
Go In That
Direction

Figure 10.46: Understanding the vector equation of a line.

The equations exhibit the same structure: they give a starting point, define
a direction, and state how far in that direction to travel.

Equation (10.7) is an example of a vector-valued function; the input of the
functionis a real number and the output is a vector. We will cover vector-valued
functions extensively in the next chapter.

Notes:



There are other ways to represent a line. Let § = (o, yo,20) and let d=
(a, b, c). Then the equation of the line through g in the direction of d is:

i(t)y=p+td
= (Xo0,Y0,20) +t(a,b,c)
= (xo + at, yo + bt, zo + ct)

The last line states the the x values of the line are given by x = xo + at, the
y values are given by y = yo + bt, and the z values are given by z = z5 + ct.
These three equations, taken together, are the parametric equations of the line
through g in the direction of d.

Finally, each of the equations for x, y and z above contain the variable t. We
can solve for t in each equation:

X — Xo
X=Xo+at = t= ,

a
y=yo+bt = t:y_byo,

Z—2p
Zz=2zp+ct = t= Pt

assuming a, b, ¢ # 0. Since t is equal to each expression on the right, we can set
these equal to each other, forming the symmetric equations of the line through
p in the direction of d:

X—Xo Y—Yo Z—2o
a b c

Each representation has its own advantages, depending on the context. We
summarize these three forms in the following definition, then give examples of
their use.

Notes:

10.5 Lines
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Figure 10.48: Graphing a line in Example
342.
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Definition 62 Equations of Lines in Space

Consider the line in space that passes through g = (xo, yo,2) in the
direction of d = (a, b, c) .

1. The vector equation of the line is
0(t) = B+ td.
2. The parametric equations of the line are
X=Xxo+at, y=yo+bt, z=2z9+ct.

3. The symmetric equations of the line are

X—Xo Y—Yo Z—2o
a b c

Example 342 Finding the equation of a line
Give all three equations, as given in Definition 62, of the line through P = (2, 3,1)
in the direction of d = (—1, 1, 2). Does the point Q = (—1, 6, 6) lie on this line?

SOLUTION We identify the point P = (2,3,1) with the vector p =
(2,3,1). Following the definition, we have

o the vector equation of the line is £(t) = (2,3,1) + t (—1,1,2);
e the parametric equations of the line are

x=2—-t y=34+t z=1+42t; and

¢ the symmetric equations of the line are

x—2 y-3 z-1
-1 1 2

The first two equations of the line are useful when a t value is given: one
can immediately find the corresponding point on the line. These forms are good
when calculating with a computer; most software programs easily handle equa-
tions in these formats. (For instance, to make Figure 10.48, a certain graphics
program was given the input (2-x,3+x,1+2*x). This particular program re-
quires the variable always be “x” instead of “t”).

Notes:



10.5 Lines

Does the point Q = (—1,6,6) lie on the line? The graph in Figure 10.48
makes it clear that it does not. We can answer this question without the graph
using any of the three equation forms. Of the three, the symmetric equations
are probably best suited for this task. Simply plug in the values of x, y and z and
see if equality is maintained:

-1-226-3726-1
-1 1 2
We see that Q does not lie on the line as it did not satisfy the symmetric equa-
tions.

= 3=3+#£25

Example 343 Finding the equation of a line through two points
Find the parametric equations of the line through the points P = (2, —1, 2) and
Q=(1,3,-1).

SOLUTION Recall the statement made at the beginning of this section:
to find the equation of a line, we need a point and a direction. We have two
points; either one will suffice. The direction of the line can be found by the
vector with initial point P and terminal point Q: PQ = (—1,4, —3).

The parametric equations of the line £ through P in the direction of PQ are:

{: x=2—-t y=—-1+4t z=2-3t

A graph of the points and line are given in Figure 10.49. Note how in the
given parametrization of the line, t = 0 corresponds to the point P, andt = 1
corresponds to the point Q. This relates to the understanding of the vector equa-
tion of a line described in Figure 10.46. The parametric equations “start” at the
point P, and t determines how far in the direction of P_Ci to travel. Whent = 0,
we travel 0 lengths of P_Q’; when t = 1, we travel one length of P_Q’, resulting in
the point Q.

Figure 10.49: A graph of the line in Exam-
ple 343.

Parallel, Intersecting and Skew Lines

In the plane, two distinct lines can either be parallel or they will intersect
at exactly one point. In space, given equations of two lines, it can sometimes
be difficult to tell whether the lines are distinct or not (i.e., the same line can be
represented in different ways). Given lines Zl(t) = /5’1+tc_z”1 and @(t) =P, 1td,,
we have four possibilities: Zl and 672 are

the same line they share all points;

intersecting lines share only 1 point;

parallel lines d; || d>, no points in common; or

skew lines di }f d», no points in common.
Notes:
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Figure 10.50: Sketching the lines from Ex-
ample 344.
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The next two examples investigate these possibilities.

Example 344 Comparing lines
Consider lines £1 and /,, given in parametric equation form:

x = 143t X = —2+44s
bi:y = 2—t by: 'y = 3+s
z = t z = 5+42s.

Determine whether ¢, and ¢, are the same line, intersect, are parallel, or skew.

SOLUTION We start by looking at the directions of each line. Line ¢;
has the direction given by c71 = (3, —1, 1) and line ¢, has the direction given by
32 = (4,1, 2). It should be clear that 31 and 32 are not parallel, hence /; and 4,
are not the same line, nor are they parallel. Figure 10.50 verifies this fact (where
the points and directions indicated by the equations of each line are identified).

We next check to see if they intersect (if they do not, they are skew lines).
To find if they intersect, we look for t and s values such that the respective x, y
and z values are the same. That is, we want s and t such that:

1+3t = —2+4s
2—t = 3+s
t = 5+42s.

This is a relatively simple system of linear equations. Since the last equation is
already solved for t, substitute that value of t into the equation above it:

2—(54+2s)=3+s = s=-2,t=1

A key to remember is that we have three equations; we need to check if s =
—2, t = 1 satisfies the first equation as well:

1+4+3(1) # -2+ 4(-2).
It does not. Therefore, we conclude that the lines ¢, and ¢, are skew.

Example 345 Comparing lines
Consider lines /1 and /,, given in parametric equation form:

x = —0.7+416t X = 2.8 —209s
by y = 424272t l: y = 10.15—4.93s
z = 23-3.36t z = —5.05+6.09s.

Determine whether ¢, and ¢, are the same line, intersect, are parallel, or skew.

Notes:



SOLUTION It is obviously very difficult to simply look at these equations
and discern anything. This is done intentionally. In the “real world,” most equa-
tions that are used do not have nice, integer coefficients. Rather, there are lots
of digits after the decimal and the equations can look “messy.”

We again start by deciding whether or not each line has the same direction.
The direction of ¢; is given by d; = (1.6,2.72,—3.36) and the direction of ¢,
is given by d, = (—2.9,—4.93,6.09). When it is not clear through observation
whether two vectors are parallel or not, the standard way of determining this is
by comparing their respective unit vectors. Using a calculator, we find:

. dy
iy = —— = (0.3471,0.5901, —0.7289)
[l du ||
. d
0y = AT (—0.3471, —0.5901,0.7289) .
2

The two vectors seem to be parallel (at least, their components are equal to
4 decimal places). In most situations, it would suffice to conclude that the lines
are at least parallel, if not the same. One way to be sure is to rewrite 671 and 672
in terms of fractions, not decimals. We have

- 16 272 336 - 29 493 609
d1: an 181’ 110 d2: T AR Anmn’ 10 N
10" 100" 100 10° 100° 100
One can then find the magnitudes of each vector in terms of fractions, then

compute the unit vectors likewise. After a lot of manual arithmetic (or after
briefly using a computer algebra system), one finds that

. 10 17 21 _, 10 17 21
up = o5’ Je—rd /Y= u; = - os' Jer) e .
! 83’/830° /830 2 83’ /830" /830
We can now say without equivocation that these lines are parallel.
Are they the same line? The parametric equations for a line describe one
point that lies on the line, so we know that the point P, = (—0.7,4.2,2.3) lies

on /1. To determine if this point also lies on /,, plug in the x, y and z values of P,
into the symmetric equations for /5:

(-0.7) —2.8 7 (4.2) —10.15 7 (2.3) — (—5.05)
-2.9 - —4.93 - 6.09

The point P, lies on both lines, so we conclude they are the same line, just
parametrized differently. Figure 10.51 graphs this line anng with the points and
vectors described by the parametric equations. Note how d1 and dz are parallel,
though point in opposite directions (as indicated by their unit vectors above).

Notes:

= 1.2069 = 1.2069 = 1.2069.

10.5 Lines

5
Py
da
2 d, 10 Y
X4
-5
P,

Figure 10.51: Graphing the lines in Exam-
ple 345.
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PQ \

\

Figure 10.52: Establishing the distance
from a point to a line.

Figure 10.53: Establishing the distance
between lines.
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Distances

Given a point Q and a line Z(t) = B + td in space, it is often useful to know
the distance from the point to the line. (Here we use the standard definition
of “distance,” i.e., the length of the shortest line segment from the point to the
line.) Identifying g with the point P, Figure 10.52 will help establish a general
method of computing this distance h.

From trigonometry, we know h = || PQ || sin . We have a similar identity
involving the cross product: || PQ x d || = || PQ || || d || sin §. Divide both sides
of this latter equation by || d || to obtain h:

PG < d
,_IPdxdl

> (10.8)
Il

It is also useful to determine the distance between lines, which we define as
the length of the shortest line segment that connects the two lines (an argument
from geometry shows that this line segments is perpendicular to both lines). Let
lines ﬂ(t) = By + td; and Zz(t) = B, + td, be given, as shown in Figure 10.53.
To find the direction orthogonal to both 31 and Ejz, we take the cross product:
¢ = d; x dy. The magnitude of the orthogonal projection of P;P, onto Cis the
distance h we seek:

h = || projzP1P, ||

H PiP;-C
——C
¢-¢

= PR Ay
6

=

Il

A problem in the Exercise section is to show that this distance is 0 when the lines
intersect. Note the use of the Triple Scalar Product: PP, - ¢ = P1P, - (d1 X d).

The following Key Idea restates these two distance formulas.

Notes:



Key Idea 51 Distances to Lines

1. Let Pbe apointonaline £ thatis parallel to d. The distance h from
a point Q to the line £ is:

_lIPaxd]|
4]

2. Let Py be a point on line 61 that is paraIIeI to dl, and let P, be a
point on line ¢, parallel to dz, andletc = d1 X dz, where lines ¢,
and /, are not parallel. The distance h between the two lines is:

P.P; -
p= PP d
1<l
Example 346 Finding the distance from a point to a ILne
Find the distance from the point Q = (1,1, 3) to the line £(t) = (1,-1,1) +
t(2,3,1).
SOLUTION The equation of the line line gives us the pointP = (1, —1, 1)

that lies on the line, hence PQ = (0,2,2). The equation also gives d= (2,3,1).

Following Key Idea 51, we have the distance as

_|[Paxd]]
Id|l
_ H <_474a _4> H
V14
4+/3
4v3 ~ 1.852.
V14
The point Q is approximately 1.852 units from the line ﬁ(t).
Example 347 Finding the distance between lines
Find the distance between the lines
x = 1+3t X = —2+4s
bi:y = 2-t by = 3+s
z = t z = 5+42s.

Notes:

10.5 Lines
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SOLUTION These are the sames lines as given in Example 344, where
we showed them to be skew. The equations allow us to identify the following
points and vectors:

P1=(1,2,0) P,=(-2,3,5) = PP, =(-3,15).

d=(3,-1,1) dy=(4,1,2) = &=d xdp=(-3,-2,7).

From Key Idea 51 we have the distance h between the two lines is

The lines are approximately 5.334 units apart.

One of the key points to understand from this section is this: to describe a
line, we need a point and a direction. Whenever a problem is posed concern-
ing a line, one needs to take whatever information is offered and glean point
and direction information. Many questions can be asked (and are asked in the
Exercise section) whose answer immediately follows from this understanding.

Notes:



Exercises 10.5

Terms and Concepts

1. To find an equation of a line, what two pieces of informa-
tion are needed?

2. Two distinct lines in the plane can intersect or be

3. Two distinct lines in space can intersect, be or be

4. Use your own words to describe what it means for two lines
in space to be skew.

Problems

In Exercises 5 — 14, write the vector, parametric and symmet-
ric equations of the lines described.

5.
6.
7.

10.

11.

12.

13.
14.

Passes through P = (2, —4, 1), parallel to d= (9,2,5).

Passes through P = (6,1, 7), parallel to d= (—3,2,5).
Passes through P = (2,1,5) and Q = (7, —2,4).
Passes through P = (1,—-2,3)and Q = (5,5, 5).

Passes through P = (0, 1, 2) and orthogonal to both
dy = (2,—1,7)and d> = (7,1,3).

Passes through P = (5, 1,9) and orthogonal to both
dy = (1,0,1) and dy = (2,0,3).

Passes through the point of intersection of ¢1(t) and ¢, (t)
and orthogonal to both lines, where

£1(t) =(2,1,1) +t(5,1,-2) and

bH(t) = (=2,-1,2) + t(3,1,—1).

Passes through the point of intersection of ¢1(t) and ¢, (t)
and orthogonal to both lines, where

x=t x=2+t
bi=Qy=—-242t and L= y=2—-1t.
z=1+1t z=3+2t

Passes through P = (1, 1), parallel tod = (2, 3).

Passes through P = (—2,5), parallel to d = (0, 1).

In Exercises 15 — 22, determine if the described lines are the
same line, parallel lines, intersecting or skew lines. If inter-
secting, give the point of intersection.

15.

16.

61( ) =(1,2,1) +t(2,—1,1),

t) =(3,3,3) +t(—4,2,-2).

)
t) =(2,1,1) + t(5,1,3),
)

214
b
6(t) = (14,5,9) + t(1,1,1).

17. 6(t) = (3,4,1) + t(2,-3,4),
Zz(t) = <_3a 33 _3> + t<37 _274>'
18. 41(t) = (1,1,1) + t(3,1,3),
6(t) =(7,3,7) + t(6,2,6).

x=142t x=3—1t

19. /1 =< y=3—-2t and /(=< y=3+5t
z=t z=2+7t
x=1.1+0.6t x =3.11+ 3.4t

20. 6, =< y=3.774+09t and £, ={ y=2+5.1t
z=—-23+1.5t z=2.5+4 8.5t
x=0.2+ 0.6t x = 0.86 + 9.2t

21. /; =< y=1.33 —0.45t and/, = { y =0.835 — 6.9t
z=—4.2+1.05t z = —3.045 + 16.1t
x=0.1+1.1t x=4—21t

22. /p=C¢y=29—-15t and /(=<K y=18+47.2t
z=13.2+ 1.6t z=31+4+1.1t

In Exercises 23 — 26, find the distance from the point to the
line.

23. P=(1,1,1), £(t)=(2,1,3) +t(2,1,-2)

24. P=(2,5,6), £(t)=(-1,1,1)+t(1,0,1)

25. P=1(0,3), £(t)=(2,0) +t(1,1)

26. P=(1,1), £(t) = (4,5) +t(—4,3)

In Exercises 27 — 28, find the distance between the two lines.

27.

28.

él() (1,2,1) +£(2,-1,1),
( ) = < ) 7 > <4727 _2>'

Zl( ) = < ) 71> <170:0>l

ZZ() < ) 73> <O,1,0>.

Exercises 29 — 31 explore special cases of the distance formu-
las found in Key Idea 51.

29.

30.

31.

Let Q be a point on the line £(t). Show why the distance
formula correctly gives the distance from the point to the
line as 0.

Let lines £1(t) and ¢,(t) be intersecting lines. Show why
the distance formula correctly gives the distance between
these lines as 0.

Let lines ¢1(t) and £, (t) be parallel. Show why the distance
formula cannot be used as stated to find the distance be-
tween the lines, then show why letting ¢ = (P1P; x d2) X da
allows one to the use the given formula.
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Figure 10.54: Illustrating defining a plane
with a sheet of cardboard and a nail.
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10.6 Planes

Any flat surface, such as a wall, table top or stiff piece of cardboard can be
thought of as representing part of a plane. Consider a piece of cardboard with
a point P marked on it. One can take a nail and stick it into the cardboard at P
such that the nail is perpendicular to the cardboard; see Figure 10.54

This nail provides a “handle” for the cardboard. Moving the cardboard around
moves P to different locations in space. Tilting the nail (but keeping P fixed) tilts
the cardboard. Both moving and tilting the cardboard defines a different plane
in space. In fact, we can define a plane by: 1) the location of P in space, and 2)
the direction of the nail.

The previous section showed that one can define a line given a point on the
line and the direction of the line (usually given by a vector). One can make a
similar statement about planes: we can define a plane in space given a point on
the plane and the direction the plane “faces” (using the description above, the
direction of the nail). Once again, the direction information will be supplied by
a vector, called a normal vector, that is orthogonal to the plane.

What exactly does “orthogonal to the plane” mean? Choose any two points P
and Qin the plane, and consider the vector PQ. We say a vector 11 is orthogonal
to the plane if /i is perpendicular to PQ for all choices of P and Q; that is, if
7i-PQ=0forallPand Q.

This gives us way of writing an equation describing the plane. Let P =
(X0, Y0, 20) be a point in the plane and let i = (a, b, c) be a normal vector to
the plane. A point Q = (x, y, 2) lies in the plane defined by P and 7 if, and only
if, PQ is orthogonal to Ai. Knowing PQ = (X — Xo0,Y — Y0,2 — 2p), consider:

PQ-A=0
<X_X0;y_y07z_20> ! <a,b,C> =0
a(x —xo) + b(y —yo) +c(z—2)) =0 (10.9)

Equation (10.9) defines an implicit function describing the plane. More algebra
produces:

ax + by + ¢z = axg + byy + czg.
The right hand side is just a number, so we replace it with d:
ax + by +cz=d. (10.10)

As long as ¢ # 0, we can solve for z:

7 =

(d — ax — by). (10.11)

Notes:



Equation (10.11) is especially useful as many computer programs can graph func-
tions in this form. Equations (10.9) and (10.10) have specific names, given next.

Definition 63 Equations of a Plane in Standard and General Forms

The plane passing through the point P = (xo, Yo, Zo) with normal vector
i = (a, b, c) can be described by an equation with standard form

a(x —xo) + b(y — yo) + c(z — z9) = 0;
the equation’s general form is

ax+by+cz=d.

A key to remember throughout this section is this: to find the equation of a
plane, we need a point and a normal vector. We will give several examples of
finding the equation of a plane, and in each one different types of information
are given. In each case, we need to use the given information to find a point on
the plane and a normal vector.

Example 348 Finding the equation of a plane.
Write the equation of the plane that passes through the points P = (1,1,0),
Q=(1,2,—-1)and R = (0,1, 2) in standard form.

SOLUTION We need a vector A that is orthogonal to the plane Since P,
Q and R are i in the plane, so are the vectors PQ and PR PQ x PRis orthogonal
to PQ and PR and hence the plane itself.

It is straightforward to compute i = PQ x PR = (2,1,1). We can use any
point we wish in the plane (any of P, Q or R will do) and we arbitrarily choose P.
Following Definition 63, the equation of the plane in standard form is

2x—1)+(y—-1)+z=0.
The plane is sketched in Figure 10.55.

We have just demonstrated the fact that any three non-collinear points de-
fine a plane. (This is why a three-legged stool does not “rock;” it’s three feet
always lie in a plane. A four-legged stool will rock unless all four feet lie in the
same plane.)

Example 349 Finding the equation of a plane.
Verify that lines ¢; and ¢,, whose parametric equations are given below, inter-

Notes:

10.6 Planes

Figure 10.55: Sketching the plane in Ex-
ample 348.
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Figure 10.56: Sketching the plane in Ex-
ample 349.

Figure 10.57: The line and plane in Exam-
ple 350.
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sect, then give the equation of the plane that contains these two lines in general
form.

x = —5+42s X = 243t
61 Ly = 1+s gz y = 1-2t
z = —4+42s z = 1+t
SOLUTION The lines clearly are not parallel. If they do not intersect,

they are skew, meaning there is not a plane that contains them both. If they do
intersect, there is such a plane.

To find their point of intersection, we set the x, y and z equations equal to
each other and solve for s and t:

—5+25s = 243t
1+4s = 1-2t = s=2, t=-1
—4+2s = 1+t

When s = 2 and t = —1, the lines intersect at the point P = (—1, 3,0).

letd; = (2,1,2) and d, = (3,—2,1) be the directions of lines ¢; and /,,
respectively. A normal vector to the plane containing these the two lines will
also be orthogonal to 31 and 32. Thus we find a normal vector /i by computing
A=dy xdy=1(54-7).

We can pick any point in the plane with which to write our equation; each
line gives us infinite choices of points. We choose P, the point of intersection.
We follow Definition 63 to write the plane’s equation in general form:

5x+1)+4(y—3)—7z2=0
5+5+4y—-12-72=0
S5x+4y—7z=17.

The plane’s equation in general form is 5x + 4y — 7z = 7; it is sketched in Figure
10.56.

Example 350 Finding the equation of a plane

Give the equation, in standard form, of the plane that passes th@ugh the point

P = (—1,0,1)andis orthogonal to the line with vector equation £(t) = (—1,0,1)+
t(1,2,2).

SOLUTION As the plane is to be orthogonal to the line, the plane must
be orthogonal to the direction of the line given by d = (1,2, 2). We use this as
our normal vector. Thus the plane’s equation, in standard form, is

(x+1)+2y+2(z—1)=0.

Notes:



The line and plane are sketched in Figure 10.57.

Example 351 Finding the intersection of two planes
Give the parametric equations of the line that is the intersection of the planes
p1 and p,, where:

pr:x—(y—2)+(z—-1)=0
p2:—2x—2)+(y+1)+(z-3)=0

SOLUTION To find an equation of a line, we need a point on the line and
the direction of the line.
We can find a point on the line by solving each equation of the planes for z:

pr:z=—x+y—1
pr:z=2x—y—2

We can now set these two equations equal to each other (i.e., we are finding
values of x and y where the planes have the same z value:

—X+y—1=2x—-y—2
2y =3x—1

1
=>(3x—1
y JX )

We can choose any value for x; we choose x = 1. This determines thaty = 1.
We can now use the equations of either plane to find z:. whenx = 1landy =1,
z = —1 on both planes. We have found a point P on the line: P = (1,1, —1).

We now need the direction of the line. Since the line lies in each plane,
its direction is orthogonal to a normal vector for each plane. Considering the
equations for p; and p,, we can quickly determine a normal vector. For p1, i, =
(1,-1,1) and for py, i, = (—2,1,1). A direction orthogonal to both of these
directions is their cross product: d = fi; x A, = (—2,-3,-1).

The parametric equations of the line through P = (1,1, —1) in the direction
ofd=(-2,-3,-1)is:

£: x=-2t4+1 y=-3t+1 z=—-t—1.
The planes and line are graphed in Figure 10.58.

Example 352 Finding the intersection of a plane and a line
Find the point of intersection, if any, of the line ¢(t) = (3, -3, —1) +t(—1,2,1)
and the plane with equation in general form 2x + y + z = 4.

Notes:

10.6 Planes

Figure 10.58: Graphing the planes and
their line of intersection in Example 351.
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Figure 10.59: Illustrating the intersection
of a line and a plane in Example 352.
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Figure 10.60: lllustrating finding the dis-
tance from a point to a plane.
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SOLUTION The equation of the plane shows that the vector i = (2,1, 1)
is a normal vector to the plane, and the equation of the line shows that the line
moves parallel to d = (—1,2,1). Since these are not orthogonal, we know
there is a point of intersection. (If there were orthogonal, it would mean that
the plane and line were parallel to each other, either never intersecting or the
line was in the plane itself.)

To find the point of intersection, we need to find a t value such that #(t)
satisfies the equation of the plane. Rewriting the equation of the line with para-
metric equations will help:

x=3-—t
Lt)y=qy=—-3+2t.
z=-1+1t

Replacing x, y and z in the equation of the plane with the expressions containing
t found in the equation of the line allows us to determine a t value that indicates
the point of intersection:

2Xx+y+z=4
2B3—-t)+(-34+2t)+(-1+t)=4
t=2.

When t = 2, the point on the line satisfies the equation of the plane; that point
is £(2) = (1,1,1). Thus the point (1,1, 1) is the point of intersection between
the plane and the line, illustrated in Figure 10.59.

Distances

Just as it was useful to find distances between points and lines in the previous
section, it is also often necessary to find the distance from a point to a plane.

Consider Figure 10.60, where a plane with normal vector i is sketched con-
taining a point P and a point Q, not on the plane, is given. We measure the
distance from Q to the plane by measuring the length of the projection of PQ
onto f. That is, we want:

o5
n-PQﬁ
I[A |

_|i-Pq

|| proj;PQ || = _
5 |7

(10.12)

Equation (10.12) isimportant as it does more than just give the distance between
a point and a plane. We will see how it allows us to find several other distances
as well: the distance between parallel planes and the distance from a line and a
plane. Because Equation (10.12) is important, we restate it as a Key Idea.

Notes:



Key Idea 52 Distance from a Point to a Plane

Let a plane with normal vector i be given, and let Q be a point. The
distance h from Q to the plane is

ii-PQ
p_ 7-PA)
Al
where P is any point in the plane.
Example 353 Distance between a point and a plane

Find the distance bewteen the point Q = (2, 1,4) and the plane with equation
2x — 5y + 6z = 9.

SOLUTION Using the equation of the plane, we find the normal vector
fi = (2,-5,6). To find a point on the plane, we can let x and y be anything we
choose, then let z be whatever satisfies the equation. Letting xand y be 0 seems
simple; this makes z = 1.5. Thus we let P = (0, 0, 1.5), and PQ = (2,1,2.5).

The distance h from Q to the plane is given by Key Idea 52:

p_li-7d
1]
_ |(2,—5,—6)-(2,1,2.5) |
(256 |
118
G
~ 1.98.

We can use Key Idea 52 to find other distances. Given two parallel planes,
we can find the distance between these planes by letting P be a point on one
plane and Q a point on the other. If £ is a line parallel to a plane, we can use
the Key Idea to find the distance between them as well: again, let P be a point
in the plane and let Q be any point on the line. (One can also use Key Idea 51.)
The Exercise section contains problems of these types.

These past two sections have not explored lines and planes in space as an
exercise of mathematical curiosity. Rather, there are many, many applications
of these fundamental concepts. Complex shapes can be modeled (or, approxi-
mated) using planes. For instance, part of the exterior of an aircraft may have
a complex, yet smooth, shape, and engineers will want to know how air flows
across this piece as well as how heat might build up due to air friction. Many

Notes:

10.6 Planes
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equations that help determine air flow and heat dissipation are difficult to apply
to arbitrary surfaces, but simple to apply to planes. By approximating a surface
with millions of small planes one can more readily model the needed behavior.

Notes:
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Exercises 10.6

Terms and Concepts

1. Inorder to find the equation of a plane, what two pieces of
information must one have?

2. Whatis the relationship between a plane and one of its nor-
mal vectors?

Problems

In Exercises 3 — 6, give any two points in the given plane.
3. 2x—4y+7z2=2

4. 3(x+2)+5(y—9)—4z=0

5. x=2

6. 4(y+2)—(z—6)=0

In Exercises 7 — 20, give the equation of the described plane
in standard and general forms.

7. Passes through (2, 3,4) and has normal vector

n=(3,-1,7).

8. Passes through (1,3, 5) and has normal vector

n=10,2,4).

9. Passes through the points (1,2, 3), (3, —1,4)and (1,0, 1).
10. Passes through the points (5, 3, 8), (6,4,9) and (3, 3, 3).
11. Contains the intersecting lines

0(t) = (2,1,2) +t(1,2,3) and

L(t) =(2,1,2) +t(2,5,4).
12. Contains the intersecting lines

4(t) = (5,0,3) +t(—1,1,1) and

6(t) = (1,4,7) +t(3,0,—3).
13. Contains the parallel lines

£1(t) = (1,1,1) +t(1,2,3) and

L(t) =(1,1,2) +t(1,2,3).
14. Contains the parallel lines

£(t) = (1,1,1) + t(4,1,3) and

LH(t) =(2,2,2) +t(4,1,3).

15. Contains the point (2, —6, 1) and the line

x=2+5t
t)y=<¢y=2+2t
z=-1+2t
16. Contains the point (5,7, 3) and the line
x=t
)= y=t

z=t

17. Contains the point (5,7, 3) and is orthogonal to the line
L(t) = (4,5,6) +t(1,1,1).

18. Contains the point (4,1, 1) and is orthogonal to the line

x=4+4t
Lt)y=<Cy=1+1t
z=1+1t

19. Contains the point (—4,7,2) and is parallel to the plane
3(x—2)+8(y+1)—10z=0.

20. Contains the point (1,2, 3) and is parallel to the plane
x =75.

In Exercises 21 — 22, give the equation of the line that is the
intersection of the given planes.

21. p1: 3(x—2)+(y—1)+4z=0,and
p2: 2(x—1)—2(y+3)+6(z—1)=0.
22. pl: 5(x—5)+2(y+2)+4(z—1)=0,and
p2: 3x—4(y—1)+2(z—1)=0.
In Exercises 23 — 26, find the point of intersection between
the line and the plane.

23. line: (5,1, —1) +t(2,2,1),
plane: 5x —y —z = —3

24. line: (4,1,0) +t(1,0,—1),
plane:3x4+y —2z=28

25. line: (1,2,3) +t(3,5,—1),
plane:3x — 2y —z =14

26. line: (1,2,3) +t(3,5,—1),
plane:3x — 2y —z = —4

In Exercises 27 - 30, find the given distances.

27. The distance from the point (1, 2, 3) to the plane
33x—1) +(y—2)+5(z—2)=0.

28. The distance from the point (2, 6, 2) to the plane
2(x—1)—y+4(z+1)=0.

29. The distance between the parallel planes
x+y+z=0and
(x=2)+(y—3)+(z+4)=0

30. The distance between the parallel planes
2(x—1)+2(y+1)+(z—2)=0and
2(x—3)+2(y—-1)+(z—3)=0

31. Show why if the point Q lies in a plane, then the distance

formula correctly gives the distance from the point to the
plane as 0.

32. How s Exercise 30 in Section 10.5 easier to answer once we
have an understanding of planes?






11: VECTOR VALUED FUNCTIONS

11.1 Vector-Valued Functions

We are very familiar with real valued functions, that is, functions whose output
is a real number. This section introduces vector—valued functions — functions
whose output is a vector.

Definition 64 Vector-Valued Functions

A vector—valued function is a function of the form y
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where f, g and h are real valued functions. 17 f(-2)

The domain of 7is the set of all values of t for which r(t) is defined. The o2z 345
range of r'is the set of all possible output vectors {(t).

Evaluating and Graphing Vector-Valued Functions (a)
y

Evaluating a vector—valued function at a specific value of t is straightforward; 37
simply evaluate each component function at that value of t. For instance, if
A(t) = (2 +t—1), then F(—2) = (4,1). We can sketch this vector, as is 2 /
done in Figure 11.1 (a). Plotting lots of vectors is cumbersome, though, so gen- 1T (-2
erally we do not sketch the whole vector but just the terminal point. The graph —] : : : : > X
of a vector-valued function is the set of all terminal points of (t), where the . 4(/1/ SO

initial point of each vector is always the origin. In Figure 11.1 (b) we sketch the
graph of 7; we can indicate individual points on the graph with their respective
vector, as shown.

Vector—valued functions are closely related to parametric equations of graphs. (b)
While in both methods we plot points (x(t), y(t)) or (x(t), y(t), z(t)) to produce
a graph, in the context of vector—valued functions each such point represents a Figure 11.1: Sketching the graph of a
vector. The implications of this will be more fully realized in the next section as vector—valued function.

we apply calculus ideas to these functions.
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1 Example 354 Graphing vector—valued functions
tor- 2+1 Graph r(t) = <t3 —t, t2—1H>' for —2 <t < 2. Sketch F(—1) and F(2).
-2 -6 1/5
-1 0 1/2
0 0 1 SOLUTION We start by making a table of t, x and y values as shown in
1 0 1/2 Figure 11.2 (a). Plotting these points gives an indication of what the graph looks
2 6 1/5 like. In Figure 11.2 (b), we indicate these points and sketch the full graph. We

also highlight r(—1) and r(2) on the graph.

Example 355 Graphing vector—valued functions.
Graph 7(t) = (cost,sint,t) for0 < t < 4.

SOLUTION We can again plot points, but careful consideration of this
function is very revealing. Momentarily ignoring the third component, we see
the x and y components trace out a circle of radius 1 centered at the origin.
Noticing that the z component is t, we see that as the graph winds around the
z-axis, it is also increasing at a constant rate in the positive z direction, forming a
spiral. Thisis graphed in Figure 11.3. Inthe graph (77 /4) ~ (0.707, —0.707,5.498)
2 4 6 is highlighted to help us understand the graph.

(b)

Algebra of Vector-Valued Functions
Figure 11.2: Sketching the vector-valued
function of Example 354.

Definition 65 Operations on Vector—Valued Functions

Let r1(t) = (f1(t),g1(t)) and i (t) = (f>(t),g2(t)) be vector-valued
functions in R? and let ¢ be a scalar. Then:

1. A(t) £ h(t) = (A(t) £ (1), 01(t) £ g2(t) ).
2. cri(t) = (cfi(t), cqui(t) ).

A similar definition holds for vector—valued functions in R3.

This definition states that we add, subtract and scale vector-valued functions
component-wise. Combining vector-valued functions in this way can be very
useful (as well as create interesting graphs).

Figure 11.3: The graph of 7(t) in Example

355. Example 356 Adding and scaling vector-valued functions.
Let 7y (t) = (0.2t,0.3t), i>(t) = (cost,sint) and 7(t) = r1(t) + r>(t). Graph
ri(t), i>(t), r(t) and 57(t) on —10 < t < 10.

Notes:
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SOLUTION We can graph r; and 1, easily by plotting points (or just using
technology). Let’s think about each for a moment to better understand how
vector-valued functions work.

We can rewrite 71(t) = (0.2t,0.3t) as r;(t) = t(0.2,0.3). That is, the
function 7 scales the vector (0.2,0.3) by t. This scaling of a vector produces a
line in the direction of (0.2,0.3).

We are familiar with 75 (t) = (cos t,sint); it traces out a circle, centered at
the origin, of radius 1. Figure 11.5 (a) graphs r1(t) and 75 (t).

Adding 71 (t) to 5(t) produces 7(t) = (cost+ 0.2t,sint + 0.3t), graphed
in Figure 11.5 (b). The linear movement of the line combines with the circle to
create loops that move in the direction of (0.2, 0.3). (We encourage the reader
to experiment by changing 7 (t) to (2t, 3t), etc., and observe the effects on the
loops.)

Multiplying F(t) by 5 scales the function by 5, producing 5r(t) = (5cost +
1,5sint + 1.5), which is graphed in Figure 11.5 (c) along with r{(t). The new
function is “5 times bigger” than r(t). Note how the graph of 5r(t) in (c) looks
identical to the graph of 7(t) in (b). This is due to the fact that the xand y bounds
of the plot in (c¢) are exactly 5 times larger than the bounds in (b).

Example 357 Adding and scaling vector-valued functions.

A cycloid is a graph traced by a point p on a rolling circle, as shown in Figure
11.4. Find an equation describing the cycloid, where the circle has radius 1.

v~ N

Figure 11.4: Tracing a cycloid.

SOLUTION This problem is not very difficult if we approach it in a clever
way. We start by letting p(t) describe the position of the point p on the circle,
where the circle is centered at the origin and only rotates clockwise (i.e., it does
notroll). This is relatively simple given our previous experiences with parametric
equations; g(t) = (cost, —sint).

We now want the circle to roll. We represent this by letting ¢(t) represent
the location of the center of the circle. It should be clear that the y component
of ¢(t) should be 1; the center of the circle is always going to be 1 if it rolls on a
horizontal surface.

The x component of ¢(t) is a linear function of t: f(t) = mt for some scalar m.
When t = 0, f(t) = 0 (the circle starts centered on the y-axis). When t = 27,
the circle has made one complete revolution, traveling a distance equal to its

Notes:

11.1 Vector—Valued Functions

20

10

(c)

Figure 11.5: Graphing the functions in Ex-
ample 356.

601



Chapter 11 Vector Valued Functions

10 +

Figure 11.6: The cycloid in Example 357.

=<

Qy

Figure 11.7: Graphing the displacement
of a position function in Example 358.

602

circumference, which is also 2. This gives us a point on our line f(t) = mt, the
point (27, 27). It should be clear that m = 1 and f(t) = t. So c(t) = (¢, 1).

We now combine p and ctogether to form the equation of the cycloid: r(t) =
p(t) 4 c(t) = (cost + t, —sint + 1), which is graphed in Figure 11.6.

Displacement

Avector—valued function r{t) is often used to describe the position of a mov-
ing object at time t. Att = t, the object is at r{tp); at t = t;, the object is at
7(t1). Knowing the locations 7(tp) and r(t;) give no indication of the path taken
between them, but often we only care about the difference of the locations,
F(t1) — r(to), the displacement.

Definition 66 Displacement

Let 7(t) be a vector—valued function and let t; < t; be values in the
domain. The displacement d of 7, fromt =ty to t = ty, is

d = F(ty) — F(to).

When the displacement vector is drawn with initial point at r{ty), its terminal
point is 7(t; ). We think of it as the vector which points from a starting position
to an ending position.

Example 358 Finding and graphing displacement vectors
Let 7(t) = (cos(3t),sin(t)). Graph F(t) on —1 < t < 1, and find the displace-
ment of r(t) on this interval.

SOLUTION The function r{(t) traces out the unit circle, though at a dif-
ferent rate than the “usual” {cost, sin t) parametrization. At t, = —1, we have
F(to) = (0,—1); at t; = 1, we have r(t;) = (0, 1). The displacement of r{t) on
[—1,1]isthus d = (0,1) — (0, —1) = (0,2).

Agraph of (t) on [—1, 1] is given in Figure 11.7, along with the displacement
vector d on this interval.

Measuring displacement makes us contemplate related, yet very different,
concepts. Considering the semi—circular path the object in Example 358 took,
we can quickly verify that the object ended up a distance of 2 units from its initial
location. That is, we can compute || d || = 2. However, measuring distance from
the starting point is different from measuring distance traveled. Being a semi—

Notes:




circle, we can measure the distance traveled by this object as 7 ~ 3.14 units.
Knowing distance from the starting point allows us to compute average rate of
change.

Definition 67 Average Rate of Change

Let 7(t) be a vector-valued function, where each of its component func-
tions is continuous on its domain, and let t; < t;. The average rate of
change of 7(t) on [to, 1] is

r(t1) — r(to)

average rate of change =

t; — to
Example 359 Average rate of change
Letr(t) = <cos(§ t),sin(3t)) asin Example 358. Find the average rate of change
of f(t) on [—1,1] and on [ 1,5].

SOLUTION We computed in Example 358 that the displacement of r{t)

n[—1,1] was d= (0, 2). Thus the average rate of change of 7(t) on [—1,1] is:

A1) —F(-1) _ (0,2)
1—(-1) 2

= (0,1).

We interpret this as follows: the object followed a semi—circular path, meaning
it moved towards the right then moved back to the left, while climbing slowly,
then quickly, then slowly again. On average, however, it progressed straight up
at a constant rate of (0, 1) per unit of time.

We can quickly see that the displacement on [—1, 5] isthe sameason [—1, 1],
sod = (0,2). The average rate of change is different, though:

r5) —r(-1) _(0,2)
5-(-1) 6

= (0,1/3).

As it took “3 times as long” to arrive at the same place, this average rate of
change on [—1, 5] is 1/3 the average rate of change on [—1, 1].

We considered average rates of change in Sections 1.1 and 2.1 as we studied
limits and derivatives. The same is true here; in the following section we apply
calculus concepts to vector—valued functions as we find limits, derivatives, and
integrals. Understanding the average rate of change will give us an understand-
ing of the derivative; displacement gives us an understanding of integration.

Notes:

11.1 Vector—Valued Functions
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Exercises 11.1

Terms and Concepts
1. Vector—valued functions are closely related to
of graphs.

2. When sketching vector—valued functions, technically one
isn’t graphing points, but rather

3. It can be useful to think of as a vector that points
from a starting position to an ending position.

Problems

In Exercises 4 — 11, sketch the vector-valued function on the
given interval.

4. f(t) = (£, —1),for—2 < t < 2.
5. F(t) = (,£),for —2 <t < 2.

6. 7(t) = (1/t,1/¢%), for —2 < t < 2.
7. 7(t) = (&2, sint), for =27 <t < 2.
8. 7(t) = (&t sint), for =27 < t < 2.
9. 7(t) = (3sin(nt), 2 cos(nt)), on [0, 2].
10. r(t) = (3 cost,2sin(2t)), on [0, 27].
11. r(t) = (2sect,tant), on [—m, 7.

In Exercises 12 — 15, sketch the vector-valued function on the

given interval in R3. Technology may be useful in creating the

sketch.
12. r(t) = (2cost,t,2sint), on [0, 27].
13. F(t) = (3cost,sint,t/7) on [0, 27].
14. r(t) = (cost,sint,sint) on [0, 27].
15. F(t) = {(cost,sint,sin(2t)) on [0, 27].

In Exercises 16 — 19, find || r(t) ||.

16. r(t

A1) = (t, ).

17. r(t) = (5cost,3sint).
) =
)

18. 7t 2cost, 2sint, t).

19. F(t) = (cost,t,t*).

In Exercises 20 — 27, create a vector-valued function whose
graph matches the given description.

20. A circle of radius 2, centered at (1,2), traced counter—
clockwise once on [0, 27].

21. A circle of radius 3, centered at (5,5), traced clockwise
once on [0, 27].

22. An ellipse, centered at (0,0) with vertical major axis of
length 10 and minor axis of length 3, traced once counter—
clockwise on [0, 27].

23. Anellipse, centered at (3, —2) with horizontal major axis of
length 6 and minor axis of length 4, traced once clockwise
on [0, 27].

24. Aline through (2, 3) with a slope of 5.
25. Aline through (1,5) with a slope of —1/2.

26. A vertically oriented helix with radius of 2 that starts at
(2,0,0) and ends at (2, 0, 47) after 1 revolution on [0, 27].

27. A vertically oriented helix with radius of 3 that starts at
(3,0,0) and ends at (3, 0, 3) after 2 revolutions on [0, 1].

In Exercises 28 — 31, find the average rate of change of r(t) on
the given interval.
28. 7(t) = (t,t*) on [-2,2].
29. r(t) = (t,t+sint) on [0, 27].
30. r(t) = (3cost,2sint, t) on [0, 27].

31. At) = (t, £, ) on [-1,3].



11.2 Calculus and Vector—Valued Functions

The previous section introduced us to a new mathematical object, the vector—
valued function. We now apply calculus concepts to these functions. We start
with the limit, then work our way through derivatives to integrals.

Limits of Vector—Valued Functions

The initial definition of the limit of a vector—valued function is a bit intimi-
dating, as was the definition of the limit in Definition 1. The theorem following
the definition shows that in practice, taking limits of vector—valued functions is
no more difficult than taking limits of real-valued functions.

Definition 68 Limits of Vector-Valued Functions

Let a vector—valued function r(t) be given, defined on an open interval |
containing c. The limit of r{(t), as t approaches cis L, expressed as

lim 7(¢) = L,

t—c

means that given any ¢ > 0, there exists a § > 0 such that whenever
[t —c| < 0, wehave ||F(t)—L|| <e.

Note how the measurement of distance between real numbers is the abso-
lute value of their difference; the measure of distance between vectors is the
vector norm, or magnitude, of their difference.

Theorem 89 Limits of Vector-Valued Functions

1. Let F(t) = (f(t),g(t)) be a vector-valued function in R? defined
on an open interval | containing c. Then

im A = {imf(© Ime(0).

2. LetA(t) = (f(t),g(t), h(t) ) be a vector—valued function in R® de-
fined on an open interval / containing c. Then

lim 7(t) = { im £(t) , lim g(t), meh(t)>

t—c <t—>c t—c

Notes:

11.2 Calculus and Vector—Valued Functions
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Theorem 89 states that we compute limits component—wise.
Example 360 Finding limits of vector-valued functions
. sint . Lo
Let F(t) = <, t* — 3t + 3, cos t> . Find lim F(t).
t t—0
SOLUTION We apply the theorem and compute limits component—wise.
. . sint .
lim F(t) = <I|m — , limt* — 3t + 3, lim cos t>
t—0 t—0 t t—0 t—0

=(1,3,1).

Continuity

Definition 69 Continuity of Vector-Valued Functions

Let 7(t) be a vector—valued function defined on an open interval / con-
taining c.

1. F(t) is continuous at c if lim 7(t) = r(c).
—C

2. If 7(t) is continuous at all cin /, then 7(t) is continuous on /.

We again have a theorem that lets us evaluate continuity component—wise.

Theorem 90 Continuity of Vector-Valued Functions

Let 7(t) be a vector-valued function defined on an open interval / con-
taining c. r(t) is continuous at c if, and only if, each of its component
functions is continuous at c.

Example 361 Evaluating continuity of vector-valued functions

. sint . o, .
Let r(t) = <t’ t? —3t+3, cos t> . Determine whether 7' is continuous at
t=0andt=1.

SOLUTION While the second and third components of r(t) are defined
at t = 0, the first component, (sint)/t, is not. Since the first component is not

even defined att = 0, r(t) is not defined at t = 0, and hence it is not continuous
att=0.

Notes:
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At t = 1 each of the component functions is continuous. Therefore r{t) is
continuous att = 1.

Derivatives

Consider a vector—valued function Fdefined on an open interval | containing
to and t;. We can compute the displacement of 7 on [to, 1], as shown in Figure
11.8 (a). Recall that dividing the displacement vector by t; — t; gives the average
rate of change on [ty, t1], as shown in (b).

7' (to) A(t) — F(to)
th—to

F(tg T(ty)

(a) (b)

Figure 11.8: lllustrating displacement, leading to an understanding of the derivative of vector—valued functions.

The derivative of a vector—valued function is a measure of the instantaneous
rate of change, measured by taking the limit as the length of [to, t;] goes to 0.
Instead of thinking of an interval as [to, t;], we think of it as [c, ¢ + h] for some
value of h (hence the interval has length h). The average rate of change is

F(c + h) — F(c)
h

for any value of h # 0. We take the limit as h — 0 to measure the instantaneous
rate of change; this is the derivative of 7.

Definition 70 Derivative of a Vector-Valued Function

Let (t) be continuous on an open interval / containing c.

R o . Alternate notations for the derivative of
1. The derivative of ratt = cis

include:
710 = fiy " (0 = 2 () = %
2. The derivative of 7is
)=ty T T

Notes:
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AN

(b)

Figure 11.9: Graphing the derivative of a
vector—valued function in Example 362.
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If a vector—valued function has a derivative for all c in an open interval I, we
say that 7(t) is differentiable on /.

Once again we might view this definition as intimidating, but recall that we
can evaluate limits component—wise. The following theorem verifies that this
means we can compute derivatives component—wise as well, making the task
not too difficult.

Theorem 91 Derivatives of Vector—Valued Functions

1. Letr(t) = (f(t),g(t)). Then

Example 362 Derivatives of vector-valued functions
Let 7(t) = (t%,t).

1. Sketch r(t) and r/(t) on the same axes.

2. Compute r’(1) and sketch this vector with its initial point at the origin and
at 7(1).

SOLUTION

1. Theorem 91 allows us to compute derivatives component—wise, so

-2/

F'(t) = (2t,1).

r(t) and r'(t) are graphed together in Figure 11.9 (a). Note how plotting
the two of these together, in this way, is not very illuminating. When
dealing with real-valued functions, plotting f(x) with f’(x) gave us useful
information as we were able to compare f and f’ at the same x-values.

When dealing with vector—valued functions, it is hard to tell which points
on the graph of ¥’ correspond to which points on the graph of 1.

2. We easily compute r'(1) = (2, 1), which is drawn in Figure 11.9 with its
initial point at the origin, as well as at /(1) = (1, 1) . These are sketched
in Figure 11.9 (b).

Notes:
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Example 363 Derivatives of vector-valued functions
Let 7(t) = (cost,sint,t). Compute r’(t) and 7’'(7/2). Sketch r'(7/2) with its
initial point at the origin and at 7(7/2).

SOLUTION We compute 7" as 7/(t) = (—sint,cost,1). Att = /2, we
have r/(7w/2) = (—1,0,1). Figure 11.10 shows two graphs of r(t), from differ-
ent perspectives, with r’(m/2) plotted with its initial point at the origin and at

F(r/2).

In Examples 362 and 363, sketching a particular derivative with its initial
point at the origin did not seem to reveal anything significant. However, when
we sketched the vector with its initial point on the corresponding point on the
graph, we did see something significant: the vector appeared to be tangent to
the graph. We have not yet defined what “tangent” means in terms of curves in
space; in fact, we use the derivative to define this term.

Definition 71 Tangent Vector, Tangent Line

Let F(t) be a differentiable vector-valued function on an open interval |
containing ¢, where 7’(c) # 0.

1. Avector Vis tangent to the graph of 7(t) at t = cif Vis parallel to (b)
r'(c).
Figure 11.10: Viewing a vector-valued

function, and its derivative at one point,
from two different perspectives.

2. The tangent line to the graph of r(t) at t = c is the line through
r(c) with direction parallel to r’(c). An equation of the tangent
line is

o(t) = F(c) + t7'(c).

Example 364 Finding tangent lines to curves in space
Let 7(t) = (t,t2,¢*) on [~1.5,1.5]. Find the vector equation of the line tangent :\/2>¢ -2

to the graph of Fatt = —1.

X 2
SOLUTION To find the equation of a line, we need a point on the line —2 \
and the line’s direction. The point is given by F(—1) = (—1,1, —1). (To be clear,
(—1,1,—1) is a vector, not a point, but we use the point “pointed to” by this (a)
vector.)
The direction comes from 7’(—1). We compute, component-wise, ' (t) = X
(1,2t,3t%). Thus F/(—1) = (1,-2,3). )
The vector equation of the line is £(t) = (—1,1,—1) +t(1,—2,3). This line
and r(t) are sketched, from two perspectives, in Figure 11.11 (a) and (b). 5 12

Notes: -2 \

Figure 11.11: Graphing a curve in space
with its tangent line.
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\ 24 7(t)

Figure 11.12: Graphing r(t) and its tan-
gent line in Example 365.
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Example 365 Finding tangent lines to curves
Find the equations of the lines tangent to 7(t) = (t*,t*) att = —1and t = 0.

SOLUTION We find that 7/(t) = (3t%,2t). Att = 1, we have

f(—=1)=(-1,1) and 7'(1) = (3,-2),

so the equation of the line tangent to the graph of r(t) att = —1is

0t) =(—1,1) +t(3,-2).

This line is graphed with r(t) in Figure 11.12.

Att = 0, we have 7/(0) = (0,0) = 0! This implies that the tangent line “has
no direction.” We cannot apply Definition 71, hence cannot find the equation of
the tangent line.

We were unable to compute the equation of the tangent line to r(t) =
(£,£2) at t = 0 because F'(0) = 0. The graph in Figure 11.12 shows that there
is a cusp at this point. This leads us to another definition of smooth, previously
defined by Definition 46 in Section 9.2.

Definition 72 Smooth Vector-Valued Functions

Let r(t) be a differentiable vector—valued function on an open interval /.
r(t) is smooth on /if '(t) # O on /.

Having established derivatives of vector—valued functions, we now explore
the relationships between the derivative and other vector operations. The fol-
lowing theorem states how the derivative interacts with vector addition and the
various vector products.

Notes:



Theorem 92 Properies of Derivatives of Vector-Valued Functions

Let ’and S be differentiable vector—valued functions, let f be a differen-
tiable real-valued function, and let ¢ be a real number.

1 % (7 £5(0) =7(0) £5()

2 %(cf(t)) = c'(t)

3. %(f(t)?(t)) =f'(t)r(t) + f(O)F () Product Rule

a. %(F(t) () = 7(t) - 5(6) + 7(0) - 5(¢) Product Rule

5 %(F(t) x5(t)) = 7'(t) x 5(t) + 7(t) x (1) Product Rule

6. 2 (7)) =7 (F)F 1 Chain Rule
Example 366 Using derivative properties of vector-valued functions

Let 7(t) = (t,t* — 1) and let &(t) be the unit vector that points in the direction
of F(t).

1. Graph 7(t) and G(t) on the same axes, on [—2, 2].
2. Find d’(t) and sketch &'(—2), t’(—1) and G’(0). Sketch each with initial
point the corresponding point on the graph of i.
SOLUTION

1. To form the unit vector that points in the direction of , we need to divide
r(t) by its magnitude.

17O |l =ve+(#-1)?2 = ud(t)=

2
Ny (t,t* —1).

F(t) and G(t) are graphed in Figure 11.13. Note how the graph of u(t)
forms part of a circle; this must be the case, as the length of i(t) is 1 for
all t.

Notes:

11.2 Calculus and Vector—Valued Functions

(1)
L

AN

— T

Figure 11.13: Graphing 7(t) and 4(t) in Ex-
ample 366.
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AL
%

—2 1

Figure 11.14: Graphing some of the
derivatives of 4(t) in Example 366.
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2. To compute i’(t), we use Theorem 92, writing

1

-1/2
2+ (22 — 1)2

u(t) = f(t)F(t), where f(t) = = (P+(-1)?)

(We could write

i(t) = t t?—1
S\ VEF (1) 2 (2 —1)2

and then take the derivative. Itis a matter of preference; this latter method
requires two applications of the Quotient Rule where our method uses the
Product and Chain Rules.)

We find f'(t) using the Chain Rule:

1

S8+ (- 12) 2 (2t + 2(2 — 1)(21))

2t(2t2 — 1)
22+ @ —12)

') =

We now find 4’ (t) using part 3 of Theorem 92:

a@'(t) = f' (i) + f(0a’ (v)
2t - ) R
T JErE) (t,22 —1) + i (1,2t).

This is admittedly very “messy;” such is usually the case when we deal
with unit vectors. We can use this formula to compute 4 (—2), 4 (—1)
and 4 (0):

. 15 10\ _, B
u(—2):<—13\/ﬁ,—13\/ﬁ>~< 0.320, —0.213)
i(~1) = (0,-2)

i (0) = (1,0)

Each of these is sketched in Figure 11.14. Note how the length of the
vector gives an indication of how quickly the circle is being traced at that
point. When t = —2, the circle is being drawn relatively slow; when t =
—1, the circle is being traced much more quickly.

It is a basic geometric fact that a line tangent to a circle at a point P is per-
pendicular to the line passing through the center of the circle and P. This is




illustrated in Figure 11.14; each tangent vector is perpendicular to the line that
passes through its initial point and the center of the circle. Since the center of
the circle is the origin, we can state this another way: i’ (t) is orthogonal to &(t).

Recall that the dot product serves as a test for orthogonality: if i - Vv = 0,
then & is orthogonal to V. Thus in the above example, d(t) - 4’ (t) = 0.

This is true of any vector—valued function that has a constant length, that is,
that traces out part of a circle. It has important implications later on, so we state
it as a theorem (and leave its formal proof as an Exercise.)

Theorem 93 Vector-Valued Functions of Constant Length

Let r{(t) be a differentiable vector—valued function on an open interval | of
constant length. Thatis, || 7(t) || = cforall tin I (equivalently, r{(t)-7(t) =
c*foralltin/). Thenr(t) - r'(t) = Oforall tin .

Integration

Indefinite and definite integrals of vector—valued functions are also evalu-
ated component—wise.

11.2 Calculus and Vector—Valued Functions

Theorem 94 Indefinite and Definite Integrals of Vector-Valued
Functions

Let (t) = (f(t),g(t)) be a vector-valued function in R2.

1. /F(t) dt = </f(t) dt,/g(t) dt>
2. /ab F(t) dt = </ubf(t) dt, /abg(t) dt>

A similar statement holds for vector—valued functions in R3.

Example 367 Evaluating a definite integral of a vector—valued function

1
Let 7(t) = (e*,sint). Evaluate/ F(t) dt.
0

Notes:
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SOLUTION We follow Theorem 94.

1 1
/ 7(t) dt:/ (e*,sint) dt
0 0
1 1
</ etht,/ sintdt>
0 0
1
,—cost‘ >
0

(e —1),—cos(1) + 1>

Example 368 Solving an initial value problem
Let 7" (t) = (2,cost, 12t). Find F(t) where:

e (0) =(-7,—1,2) and
e 7/(0) = (5,3,0).

SOLUTION Knowing 7" (t) = (2, cost, 12t), we find r’(t) by evaluating the
indefinite integral.

*” </2dt,/costdt,/12tdt>

(2t +Cy,sint + G, 6t° + C3)
= (2t,sint,6t%) + (C1, G, G3)
= (2t,sint,6t*) + C.

Note how each indefinite integral creates its own constant which we collect as
one constant vector C. Knowing r’(0) = (5, 3,0) allows us to solve for C:

F'(t) = (2t,sint,6t%) + C
(o) = <o 0,0) +C
(5,3,0) =
SoF'(t) = (2t,sint,6t%) + (5,3,0) = (2t +5,sint + 3,6t%). To find 7(t),

we integrate once more.

/F(t)dt:</2t+5dt,/sint+3dt,/6t2dt>

= (£ 4 5t,—cost + 3t,2t%) + C

Notes:
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With 7(0) = (=7, —1, 2), we solve for C:

F(t) = ( 4+ 5t, — cost + 3t,2%) + C
7(0) = (0,—1,0) + C
(=7,-1,2) = (0,—-1,0) + C
(=7,0,2) =C.

11.2 Calculus and Vector—Valued Functions

Sor(t) = (t? + 5t,— cost + 3t,2t3)+(—7,0,2) = (t* + 5t — 7, —cost + 3t, 25 + 2) .

What does the integration of a vector-valued function mean? There are
many applications, but none as direct as “the area under the curve” that we
used in understanding the integral of a real-valued function.

A key understanding for us comes from considering the integral of a deriva-
tive:

b

b
/ Flt)ydt=Ft)| =

a

F(b) — r(a).

Integrating a rate of change function gives displacement.

Noting that vector—valued functions are closely related to parametric equa-
tions, we can describe the arc length of the graph of a vector—valued function
as an integral. Given parametric equations x = f(t), y = g(t), the arc length on
[a, b] of the graph is

b
Arc Length = / f/(t)? +g'(t)? dt,
a

as stated in Theorem 82 in Section 9.3. If r(t) = (f(t), g(t)), note that 1 /f'(t)> + g'(t)? =

|| 7'(t) ||. Therefore we can express the arc length of the graph of a vector—
valued function as an integral of the magnitude of its derivative.

Theorem 95 Arc Length of a Vector-Valued Function

Let r(t) be a vector—valued function where r’(t) is continuous on [a, b].
The arc length L of the graph of F(t) is

b
L=/ 17(0) || .

Note that we are actually integrating a scalar—function here, not a vector—
valued function.

Notes:
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The next section takes what we have established thus far and applies it to
objects in motion. We will let 7(t) describe the path of a motion in the plane or
in space and will discover the information provided by r’(t) and 7"’ (t).

Notes:
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Exercises 11.2

Terms and Concepts

1. Limits, derivatives and integrals of vector—valued functions
are all evaluated —wise.

2. The definite integral of a rate of change function gives

3. Why is it generally not useful to graph both 7(t) and 7' (t)
on the same axes?

Problems

In Exercises 4 — 7, evaluate the given limit.

4. lim (2t + 1,3t — 1,sint)
t—5

2 —
5. lim <ef, t 9>
t—3 t+ 3

6. Iim< t (1+t)%>
t—0 SIn

r(t+ h) —r(t)
h

7. lim

= _ 2
Jim , where 7(t) = (¢, t,1).

In Exercises 8 — 9, identify the interval(s) on which 7(t) is con-
tinuous.
8. f(t) = (f,1/t)

9. 7(t) = (cost,e',Int)

In Exercises 10 — 14, find the derivative of the given function.

10. 7(t) = (cost,e',Int)
. 1 2t—1

11. 7(t) = ( =, ti,tant

t'3t+1

12. F(t) = () (sint, 2t + 5)

13. F(t) = (£ +1,t — 1) - (sint, 2t +5)

14. F(t) = (£ +1,t — 1,1) x (sint, 2t +5,1)
In Exercises 15 - 18, find 7’ (t). Sketch 7(t) and 7' (1), with the
initial point of 7' (1) at 7{(1).

15. F(t) = (£ +t,* — 1)

16. F(t) = (£ — 2t + 2,6 — 3t* 4+ 2t)

17. Ft) = (£ + 1, — t)

18. F(t) = (£ —4t+5,, — 6t + 11t — 6)

In Exercises 19 — 22, give the equation of the line tangent to
the graph of 7(t) at the given t value.

19. At) = (P +t,t —t)att =1,
20. 7(t) = (3cost,sint) att = w/4.
21. r(t) = (3cost,3sint, t) att = .
22. 7(t) = (', tant,t) att = 0.

In Exercises 23 — 26, find the value(s) of t for which r{t) is not
smooth.
23. r(t) = (cost,sint — t)
24. F(t) = (£ —2t+1,£ + £ —5t+3)
25. F(t) = (cost — sint,sint — cos t, cos(4t))
26. F(t) = <t3 — 3t + 2, — cos(wt), sin2(7rt)>

Exercises 27 — 29 ask you to verify parts of Theorem 92.
In each let f(t) = ¢, F(t) (f,t—1,1) and 5(t) =
<sin t e, t>. Compute the various derivatives as indicated.

27. Simplify f(t)r(t), then find its derivative; show this is the
same as f'()F(t) + f(t)r' (¢).

28. Simplify ?( )-S
same as 7' (t) -

s(t), then find its derivative; show this is the

5(8) +F(1) - 57 (1)

s(t), then find its derivative; show this is the

S(8) + (1) x 57 (1)

In Exercises 30 — 33, evaluate the given definite or indefinite
integral.

30. /(ts,cost, te') dt

31. L,seczt dt
1+t

32. / (—sint,cost) dt
0

29. Simplify 7(t) x
same as 7' (t) x

2
33./ (2t + 1,2t — 1) dt

—2

In Exercises 34 — 37, solve the given initial value problems.

34. Find 7(t), given that 7' (t) = (t,sint) and 7(0) = (2, 2).
35. Find 7(t), given that 7/ (t) = (1/(t + 1),tant) and

r(0) = (1,2).
36. Find 7(t), given that 7" (t) = (t*,t,1),

7'(0) = (4,5,6).

) =
(1,2,3)and r(0) =
) =

37. Find 7(t), given that 7'/ (t
7'(0) = (0,0, 0) and 7(0) =

~

cost,sint,e'),
0,0,0).

o~

In Exercises 38 — 41, find the arc length of r{t) on the indi-
cated interval.

38. r(t) = (2cost,2sint,3t) on [0, 27].
39. r(t) = (Scost,3sint,4sint) on [0, 27].

40. 7(t) = (£,¢%,£) on [0,1].
41. F(t) = (e ‘cost,e "sint) on [0,1].

42. Prove Theorem 93; that is, show if r(t) has constant length
=/

and is differentiable, then r(t) - ¥/(t) = 0. (Hint: use the
Product Rule to compute % (7(t) - 7(t)).)
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10 +

Figure 11.15: Graphing the position, ve-
locity and acceleration of an object in Ex-
ample 369.
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11.3 The Calculus of Motion

A common use of vector—valued functions is to describe the motion of an object
in the plane or in space. A position function 7(t) gives the position of an object
at time t. This section explores how derivatives and integrals are used to study
the motion described by such a function.

Definition 73

Let 7(t) be a position function in R? or R3.

Velocity, Speed and Acceleration

1. Velocity, denoted ¥(t), is the instantaneous rate of position
change; that is, v(t) = 7' (t).

2. Speed is the magnitude of velocity, || V(t) ||.

3. Acceleration, denoted d(t), is the instantaneous rate of velocity
change; thatis, d(t) = v'(t) = 7" (t).

Example 369

Finding velocity and acceleration

An object is moving with position function 7(t) = (2 —t, > +t), =3 < t < 3,
where distances are measured in feet and time is measured in seconds.

1.

2.

Find v(t) and a(t).

Sketch r{t); plot vV(—1), d(—1), (1) and d(1), each with their initial point
at their corresponding point on the graph of r{t).

. When is the object’s speed minimized?

SOLUTION

1.

L¥(-1) = (-3,

Taking derivatives, we find

Wt)=F(t) = (2t—1,2t+1) and a@(t)=7"(t) = (2,2).

Note that acceleration is constant.
-1), d(-1) = (2,2); V(1) = (1,3), d(1) = (2,2).
These are plotted with 7{t) in Figure 11.15 (a).

We can think of acceleration as “pulling” the velocity vector in a certain
direction. At t = —1, the velocity vector points down and to the left; at
t = 1, the velocity vector has been pulled in the (2,2) direction and is

Notes:



now pointing up and to the right. In Figure 11.15 (b) we plot more veloc-
ity/acceleration vectors, making more clear the effect acceleration has on
velocity.

Since d(t) is constant in this example, as t grows large V(t) becomes almost
parallel to d(t). For instance, when t = 10, ¥(10) = (19, 21), which is
nearly parallel to (2, 2).

3. The object’s speed is given by

|W(t) || = (2t —1)2 + (2t + 1)2 = /82 + 2.

To find the minimal speed, we could apply calculus techniques (such as
set the derivative equal to 0 and solve for t, etc.) but we can find it by
inspection. Inside the square root we have a quadratic which is minimized
when t = 0. Thus the speed is minimized at t = 0, with a speed of v/2
ft/s.

The graph in Figure 11.15 (b) also implies speed is minimized here. The
filled dots on the graph are located at integer values of t between —3
and 3. Dots that are far apart imply the object traveled a far distance in
1 second, indicating high speed; dots that are close together imply the
object did not travel far in 1 second, indicating a low speed. The dots are
closest together near t = 0, implying the speed is minimized near that
value.

Example 370 Analyzing Motion

Two objects follow an identical path at different rates on [—1,1]. The position
function for Object 1 is r;(t) = <t7 t2>; the position function for Object 2 is
f>(t) = (£3,t%), where distances are measured in feet and time is measured
in seconds. Compare the velocity, speed and acceleration of the two objects on
the path.

SOLUTION We begin by computing the velocity and acceleration func-
tion for each object:

vi(t) = (1,2t) v (t) = (3t2,6t°)
a1 (t) = (0,2) d,(t) = (6t,30t")

We immediately see that Object 1 has constant acceleration, whereas Object 2
does not.

Att = —1, we have V;(—1) = (1, —2) and V,(—1) = (3, —6); the velocity
of Object 2 is three times that of Object 1 and so it follows that the speed of
Object 2 is three times that of Object 1 (3+/5 ft/s compared to /5 ft/s.)

Notes:

11.3 The Calculus of Motion

3 4
2 B
Y e
AN > X
-2 -1 1 2
-1

Figure 11.16: Plotting velocity and accel-
eration vectors for Object 1 in Example
370.
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ri(t)

7 (t)

Figure 11.17: Comparing the positions of
Objects 1 and 2 in Example 370.
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At t = 0, the velocity of Object 1 is ¥(1) = (1,0) and the velocity of Object
2is 0! This tells us that Object 2 comes to a complete stop att = 0.

In Figure 11.16, we see the velocity and acceleration vectors for Object 1
plotted fort = —1,—1/2,0,1/2 and t = 1. Note again how the constant accel-
eration vector seems to “pull” the velocity vector from pointing down, right to
up, right. We could plot the analogous picture for Object 2, but the velocity and
acceleration vectors are rather large (d,(—1) = (—6,30)!)

Instead, we simply plot the locations of Object 1 and 2 on intervals of 1/10%"
of a second, shown in Figure 11.17 (a) and (b). Note how the x-values of Object
1increase at a steady rate. This is because the x-component of G(t) is 0; there is
no acceleration in the x-component. The dots are not evenly spaced; the object
is moving faster neart = —1and t = 1thanneart = 0.

In part (b) of the Figure, we see the points plotted for Object 2. Note the
large change in position fromt = —1tot = —0.9; the object starts moving very
quickly. However, it slows considerably at it approaches the origin, and comes
to a complete stop att = 0. While it looks like there are 3 points near the origin,
there are in reality 5 points there.

Since the objects begin and end at the same location, the have the same dis-
placement. Since they begin and end at the same time, with the same displace-
ment, they have they have the same average rate of change (i.e, they have the
same average velocity). Since they follow the same path, they have the same
distance traveled. Even though these three measurements are the same, the
objects obviously travel the path in very different ways.

Example 371 Analyzing the motion of a whirling ball on a string

A young boy whirls a ball, attached to a string, above his head in a counter-
clockwise circle. The ball follows a circular path and makes 2 revolutions per
second. The string has length 2ft.

1. Find the position function r{t) that describes this situation.
2. Find the acceleration of the ball and derive a physical interpretation of it.

3. A tree stands 10ft in front of the boy. At what t-values should the boy
release the string so that the ball hits the tree?

SOLUTION

1. The ball whirls in a circle. Since the string is 2ft long, the radius of the
circle is 2. The position function r(t) = (2 cost, 2 sint) describes a circle
with radius 2, centered at the origin, but makes a full revolution every
27 seconds, not two revolutions per second. We modify the period of the

Notes:
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trigonometric functions to be 1/2 by multiplying t by 47. The final position
function is thus
r(t) = (2 cos(4nt), 2 sin(4xt)) .

(Plot this for 0 < t < 1/2 to verify that one revolution is made in 1/2 a
second.)

2. To find d(t), we derive r{t) twice.

v(t) = 7'(t) = (—8msin(4nt), 8 cos(4rt))
a(t) =7"(t) = (—32n° cos(4rt), —327° sin(4nt))
= —3277 (cos(4nt), sin(4rt)) .

Note how d(t) is parallel to (t), but has a different magnitude and points
in the opposite direction. Why is this?

Recall the classic phyics equation, “Force = mass X acceleration.” A force
acting on a mass induces acceleration (i.e., the mass moves); acceleration
acting on a mass induces a force (gravity gives our mass a weight). Thus
force and acceleration are closely related. A moving ball “wants” to travel
in a straight line. Why does the ball in our example move in a circle? It is
attached to the boy’s hand by a string. The string applies a force to the ball,
affecting it’s motion: the string accelerates the ball. This is not accelera-
tion in the sense of “it travels faster;” rather, this acceleration is changing
the velocity of the ball. In what direction is this force/acceleration being
applied? In the direction of the string, towards the boy’s hand.

The magnitude of the acceleration is related to the speed at which the ball
is traveling. A ball whirling quickly is rapidly changing direction/velocity.
When velocity is changing rapidly, the acceleration must be “large.”

3. When the boy releases the string, the string no longer applies a force to
the ball, meaning acceleration is 0 and the ball can now move in a straight
line in the direction of v(t).

Let t = ty be the time when the boy lets go of the string. The ball will be
at r(to), traveling in the direction of ¥(t,). We want to find to so that this

line contains the point (0, 10) (since the tree is 10ft directly in front of the R N ~i._.

boy). o2

There are many ways to find this time value. We choose one that is rela- \\ ,/I

tively simple computationally. As shown in Figure 11.18, the vector from T

the release point to the tree is (0, 10) — {to). This line segment is tangent Figure 11.18: Modeling the flight of a ball
to the circle, which means it is also perpendicular to r(ty) itself, so their in Example 371.

dot product is 0.

Notes:
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F(to) - ((0,10) — F(ty)) =0
(2 cos(4rty), 2 sin(4nty)) - (—2 cos(4mty), 10 — 2sin(4nty)) =0
—4.cos? (4ty) + 20sin(4rty) — 4sin®(47ty) = 0
20sin(4rmty) —4=0
sin(4rty) = 1/5
4ttty = sin"1(1/5)
4ttty ~ 0.2 4 27n,

where n is an integer. Solving for ty we have:

to ~ 0.016 4 n/2

This is a wonderful formula. Every 1/2 second after t = 0.016s the boy
can release the string (since the ball makes 2 revolutions per second, he
has two chances each second to release the ball).

Example 372 Analyzing motion in space

An object moves in spiral with position function (t) = (cost,sint,t), where
distances are measured in meters and time is in minutes. Describe the object’s
speed and acceleration at time t.

SOLUTION With 7(t) = (cost,sint, t), we have:
V(t) = (—sint,cost,1) and
d(t) = (—cost,—sint,0).

The speed of the object is || V(t) || = /(= sint)2 + cos? t + 1 = v/2m/min;
it moves at a constant speed. Note that the object does not accelerate in the
z-direction, but rather moves up at a constant rate of Im/min.

The objects in Examples 371 and 372 traveled at a constant speed. That is,
|| ¥(t) || = c for some constant c. Recall Theorem 93, which states that if a
vector-valued function r(t) has constant length, then r(t) is perpendicular to
its derivative: r(t) - F’(t) = 0. In these examples, the velocity function has
constant length, therefore we can conclude that the velocity is perpendicular to
the acceleration: V(t) - d(t) = 0. A quick check verifies this.

There is an intuitive understanding of this. If acceleration is parallel to veloc-
ity, then it is only affecting the object’s speed; it does not change the direction
of travel. (For example, consider a dropped stone. Acceleration and velocity are

Notes:



parallel — straight down — and the direction of velocity never changes, though
speed does increase.) If acceleration is not perpendicular to velocity, then there
is some acceleration in the direction of travel, influencing the speed. If speed
is constant, then acceleration must be orthogonal to velocity, as it then only
affects direction, and not speed.

Key Idea 53 Objects With Constant Speed

If an object moves with constant speed, then its velocity and acceleration
vectors are orthogonal. That is, V(t) - d(t) = 0.

Projectile Motion

An important application of vector—valued position functions is projectile
motion: the motion of objects under the influence of gravity. We will measure
time in seconds, and distances will either be in meters or feet. We will show
that we can completely describe the path of such an object knowing its initial
position and initial velocity (i.e., where it is and where it is going.)

Suppose an object has initial position 7(0) = (xo,Yo) and initial velocity
V(0) = (vx,vy). It is customary to rewrite ¥(0) in terms of its speed vg and
direction &, where & is a unit vector. Recall all unit vectors in R? can be written
as (cos 6, sin §), where 6 is an angle measure counter—clockwise from the x-axis.
(We refer to 6 as the angle of elevation.) Thus V(0) = vq (cos 8, sin ) .

Since the acceleration of the object is known, namely d@(t) = (0, —g), where
g is the gravitational constant, we can find 7(t) knowing our two initial condi-
tions. We first find v(t):

i(t) = / a(t) dt

(t) = / (0, —g) dt
V(t) = (0, —gt) + C.

Knowing (0) = v, (cos 6, sin ), we have C = vq (cos t, sin t) and so

V(t) = (vocos b, —gt + vosin ) .

Notes:

11.3 The Calculus of Motion

Note: In this text we use g = 32ft/s when

using Imperial units, and g
when using Sl units.

9.8m/s
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Vector Valued Functions

We integrate once more to find 7(t):
r(t) = /V(t) dt
F(t) = / (vocos B, —gt + vgsin§) dt
1 o
F(t) = <(vo cos 6)t, —Egtz + (vosin 0)t> +C
Knowing 7(0) = (Xo, ¥o), we conclude C = (xo, yo) and

Ft) = <(vo cosf)t+ Xo ,—%gt2 + (vosin )t + yo >

Key Idea 54 Projectile Motion

The position function of a projectile propelled from an initial position of
o = (X0, ¥o), with initial speed vo, with angle of elevation 6 and neglect-
ing all accelerations but gravity is

. 1
Ft) = <(vo cos6)t +xo —Egt2 + (vosin6)t + yo > )
Letting Vo = v (cos 0, sin 6), r(t) can be written as

- 1 o
r(t) = <O, —2th> + Vot + ro.

We demonstrate how to use this position function in the next two examples.

Example 373 Projectile Motion
Sydney shoots her Red Ryder® bb gun across level ground from an elevation of
4ft, where the barrel of the gun makes a 5° angle with the horizontal. Find how
far the bb travels before landing, assuming the bb is fired at the advertised rate
of 350ft/s and ignoring air resistance.

SOLUTION A direct application of Key Idea 54 gives

F(t) = ((350 cos 5°)t, —16t* + (3505sin 5°)t + 4)
~ (346.67t, —16t° + 30.50t + 4) ,

Notes:



where we set her initial position to be (0, 4). We need to find when the bb lands,
then we can find where. We accomplish this by setting the y-component equal
to 0 and solving for t:

—16t2 +30.50t + 4 =0

,_ 3050+ 1/30.502 — 4(—16)(4)
B —-32

t ~ 2.03s.

(We discarded a negative solution that resulted from our quadratic equation.)

We have found that the bb lands 2.03s after firing; with t = 2.03, we find
the x-component of our position function is 346.67(2.03) = 703.74ft. The bb
lands about 704 feet away.

Example 374 Projectile Motion

Alex holds his sister’s bb gun at a height of 3ft and wants to shoot a target that
is 6ft above the ground, 25ft away. At what angle should he hold the gun to hit
his target? (We still assume the muzzle velocity is 350ft/s.)

SOLUTION The position function for the path of Alex’s bb is
7(t) = ((350 cos 0)t, —16t* + (3505sin 6)t + 3) .

We need to find 6 so that 7{(t) = (25, 6) for some value of t. That is, we want to
find 6 and t such that

(350cos @)t =25 and — 16t* + (350sin6)t + 3 = 6.

This is not trivial (though not “hard”). We start by solving each equation for cos ¢
and sin 6, respectively.

and sinf =

cosf = — —
350t 350t

Using the Pythagorean Identity cos? @ + sin? § = 1, we have
25 \*  [/3+1622\°
) Tl ) =1
350t 350t
Multiply both sides by (350t)%:

25% + (3 + 16t%) = 350%t?
256t* — 122,404t + 634 =0

Notes:

11.3 The Calculus of Motion
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This is a quadratic in t2. That is, we can apply the quadratic formula to find t?,
then solve for t itself.

o 122,404 \/122,4042 — 4(256)(634)
512

t* = 0.0052, 478.135
t = 40.072, +21.866

Clearly the negative t values do not fit our context, so we have t = 0.072 and
t = 21.866. Using cos § = 25/(350t), we can solve for 0:

25 25
0= COS_1 P — and COS_l P———
350 - 0.072 350 - 21.866

# =7.03° and 89.8°.

Alex has two choices of angle. He can hold the rifle at an angle of about 7° with
the horizontal and hit his target 0.07s after firing, or he can hold his rifle almost
straight up, with an angle of 89.8°, where he’ll hit his target about 22s later. The
first option is clearly the option he should choose.

Distance Traveled

Consider a driver who sets her cruise—control to 60mph, and travels at this
speed for an hour. We can ask:

1. How far did the driver travel?

2. How far from her starting position is the driver?

The first is easy to answer: she traveled 60 miles. The second is impossible to
answer with the given information. We do not know if she traveled in a straight
line, on an oval racetrack, or along a slowly—winding highway.

This highlights an important fact: to compute distance traveled, we need
only to know the speed, given by || ¥(t) ||

Theorem 96 Distance Traveled

Let ¥(t) be a velocity function for a moving object. The distance traveled
by the object on [a, b] is:

b
distance traveled = / [| Vi(t) || dt.
a

Note that this is just a restatement of Theorem 95: arc length is the same as dis-
tance traveled, just viewed in a different context.

Notes:



Example 375 Distance Traveled, Displacement, and Average Speed
A particle moves in space with position function r{(t) = <t, t2, sin(7rt)> on[-2,2],
where t is measured in seconds and distances are in meters. Find:

1. The distance traveled by the particle on [—2, 2].
2. The displacement of the particle on [—2, 2].

3. The particle’s average speed.

SOLUTION

1. We use Theorem 96 to establish the integral:

2
distance traveled = / [| V(t) || dt

-2

2
= / V/1+ (2t)2 4 72 cos?(rt) dt.
-2

This cannot be solved in terms of elementary functions so we turn to nu-
merical integration, finding the distance to be 12.88m.

2. The displacement is the vector
?(2) - ?(_2) = <274a0> - <_274a 0> = <47030> .

That is, the particle ends with an x-value increased by 4 and with y- and
z-values the same (see Figure 11.19).

3. We found above that the particle traveled 12.88m over 4 seconds. We can
compute average speed by dividing: 12.88/4 = 3.22m/s.
We should also consider Definition 22 of Section 5.4, which says that the
average value of a function fon [a, b] is ﬁ f:f(x) dx. In our context, the
average value of the speed is

2

1 1
average speed = ————— V(t) || dt ~ =12.88 = 3.22m/s.
ge sp 2_(_2)/2” (0] dt= /

Note how the physical context of a particle traveling gives meaning to a
more abstract concept learned earlier.

In Definition 22 we defined the average value of a function f(x) on [a, b] to

be )
1

Notes:

11.3 The Calculus of Motion

1
/ o/
2
X 2 4 y
—1
(a)
V4
1
X 2 —2
1 N
4y

(b)

Figure 11.19: The path of the particle,
from two perspectives, in Example 375.
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Note how in Example 375 we computed the average speed as

distance traveled 1 z
. =— [ v(t) || dt;
travel time 2—(=-2) ),

that is, we just found the average value of || V(t) || on [—2, 2].
Likewise, given position function 7(t), the average velocity on [a, b] is

displacer.‘nent _ 1 /b FI(t) dt = r(b) — 7(0);
travel time b—a )/, b—a

that is, it is the average value of r/(t), or V(t), on [a, b].

The next two sections investigate more properties of the graphs of vector—
valued functions and we’ll apply these new ideas to what we just learned about
motion.

Notes:



Exercises 11.3

Terms and Concepts

1.
2.

How is velocity different from speed?

What is the difference between displacement and distance
traveled?

What is the difference between average velocity and aver-
age speed?

Distance traveled is the same as
viewed in a different context.

, just

Describe a scenario where an object’s average speed is a
large number, but the magnitude of the average velocity is
not a large number.

. Explain why it is not possible to have an average velocity

with a large magnitude but a small average speed.

Problems

In Exercises 7 - 10, a position function r{t) is given. Find v(t)
and d(t).

7.1
8. 1
9. 7
10.

() (2t+1,5t —2,7)
=3P —2t+1,—t* +t+14)
= (cost,sint)

F(t) = (t/10, — cost,sint)

In Exercises 11 — 14, a position function 7(t) is given. Sketch
7(t) on the indicated interval. Find v(t) and d(t), then add
V(to) and d(to) to your sketch, with their initial points at 7(to),
for the given value of to.

11.
12.

13.

14.

r(t) = (t,sint) on [0, 7/2]; to = w/4
7(t) = (£ sint’) on [0,7/2]; to = /7 /4
Ft) = (€ +t,—t' +2thon [-2,2];to =1

o= (542,

1 t2> on[-1,1;t, =0

In Exercises 15 — 24, a position function 7(t) of an object is
given. Find the speed of the object in terms of t, and find
where the speed is minimized/maximized on the indicated

interval.
15. F(t) = (t,t)on[-1,1]
16. F(t) = (£,t* — ) on [-1,1]
17. r(t) = (5cost,5sint) on [0, 27]
18. r(t) = (2cost,5sint) on [0, 27]
19. r(t) = (sect,tant) on [0, /4]
20. r(t) = (t+ cost,1 —sint) on [0, 27]
21. r(t) = (12t,5cost,5sint) on [0, 47]
22. A(t) = (£ —t,£* + t,t) on [0,1]

23.

24.

At) = (£¢,V1—¢) on[-1,1]

Projectile Motion: r{(t) =

on {0’ 2vp sin 0]
g

(vo cos O)t, f%gtz + (vosin 9)t>

In Exercises 25 — 28, position functions 7, (t) and r; (s) for two
objects are given that follow the same path on the respective
intervals.

25.

26.

27.

28.

(a) Show that the positions are the same at the indicated
to and so values; i.e., show 71 (to) = r>(so).

(b) Find the velocity, speed and acceleration of the two
objects at t; and so, respectively.

f(t) = (t,)on[0,1];to =1

a(s) = (s*,s")on[0,1];s50 =1

r1(t) = (3cost,3sint) on [0, 2n]; to = /2

r2(s) = (3 cos(4s),3sin(4s)) on [0, 7/2]; 50 = 7/8
ri(t) = (3t,2t)on [0,2];tp = 2

ra(s) = (6t — 6,4t — 4) on [1,2]; 5o = 2
f(t) = (t,Vt)yon[0,1];to =1

r2(s) = (sint,/sint) on [0, w/2]; 5o = 7/2

In Exercises 29 — 32, find the position function of an object
given its acceleration and initial velocity and position.

29.
30.
31.
32.

a(t) = (2,3); v(0)=(1,2), r(0)=(5-2)

at) =(2,3); v(1)=(1,2), (1) =(5-2)

d(t) = (cost,—sint); V(0) =(0,1), r(0) = (0,0)
d(t) = (0,—32); v(0) = (10,50), 7(0) = (0,0)

In Exercises 33 - 36, find the displacement, distance traveled,
average velocity and average speed of the described object
on the given interval.

33.

34.

35.

36.

An object with position function r(t) = (2 cos t, 2 sin t, 3t),
where distances are measured in feet and time is in sec-
onds, on [0, 27].

An object with position function r(t) = (5cost, —5sint),
where distances are measured in feet and time is in sec-
onds, on [0, 7].

An object with velocity function v(t) = (cos t, sin t), where
distances are measured in feet and time is in seconds, on
[0, 27].

An object with velocity function V(t) = (1,2, —1), where

distances are measured in feet and time is in seconds, on
[0,10].

Exercises 37 — 42 ask you to solve a variety of problems based
on the principles of projectile motion.

37.

A boy whirls a ball, attached to a 3ft string, above his head
in a counter—clockwise circle. The ball makes 2 revolutions
per second.

At what t-values should the boy release the string so that
the ball heads directly for a tree standing 10ft in front of
him?



38. David faces Goliath with only a stone in a 3ft sling, which
he whirls above his head at 4 revolutions per second. They
stand 20ft apart.

(a) At what t-values must David release the stone in his
sling in order to hit Goliath?

(b) What is the speed at which the stone is traveling
when released?

(c) Assume David releases the stone from a height of 6ft
and Goliath’s forehead is 9ft above the ground. What
angle of elevation must David apply to the stone to hit
Goliath’s head?

39. A hunter aims at a deer which is 40 yards away. Her cross-
bow is at a height of 5ft, and she aims for a spot on the
deer 4ft above the ground. The crossbow fires her arrows
at 300ft/s.

(a) At what angle of elevation should she hold the cross-
bow to hit her target?

(b) If the deer is moving perpendicularly to her line of
sight at a rate of 20mph, by approximately how much

should she lead the deer in order to hit it in the de-
sired location?

40. Abaseball player hits a ball at 100mph, with an initial height
of 3ft and an angle of elevation of 20°, at Boston’s Fenway
Park. The ball flies towards the famed “Green Monster,” a
wall 37ft high located 310ft from home plate.

(a) Show that as hit, the ball hits the wall.

(b) Show that if the angle of elevation is 21°, the ball
clears the Green Monster.

41. A Cessna flies at 1000ft at 150mph and drops a box of sup-
plies to the professor (and his wife) on an island. Ignoring
wind resistance, how far horizontally will the supplies travel
before they land?

42. A football quarterback throws a pass from a height of 6ft,
intending to hit his receiver 20yds away at a height of 5ft.

(a) If the ball is thrown at a rate of 50mph, what angle of
elevation is needed to hit his intended target?

(b) If the ball is thrown at with an angle of elevation of
8°, what initial ball speed is needed to hit his target?



11.4 Unit Tangent and Normal Vectors
Unit Tangent Vector

Given a smooth vector—valued function 7(t), we defined in Definition 71 that
any vector parallel to 7’(ty) is tangent to the graph of r(t) at t = to. It is often
useful to consider just the direction of r’(t) and not its magnitude. Therefore
we are interested in the unit vector in the direction of r’(t). This leads to a
definition.

Definition 74 Unit Tangent Vector

Let r(t) be a smooth function on an open interval I. The unit tangent
vector T(t) is

Example 376 Computing the unit tangent vector
Let r(t) = (3 cost,3sint,4t). Find T(t) and compute T(0) and T(1).

SOLUTION We apply Definition 74 to find T(t).
= 1
(1) = = =7 (1)
7 () |
1

= (—3sint,3cost,4)
\/( — 3sint)2 + (3cosl‘)2 +42

3 3 4
={( —=sint,—cost,— ).
5 5 5

We can now easily compute T(0) and T(1):

- 3 4 - 3.3 4
T(0)=(0,=-,— ); T(1)=(—=sinl,—cosl, — ) ~ (—0.505,0.324,0.8) .
5’5 5 5 5

These are plotted in Figure 11.20 with their initial points at 7(0) and r(1), respec-
tively. (They look rather “short” since they are only length 1.)

The unit tangent vector T(t) always has a magnitude of 1, though it is some-
times easy to doubt that is true. We can help solidify this thought in our minds
by computing || T(1) ||

|| T(1) || = v/(—0.505)2 4 0.3242 + 0.82 = 1.000001.

Notes:

11.4 Unit Tangent and Normal Vectors

Figure 11.20: Plotting unit tangent vec-
tors in Example 376.
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Figure 11.21: Plotting unit tangent vec-
tors in Example 377.

X

Figure 11.22: Given a direction in the
plane, there are always two directions or-
thogonal to it.

Note: T(t) is a unit vector, by definition.
This does not imply that T'(t) is also a unit
vector.

632

We have rounded in our computation of 7"(1), so we don’t get 1 exactly. We
leave it to the reader to use the exact representation of T(1) to verify it has
length 1.

In many ways, the previous example was “too nice.” It turned out that r’(t)
was always of length 5. In the next example the length of 7/(t) is variable, leav-
ing us with a formula that is not as clean.

Example 377 Computing the unit tangent vector
Let 7(t) = (¢ — t,t? + t). Find T(t) and compute T(0) and T(1).

SoLuTioN We find 7/(t) = (2t — 1,2t 4+ 1), and

17(8) || = V2t = 1) + 2t +1)? = V88 + 2.

Therefore

f(t):#(Zt—l,Zt—&-l) =<

20—1  2t+1
82 + 2 '

V82 +2 /82 +2

When t = 0, we have T(0) = (—1/v/2,1/v/2); when t = 1, we have T(1) =
<1/\/ 10,3/v/ 10> . We leave it to the reader to verify each of these is a unit vec-
tor. They are plotted in Figure 11.21

Unit Normal Vector

Just as knowing the direction tangent to a path is important, knowing a direc-
tion orthogonal to a path is important. When dealing with real-valued functions,
we defined the normal line at a point to the be the line through the point that
was perpendicular to the tangent line at that point. We can do a similar thing
with vector—valued functions. Given r(t) in R?, we have 2 directions perpendic-
ular to the tangent vector, as shown in Figure 11.22. It is good to wonder “Is one
of these two directions preferable over the other?”

Given r(t) in R3, however, there are infinite vectors orthogonal to the tan-
gent vector at a given point. Again, we might wonder “Is one of these infinite
choices preferable over the others? Is one of these the ‘right’ choice?”

The answer in both R? and R? is “Yes, there is one vector that is not only
preferable, it is the ‘right’ one to choose.” Recall Theorem 93, which states that
if 7(t) has constant length, then r(t) is orthogonal to r’(t) for all t. We know
7(t), the unit tangent vector, has constant length. Therefore T(t) is orthogonal
to T'(t).

We'll see that f’(t) is more than just a convenient choice of vector that is
orthogonal to r’(t); rather, it is the “right” choice. Since all we care about is the
direction, we define this newly found vector to be a unit vector.

Notes:



Definition 75 Unit Normal Vector

Let 7(t) be a vector-valued function where the unit tangent vector, T(t),
is smooth on an open interval /. The unit normal vector N(t) is

- 1 .,
N(t) = WT (t).

Example 378 Computing the unit normal vector
Let7(t) = (3 cost,3sint, 4t) asin Example 376. Sketch both T(7/2) and N(7/2)
with initial points at r(m/2).

SOLUTION In Example 376, we found T(t) = <(—3/5) sint, (3/5) cost, 4/5>.

Therefore
- 3 3 = 3
T'(t) = ( —=cost,——sint,0 and T't) || ==.
()<5,5,> 17011 =2

Thus

N(t) = = (—cost,—sint,0).
(=55 = (~cost,—sint,0)

We compute T(7/2) = (—3/5,0,4/5) and N(7/2) = (0,—1,0). These are
sketched in Figure 11.23.

The previous example was once again “too nice.” In general, the expression
for T(t) contains fractions of square-roots, hence the expression of T'(t) is very
messy. We demonstrate this in the next example.

Example 379 Computing the unit normal vector
Let F(t) = (t* —t,t* 4+ t) as in Example 377. Find N(t) and sketch (t) with the
unit tangent and normal vectorsatt = —1,0and 1.

SOLUTION In Example 377, we found

S 2t—1 2t+1
T(t) = ; :
V8 +2 /82 +2

Finding T”(t) requires two applications of the Quotient Rule:

Notes:

11.4 Unit Tangent and Normal Vectors

10

—10

Figure 11.23: Plotting unit tangent and
normal vectors in Example 11.23.
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(R

2 2 4 6

Figure 11.24: Plotting unit tangent and
normal vectors in Example 379.

634

8t2 2 ’

. < 82+ 2(2) — (2t — 1) (1(88 +2)"/2(161))

V82 +2(2) — (2t + 1) (3(8¢2 +2)"Y/2(161))
8t2 +2

[ 4Q2t+1)  4(1-2t)
S\ (822 +2)7% (882 4 2)*?

This is not a unit vector; to find N(t), we need to divide T'(t) by it’s magni-

tude.

Finally,

16(1 — 2t)?
(822 1 2)3

17011 = \/16(”“)2 +

(822 + 2)3

16(8t2 + 2)
(82 +2)3
4

8t2 42’

L 42t +1)  4(1-2t)
N(t)— 4/(8t2+2) <(8t2+2)3/2’ (8t2+2)3/2>

< 2t+1 2t—1 >
Ve +2 et +2/

Using this formula for N(t), we compute the unit tangent and normal vectors
fort = —1,0and 1 and sketch them in Figure 11.24.

The final result for N(t) in Example 379 is suspiciously similar to T(t). There
is a clear reason for this. If & = (uy, u,) is a unit vector in R?, then the only unit
vectors orthogonal to i are (—u,, u1) and (u,, —u1). Given T(t), we can quickly
determine N(t) if we know which term to multiply by (—1).

Consider again Figure 11.24, where we have plotted some unit tangent and
normal vectors. Note how I\7(t) always points “inside” the curve, or to the con-
cave side of the curve. This is not a coincidence; this is true in general. Knowing
the direction that 7(t) “turns” allows us to quickly find N(t).

Notes:



Theorem 97 Unit Normal Vectors in R?

Let F(t) be a vector-valued function in R? where T(t) is smooth on an
open interval I. Let T(t) = (t1,t,). Then N(t) is either

N(t) = (—to,t;)  or N(t) = (t,, —t;),

whichever is the vector that points to the concave side of the graph of 7.

Application to Acceleration

Let 7(t) be a position function. It is a fact (stated later in Theorem 98) that
acceleration, d(t), lies in the plane defined by T and N. That is, there are scalars
at and ay such that

The scalar ar measures “how much” acceleration is in the direction of travel, that
is, it measures the component of acceleration that affects the speed. The scalar
an measures “how much” acceleration is perpendicular to the direction of travel,
that is, it measures the component of acceleration that affects the direction of
travel.

We can find ar using the orthogonal projection of d(t) onto T(t) (review Def-
inition 59 in Section 10.3 if needed). Recalling that since T(t) is a unit vector,
T(t) - T(t) = 1, so we have

proj s, d(t) =

=i QI
—~

Thus the amount of @(t) in the direction of T(t) is ar = d(t) - T(t). The same
logic gives ay = d(t) - N(t).

While this is a fine way of computing ar, there are simpler ways of finding ay
(as finding N itself can be complicated). The following theorem gives alternate
formulas for at and ay.

Notes:

11.4 Unit Tangent and Normal Vectors

Note: Keep in mind that both ar and
ay are functions of t; that is, the scalar
changes depending on t. It is convention
to drop the “(t)” notation from ar(t) and
simply write ar.
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Theorem 98 Acceleration in the Plane Defined by T and N

Let r(t) be a position function with acceleration @(t) and unit tangent and
normal vectors T(t) and N(t). Then d(t) lies in the plane defined by T(t) and
N(t); that is, there exists scalars ar and ay such that

Moreover,
ar =at) - 7(0) = < (1I¥(e) )

%aWMQ|mef“T§f?'ww|ﬁww

d
Note the second formula for ar: p (H v(t) ||) This measures the rate of

change of speed, which again is the amount of acceleration in the direction of
travel.

Example 380 Computing a7 and ay
Let r(t) = (3 cost,3sint,4t) as in Examples 376 and 378. Find ar and ay.

SOLUTION The previous examples give @(t) = (—3cost,—3sint,0)
and

3 3 4 _
T(t) = ( —=sint, = cost, — and N(t) = (—cost,—sint,0).
5 5 5
We can find a7 and ay directly with dot products:
~ = 9 . 9 .
ar =d(t) - T(t) = < costsint — < costsint+0=0.
an = a(t) - N(t) = 3cos® t + 3sin’t +0 = 3.
Thus @(t) = 0T(t) + 3N(t) = 3N(t), which is clearly the case.
What is the practical interpretation of these numbers? ar = 0 means the
object is moving at a constant speed, and hence all acceleration comes in the

form of direction change.

Example 381 Computing at and ay
Let F(t) = (* — t,t? + t) as in Examples 377 and 379. Find ar and ay.

Notes:



SOLUTION The previous examples give G(t) = (2,2) and

?(t) < 2t —1 2t+1 > q /V(t) < 2t+1 2t — 1 >
= , an = ,— .
V8t2 +2 /812 +2 V8 +2° /8t2+2

While we can compute ay using /\7(t), we instead demonstrate using another
formula from Theorem 98.

o = (1) (1) = 4t —2 N 4t+2 8t
T V82 +2 V8tZ+2 8 +2

2
_ S 5 5 8t - 4
av=ylawF-a =8\ geiz) ~VeEia

Whent =2, a 16 2.74 and a 4 0.69. We interpret this to
= , T = — ) . N = — ) . .
V34 V34

mean that at t = 2, the particle is acclerating mostly by increasing speed, not
by changing direction. As the path near t = 2 is relatively straight, this should
make intuitive sense. Figure 11.25 gives a graph of the path for reference.

Contrast this with t = 0, where a; = 0 and ay = 4/v/2 ~ 2.82. Here the
particle’s speed is not changing and all acceleration is in the form of direction
change.

Example 382 Analyzing projectile motion

A ball is thrown from a height of 240ft with an initial velocity of 64ft/s with an
angle of elevation of 30°. Find the position function r{(t) for the ball and analyze
ot and ay.

SOLUTION Using Key Idea 54 of Section 11.3 we form the position func-
tion of the ball:

7(t) = ((64 cos30°)t, —16t> + (64sin30°)t + 240),

which we plot in Figure 11.26.
From this we find V(t) = (64 cos 30°, —32t + 64 sin 30°) and d(t) = (0, —32).
Computing T(t) is not difficult, and with some simplification we find

2o V3 1—t
)= <\/t2—2t+4’\/t2—2t+4>'

With d@(t) as simple as it is, finding ar is also simple:

- = 32t — 32
aT = a(t) . T(t) - \/ﬁ

Notes:

11.4 Unit Tangent and Normal Vectors

2 2 4 6

Figure 11.25: Graphing 7(t) in Example
381.

200 +

100 +

100 200 300

Figure 11.26: Plotting the position of a
thrown ball, with 1s increments shown.
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We choose to not find N(t) and find ay through the formulaay = /| @(t) [|2 — a2 :

t o ay 32t—32 \’ 32V/3

an = 322 — = .
0 -16 277 VE—2t+4 VEZ —2t+4
1 0 32
2 16 277 Figure 11.27 gives a table of values of ar and ay. When t = 0, we see the
3 242 209 ball’s speed is decreasing; when t = 1 the speed of the ball is unchanged. This
‘5‘ ;;‘71 11267 corresponds to the fact that at t = 1 the ball reaches its highest point.

After t = 1 we see that ay is decreasing in value. This is because as the ball
falls, it’s path becomes straighter and most of the acceleration is in the form of

Figure 11.27: A table of values of ar and : . AR )
speeding up the ball, and not in changing its direction.

an in Example 382.

Our understanding of the unit tangent and normal vectors is aiding our un-
derstanding of motion. The work in Example 382 gave quantitative analysis of
what we intuitively knew.

The next section provides two more important steps towards this analysis.
We currently describe position only in terms of time. In everyday life, though,
we often describe position in terms of distance (“The gas station is about 2 miles
ahead, on theleft.”). The arc length parameter allows us to reference a particle’s
position in terms of distance traveled.

We also intuitively know that some paths are straighter than others — and
some are curvier than others, but we lack a measurement of “curviness.” The
arc length parameter provides a way for us to compute curvature, a quantitative
measurement of how curvy a curve is.

Notes:
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Exercises 11.4

Terms and Concepts

1. If T(t) is a unit tangent vector, what is || T(t) ||?

r(e)?

3. The acceleration vector d(t) lies in the plane defined by
what two vectors?

2. If N(t) is a unit normal vector, what is N(t) - 7

4. ar measures how much the acceleration is affecting the
of an object.

Problems

In Exercises 5 — 8 , given 7(t), find 7(t) and evaluate it at the
indicated value of t.

5. 7(t) =2, —t), t=1

6. r(t) = (t,cost), t=mn/4
7. 7(t) = (cos’t,sin’t), t=m/4
8. r(t) = (cost,sint), t=m

In Exercises 9 — 12, find the equation of the line tangent to
the curve at the indicated t-value using the unit tangent vec-
tor. Note: these are the same problems as in Exercises 5 —
8.

9. At) = (2", —t), t=1
10. r(t) = (t,cost), t=m/4
11. 7(t) = (cos’t,sin’t), t=m/4
12. r(t) = {cost,sint), t=m

In Exercises 13 - 16 , find I\7(t) using Definition 75. Confirm
the result using Theorem 97.

13. r(t) = (3cost,3sint)
14. 7(t) = (t,t*)

15. r(t) = {cost,2sint)
16. 7(t) = (e',e™")

In Exercises 17 — 20 , a position function r{t) is given along
with its unit tangent vector T(t) evaluated at t = a, for some
value of a.

(a) Confirm that T(a) is as stated.
(b) Using a graph of 7(t) and Theorem 97, find N(a).
3

18. H(t) = <tﬁ> 7(1) = <15—\%>

17. F(t) = (3cost,5sint); T(w/4) = <_

- . . = 2 1
19. r(t) = (14 2sint) (cost,sint); T(0) = <ﬁ7 ﬁ>
20. F(t) = (cos’t,sin’ t); T(r/4) = < i,i>
V2 V2

In Exercises 21 — 24 , find N(t).
21. F(t) = (4t,2sint, 2 cost)
22. r(t) = (5cost,3sint, 4sint)
23. 7(t) = (acost,asint,bt); a>0
24. 1(t) = {(cos(at),sin(at), t)

In Exercises 25 — 30, find ar and ay given r(t). Sketch r(t) on
the indicated interval, and comment on the relative sizes of
ar and ay at the indicated t values.

(t, ) on

(t,1/t) on (0,4]; considert = land t = 2.

25. r(t) = [—1,1]; considert = 0and t = 1.

26. f(t) =

27. 7(t) = (2cost,2sint) on
t=mn/2.

28. 7(t) = (cos(t?),sin(t*)) on

andt = /7.

29. r(t) = (acost,asint,bt) on [0, 2], where a,b > 0; con-
sidert =0and t = 7/2.

[0,27]; consider t = 0 and

(0,27]; consider t = /72

30. r(t) = (5cost,4sint,3sint) on
andt=7/2.

[0, 27]; consider t = 0
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2 4t=1
r(t)
It t:0 It It
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y
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ol /_
/574
s=3
2 s =2
o
s=1
} \5:0 ‘ ) X

(b)

Figure 11.28: Introducing the arc length

parameter.
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11.5 The Arc Length Parameter and Curvature

In normal conversation we describe position in terms of both time and distance.
For instance, imagine driving to visit a friend. If she calls and asks where you
are, you might answer “l am 20 minutes from your house,” or you might say “I
am 10 miles from your house.” Both answers provide your friend with a general
idea of where you are.

Currently, our vector—valued functions have defined points with a parameter
t, which we often take to represent time. Consider Figure 11.28 (a), where r{(t) =
<t2 —t, + t> is graphed and the points correspondingtot = 0, 1 and 2 are
shown. Note how the arc length between t = 0 and t = 1 is smaller than the
arc length between t = 1 and t = 2; if the parameter t is time and Fis position,
we can say that the particle traveled faster on [1, 2] than on [0, 1].

Now consider Figure 11.28 (b), where the same graph is parametrized by a
different variable s. Points corresponding to s = 0 through s = 6 are plotted.
The arc length of the graph between each adjacent pair of points is 1. We can
view this parameter s as distance; that is, the arc length of the graph froms = 0
tos = 3is 3, the arclength froms = 2to s = 6 is 4, etc. If one wants to find the
point 2.5 units from an initial location (i.e., s = 0), one would compute 7(2.5).
This parameter s is very useful, and is called the arc length parameter.

How do we find the arc length parameter?

Start with any parametrization of . We can compute the arc length of the
graph of 7 on the interval [0, t] with

t
arc length :/ [| 7' (u) || du.
0

We can turn this into a function: as t varies, we find the arc length s from O to t.
This function is

t
S(t) = /0 117/ (u) || du. (11.1)

This establishes a relationship between s and t. Knowing this relationship
explicitly, we can rewrite r{t) as a function of s: r(s). We demonstrate this in an

example.

Example 383 Finding the arc length parameter
Let r(t) = (3t — 1,4t + 2). Parametrize r with the arc length parameter s.

SOLUTION Using Equation (11.1), we write

s(t) = / 17/ (u) || ds.

Notes:



11.5 The Arc Length Parameter and Curvature

We can integrate this, explicitly finding a relationship between s and t:
t
)= [ 117w ] do
0
t
= / V3% +4%2du
0
t

:/Sdu
0

= 5t.

Since s = 5t, we can write t = s/5 and replace t in F(t) with s/5:

H(s) = (3(s/5) — 1,4(s/5) + 2) = <2s 1, gs + z> .

Clearly, as shown in Figure 11.29, the graph of Fis a line, where t = 0 corre-
sponds to the point (—1,2). What point on the line is 2 units away from this : : : : X
initial point? We find it with s(2) = (1/5,18/5). -2 ! 2

Is the point (1/5,18/5) really 2 units away from (—1,2)? We use the Dis-
tance Formula to check:

(o) (3 S

Yes, s(2) is indeed 2 units away, in the direction of travel, from the initial point.

Figure 11.29: Graphing Fin Example 383
with parameters t and s.

Things worked out very nicely in Example 383; we were able to establish
directly that s = 5t. Usually, the arc length parameter is much more difficult to
describe in terms of t, a result of integrating a square—root. There are a number
of things that we can learn about the arc length parameter from Equation (11.1),
though, that are incredibly useful.

First, take the derivative of s with respect to t. The Fundamental Theorem
of Calculus (see Theorem 39) states that

ds

dt
Letting t represent time and r(t) represent position, we see that the rate of
change of s with respect to t is speed; that is, the rate of change of “distance
traveled” is speed, which should match our intuition.

The Chain Rule states that

or _ di ds
dt  ds dt
rt)=7r"(s)- 1| F'(t) ]|

s'(t)=||7'(t) || (11.2)

Notes:
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Figure 11.30: Establishing the concept of
curvature.

642

Solving for 7’(s), we have
L = T(t), (11.3)

where T’(t) is the unit tangent vector. Equation 11.3 is often misinterpreted, as
one is tempted to think it states F/(t) = T(t), but there is a big difference be-
tween r’(s) and r’(t). The key to take from it is that 7/(s) is a unit vector. In fact,
the following theorem states that this characterizes the arc length parameter.

Theorem 99 Arc Length Parameter

Let r(s) be a vector—valued function. The parameter s is the arc length
parameter if, and only if, || 7(s) || = 1.

Curvature

Consider points A and B on the curve graphed in Figure 11.30 (a). One can
readily argue that the curve curves more sharply at A than at B. It is useful to use
anumber to describe how sharply the curve bends; that number is the curvature
of the curve.

We derive this number in the following way. Consider Figure 11.30 (b), where
unit tangent vectors are graphed around points A and B. Notice how the direc-
tion of the unit tangent vector changes quite a bit near A, whereas it does not
change as much around B. This leads to an important concept: measuring the
rate of change of the unit tangent vector with respect to arc length gives us a
measurement of curvature.

Definition 76 Curvature

Let r{(s) be a vector—valued function where s is the arc length parameter.
The curvature x of the graph of r{(s) is

=

dT

ds

— |7

() ]]-

If ¥(s) is parametrized by the arc length parameter, then

T(s) = 7;/(5) and N(s) =

Notes:
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Having defined || T/(s) || = &, we can rewrite the second equation as
T'(s) = kN(s). (11.4)

We already knew that T'(s) is in the same direction as N(s); that is, we can think
of T(s) as being “pulled” in the direction of N(s). How “hard” is it being pulled?
By a factor of k. When the curvature is large, T’(s) is being “pulled hard” and the
direction of 7"(5) changes rapidly. When « is small, T(s) is not being pulled hard
and hence its direction is not changing rapidly.

We use Definition 76 to find the curvature of the line in Example 383.

Example 384 Finding the curvature of a line
Use Definition 76 to find the curvature of r(t) = (3t — 1, 4t + 2).

SOLUTION In Example 383, we found that the arc length parameter was
defined by s = 5t, so r(s) = (3t/5 — 1,4t/5 + 2) parametrized r with the arc
length parameter. To find x, we need to find T'(s).

T(s) =F'(s) (recall this is a unit vector)

= (3/5,4/5).
Therefore
T'(s) = (0,0)
and
k=|[T"(s)|| =0

It probably comes as no surprise that the curvature of a line is 0. (How “curvy”
is a line? It is not curvy at all.)

While the definition of curvature is a beautiful mathematical concept, it is
nearly impossible to use most of the time; writing ' in terms of the arc length
parameter is generally very hard. Fortunately, there are other methods of cal-
culating this value that are much easier. There is a tradeoff: the definition is
“easy” to understand though hard to compute, whereas these other formulas
are easy to compute though hard to understand why they work.

Notes:
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Theorem 100 Formulas for Curvature

Let C be a smooth curve on an open interval / in the plane or in space.
1. If Cis defined by y = f(x), then
'
(1+600)’)

2. If Cis defined as a vector-valued function in the plane, r(t) =
(x(t),y(t)), then

3/2°

B |x/yl/ 7X”y/|
- 3/2°
()2 + (v)2)”

3. If Cis defined in space by a vector—valued function 7(t), then

C_NT@I P <P ) a
RG]

t) - N(t)
v(t) |2

We practice using these formulas.

Example 385 Finding the curvature of a circle
Find the curvature of a circle with radius r, defined by r(t) = (rcost, rsint).

SOLUTION Before we start, we should expect the curvature of a circle
to be constant, and not dependent on t. (Why?)
We compute « using the second part of Theorem 100.

_|(=rsint)(=rsint) — (—rcost)(rcost)]|

- ((=rsint)? + (rcos t‘)z)e’/2

r’(sin®t + cos? t)

1

r2(sin® t 4 cos? t))g'/2
3

(
r_1

-

E
We have found that a circle with radius r has curvature k = 1/r.

Notes:
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Example 385 gives a great result. Before this example, if we were told “The
curve has a curvature of 5 at point A,” we would have no idea what this re-
ally meant. Is 5 “big” — does is correspond to a really sharp turn, or a not-so-
sharp turn? Now we can think of 5 in terms of a circle with radius 1/5. Knowing
the units (inches vs. miles, for instance) allows us to determine how sharply the
curve is curving.

Let a point P on a smooth curve C be given, and let k be the curvature of the
curve at P. A circle that:

e passes through P,

¢ lies on the concave side of C,

¢ has a common tangent line as Cat P and

¢ has radius r = 1/k (hence has curvature «)

is the osculating circle, or circle of curvature, to Cat P, and ris the radius of cur-
vature. Figure 11.31 shows the graph of the curve seen earlier in Figure 11.30
and its osculating circles at A and B. A sharp turn corresponds to a circle with
a small radius; a gradual turn corresponds to a circle with a large radius. Being
able to think of curvature in terms of the radius of a circle is very useful. (The
word “osculating” comes from a Latin word related to kissing; an osculating cir-
cle “kisses” the graph at a particular point. Many beautiful ideas in mathematics
have come from studying the osculating circles to a curve.)

Example 386 Finding curvature
Find the curvature of the parabola defined by y = x? at the vertex and at x = 1.

SOLUTION We use the first formula found in Theorem 100.
2|
k(X) = ———M—
(14 (202)*?
2

(1+4x2)3/2.

At the vertex (x = 0), the curvature is kK = 2. At x = 1, the curvature
is k = 2/(5)3% ~ 0.179. So at x = 0, the curvature of y = x? is that of
a circle of radius 1/2; at x = 1, the curvature is that of a circle with radius
A~ 1/0.179 = 5.59. This is illustrated in Figure 11.32. At x = 3, the curvature is
0.009; the graph is nearly straight as the curvature is very close to 0.

Notes:

The Arc Length Parameter and Curvature

Figure 11.31: lllustrating the osculating
circles for the curve seen in Figure 11.30.

y
\ 10 %

Figure 11.32: Examining the curvature of
2
y=x.
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Example 387 Finding curvature
y Find where the curvature of 7(t <t 2 2t3> is maximized.
SOLUTION We use the third formula in Theorem 100 as r{t) is defined

in space. We leave it to the reader to verify that
Fl(t) = (1,2t,6t%), F"(t)=(0,2,12t), and F'(t)xrF"(t) = (12¢%,—12t,2).

Thus

[[77(t) x r(t) ||
17 (e) [1?

(a) _ I {12e2,—12¢,2) |

| (1,2t 62) []?

. Kk(t) =

|
N
|
i
i
N v

/144t 1 14482 1 4
- 3
<\/1 + 4t + 364 )

7 While this is not a particularly “nice” formula, it does explictly tell us what the

X curvature is at a given t value. To maximize x(t), we should solve «’(t) = 0 for

t. This is doable, but very time consuming. Instead, consider the graph of x(t)

as given in Figure 11.33 (a). We see that « is maximized at two t values; using a

(b) numerical solver, we find these values are t ~ £0.189. In part (b) of the figure
we graph r{(t) and indicate the points where curvature is maximized.

Figure 11.33: Understanding the curva-
ture of a curve in space. Curvature and Motion

Let 7(t) be a position function of an object, with velocity v(t) = r’(t) and
acceleration @(t) = 7”(t). In Section 11.4 we established that acceleration is in
the plane formed by 7(t) and N(t), and that we can find scalars ar and ay such
that

a(t) = arT(t) + axN(t).

Theorem 98 gives formulas for ar and ay:

_dr _ [v() xa(t) ||
aT—E<||v(t)||> and oy = S

We understood that the amount of acceleration in the direction of T relates only
to how the speed of the object is changing, and that the amount of acceleration
in the direction of N relates to how the direction of travel of the object is chang-
ing. (That is, if the object travels at constant speed, ar = 0; if the object travels
in a constant direction, ay = 0.)

Notes:
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—

In Equation (11.2) at the beginning of this section, we found s’(t) = || ¥(t) ||
We can combine this fact with the above formula for a; to write

ar = 5 (170 11) = 5.('(0) =" (0.

Since s’(t) is speed, s”(t) is the rate at which speed is changing with respect to
time. We see once more that the component of acceleration in the direction of
travel relates only to speed, not to a change in direction.

Now compare the formula for ay above to the formula for curvature in The-
orem 100:

1) x () || P <Pl _ |1V x|
N="e 2 EGIE IEGIE
Thus
an = k|| ¥(t) ||? (11.5)

- ﬁ(s/(t))z

This last equation shows that the component of acceleration that changes
the object’s direction is dependent on two things: the curvature of the path and
the speed of the object.

Imagine driving a car in a clockwise circle. You will naturally feel a force push-
ing you towards the door (more accurately, the door is pushing you as the car
is turning and you want to travel in a straight line). If you keep the radius of
the circle constant but speed up, the door pushes harder against you (ay has
increased). If you keep your speed constant but tighten the turn, once again the
door will push harder against you.

Putting our new formulas for at and ay together, we have

a(t) = s"()T(t) + x|l (t) [1PN(2).

This is not a particularly practical way of finding ar and ay, but it reveals some
great concepts about how acceleration interacts with speed and the shape of a
curve.

Example 388 Curvature and road design

The minimum radius of the curve in a highway cloverleaf is determined by the
operating speed, as given in the table in Figure 11.34. For each curve and speed,
compute ay.

SOLUTION Using Equation (11.5), we can compute the acceleration
normal to the curve in each case. We start by converting each speed from “miles
per hour” to “feet per second” by multiplying by 5280/3600.

Notes:

Operating Minimum
Speed (mph) Radius (ft)
35 310
40 430
45 540

Figure 11.34: Operating speed and mini-
mum radius in highway cloverleaf design.
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35mph, 310ft = 51.33ft/s, & = 1/310
oy =k || ¥(t) |I°
1
= - (51.33)"
310

= 8.50ft/s.

40mph, 430ft = 58.67ft/s, r = 1/430
1 2
an = —— (58.67
N 430( )

= 8.00ft/s’.

45mph,540ft = 66ft/s, = 1/540

1 2
=20 (66)

= 8.07ft/s’.

an =

Note that each acceleration is similar; this is by design. Considering the classic
“Force = mass X acceleration” formula, this acceleration must be kept small in
order for the tires of a vehicle to keep a “grip” on the road. If one travels on a
turn of radius 310ft at a rate of 50mph, the acceleration is double, at 17.35ft/s?.
If the acceleration is too high, the frictional force created by the tires may not be
enough to keep the car from sliding. Civil engineers routinely compute a “safe”
design speed, then subtract 5-10mph to create the posted speed limit for addi-
tional safety.

We end this chapter with a reflection on what we’ve covered. We started
with vector—valued functions, which may have seemed at the time to be just
another way of writing parametric equations. However, we have seen that the
vector perspective has given us great insight into the behavior of functions and
the study of motion. Vector-valued position functions convey displacement,
distance traveled, speed, velocity, acceleration and curvature information, each
of which has great importance in science and engineering.

Notes:



Exercises 11.5

Terms and Concepts

1. It is common to describe position in terms of both
and/or

A measure of the “curviness” of a curve is

Give two shapes with constant curvature.

Describe in your own words what an “osculating circle” is.

Complete the identity: T'(s) = N(s).

o v kA w N

Given a position function 7(t), how are ar and ay affected
by the curvature?

Problems

In Exercises 7 — 10, a position function r(t) is given, where
t = 0 corresponds to the initial position. Find the arc length
parameter s, and rewrite r(t) in terms of s; that is, find r(s).

7. F(t) = (2t,t,—2t)

8. r(t) = (7cost,7sint)

9. r(t) = (3cost,3sint, 2t)

10. r(t) = (5cost, 13sint,12 cost)

In Exercises 11-22, a curve Cis described along with 2 points
on C. Using a sketch, determine at which of these points the
curvature is greater. Find the curvature « of C.

11. Cis defined by y = x> — x; points given at x = 0 and
x=1/2.

12. Cis defined by y =

X =2.

m; points given at x = 0 and

13. Cis defined by y = cosx; points given at x = 0 and
x=7/2.

14. Cis defined by y = v/1 — x2 on (—1,1); points given at
x=0andx=1/2.

15. Cis defined by r(t) = (cost, sin(2t)); points givenat t = 0
andt = 7/4.

16. Cis defined by F(t) = (cos’t,sintcost); points given at
t=0andt=7/3.

17. Cisdefined by F(t) = (t* — 1,£® — t); points givenatt = 0
andt =5.

18. Cis defined by r(t) = (tant,sect); points given att = 0
andt = 7/6.

19. Cisdefined by r(t) = (4t + 2,3t — 1,2t 4 5); points given
att=0andt=1.

20. Cis defined by F(t) = (£ —t,* — 4,t* — 1); points given
att=0andt=1.

21. Cis defined by r(t) = (3cost,3sint,2t); points given at
t=0andt=m/2.

22, Cis defined by 7(t) = (5cost,13sint, 12 cost); points
givenatt =0and t = 7/2.

In Exercises 23 — 26, find the value of x or t where curvature
is maximized.

13

23. y = —x
=%

24. y =sinx

25. 7(t) = (t +2t,3t — t*)
26. 7(t) = (t,4/t,3/t)

In Exercises 27 — 30, find the radius of curvature at the indi-
cated value.

27. y=tanx,atx =m/4

28. y=x"+x—3,atx=r1/4
29. 7(t) = (cost,sin(3t)),att =0
30. r(t) = (5cos(3t),t),att =0

In Exercises 31 - 34, find the equation of the osculating circle
to the curve at the indicated t-value.

31 At) = (t,t*),att =0

¢

32. r(t) = (3cost,sint), att =0
33. F(t) = (3cost,sint), att = 7/2
34. 7(t) = ( —t,t +t),att=0






12: FUNCTIONS OF SEVERAL
VARIABLES

A function of the form y = f(x) is a function of a single variable; given a value
of x, we can find a value y. Even the vector—valued functions of Chapter 11 are
single—variable functions; the input is a single variable though the output is a
vector.

There are many situations where a desired quantity is a function of two or
more variables. Forinstance, wind chill is measured by knowing the temperature
and wind speed; the volume of a gas can be computed knowing the pressure
and temperature of the gas; to compute a baseball player’s batting average, one
needs to know the number of hits and the number of at—bats.

This chapter studies multivariable functions, that is, functions with more
than one input.

12.1 Introduction to Multivariable Functions

Definition 77 Function of Two Variables

Let D be a subset of R2. A function f of two variables is a rule that assigns
each pair (x,y) in D avalue z = f(x,y) in R. D is the domain of f; the set
of all outputs of fis the range.

Example 389 Understanding a function of two variables
Let z = f(x,y) = x*> — y. Evaluate f(1, 2), f(2,1), and f(—2, 4); find the domain
and range of f.

SOLUTION Using the definition f(x,y) = x* — y, we have:

f(1,2)=1"-2=-1
f2,1)=2>-1=3
f(=2,4)=(-2)" -4=0

The domain is not specified, so we take it to be all possible pairs in R? for which
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fis defined. In this example, fis defined for all pairs (x,y), so the domain D of f
is R?.

The output of f can be made as large or small as possible; any real number r
can be the output. (In fact, given any real number r, f(0, —r) = r.) So the range
Rof fis R.

5 €1
2 P Example 390 Understanding a function of two variables
stz =1 2 2
9 4 X
/—\ Let f(x,y) = /1 — 9 yz Find the domain and range of f.
- k_/ ° SOLUTION The domain is all pairs (x, y) allowable as input in f. Because
2
of the square—root, we need (x,y) such that 0 < 1 — % -
—5 | 2 2
0<1-5-7
Figure 12.1: lllustrating the domain of 2 2
f(x,y) in Example 390. % + v <1
7 =

(b)

The above equation describes the interior of an ellipse as shown in Figure 12.1.
We can represent the domain D graphically with the figure; in set notation, we
can write D = {(x,y) : % + % <1}

The range is the set of all possible output values. The square-root ensures
that all output is > 0. Since the x and y terms are squared, then subtracted, in-
side the square—root, the largest output value comes atx = 0,y = 0: f(0,0) =
1. Thus the range R is the interval [0, 1].

Graphing Functions of Two Variables

The graph of a function f of two variables is the set of all points (x, v, f(x, y))
where (x, y) is in the domain of f. This creates a surface in space.

One can begin sketching a graph by plotting points, but this has limitations.
Consider Figure 12.2a where 25 points have been plotted of f(x, y) = m
More points have been plotted than one would reasonably want to do by hand,
yet it is not clear at all what the graph of the function looks like. Technology al-
lows us to plot lots of points, connect adjacent points with lines and add shading
to create a graph like Figure 12.2b which does a far better job of illustrating the
behavior of f.

While technology is readily available to help us graph functions of two vari-
ables, there is still a paper—and—pencil approach that is useful to understand and
master as it, combined with high—quality graphics, gives one great insight into
the behavior of a function. This technique is known as sketching level curves.

Figure 12.2: Graphing a function of two
variables. Notes:
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Level Curves

It may be surprising to find that the problem of representing a three dimen-
sional surface on paper is familiar to most people (they just don’t realize it).
Topographical maps, like the one shown in Figure 12.3, represent the surface
of Earth by indicating points with the same elevation with contour lines. The
elevations marked are equally spaced; in this example, each thin line indicates
an elevation change in 50ft increments and each thick line indicates a change
of 200ft. When lines are drawn close together, elevation changes rapidly (as
one does not have to travel far to rise 50ft). When lines are far apart, such as
near “Aspen Campground,” elevation changes more gradually as one has to walk
farther to rise 50ft.

Given a function z = f(x,y), we can draw a “topographical map” of f by
drawing level curves (or, contour lines). A level curve at z = cis a curve in the
x-y plane such that for all points (x, y) on the curve, f(x,y) = c.

When drawing level curves, itisimportant that the c values are spaced equally
apart as that gives the best insight to how quickly the “elevation” is changing.
Examples will help one understand this concept.

Example 391 Drawing Level Curves

X2 2
Let f(x,y) = /1 — — — y—. Find the level curves of fforc = 0, 0.2, 0.4, 0.6,
9 4

0.8 and 1.

SOLUTION Consider first c = 0. The level curve for ¢ = 0 is the set of
all points (x,y) such that 0 = — % — %. Squaring both sides quickly gives
us

X2
-z amp—}
9 + 4 ’

an ellipse centered at (0, 0) with horizontal major axis of length 6 and minor axis
of length 4. Thus for any point (x, y) on this curve, f(x,y) = 0.
Now consider the level curve for c = 0.2

2 2
02=4/1-5 ¥
9 4
2 2
004a=1-_V
9 4
)(2 )/2
¥ —o096
9 " 4
)(2 )/2
S A
864 ' 3.8

Notes:

Introduction to Multivariable Functions

o
\
\

\ S~

- \ Aspen

A 4 \Campgroun

\ —".’\ 539

Figure 12.3: A topographical map displays
elevation by drawing contour lines, along
with the elevation is constant.

Sample taken from the public domain USGS Digital Raster Graphics,
http://topmaps.usgs.gove/drg/.
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Figure 12.4: Graphing the level curves in
Example 391.
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This is also an ellipse, where a = /8.64 ~ 2.94 and b = 1/3.84 ~ 1.96.
In general, for z = ¢, the level curve is:

22
c=yj1-X ¥
9 4
szl_ﬁ_ﬁ
9 4
XZ y2
4+ =1-¢
9+4
2 )2

s1-a) a1-a)

ellipses that are decreasing in size as c increases. A special case is when ¢ = 1;
there the ellipse is just the point (0, 0).

The level curves are shown in Figure 12.4(a). Note how the level curves for
¢ = 0and c = 0.2 are very, very close together: this indicates that f is growing
rapidly along those curves.

In Figure 12.4(b), the curves are drawn on a graph of f in space. Note how
the elevations are evenly spaced. Near the level curves of c = 0and ¢ = 0.2 we
can see that findeed is growing quickly.

Example 392 Analyzing Level Curves
X
Let f(x,y) = % Find the level curves for z = c.
xs+y-+1
SOLUTION We begin by setting f(x, y) = c for an arbitrary c and seeing

if algebraic manipulation of the equation reveals anything significant.

X+y — ¢
XXHy24+1
X+y=c(x*+y*+1).

We recognize this as a circle, though the center and radius are not yet clear. By
completing the square, we can obtain:

1\’ N 1\°> 1 .
X— — - == -
2c Y % 2¢? ’
a circle centered at (1/(2c),1/(2c)) with radius \/1/(2¢?) — 1, where |c| <
1/\/5 The level curves for c = +0.2, 0.4 and 0.6 are sketched in Figure 12.5(a).

To help illustrate “elevation,” we use thicker lines for ¢ values near 0, and dashed
lines indicate where ¢ < 0.

Notes:
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There is one special level curve, when ¢ = 0. The level curve in this situation
isx+y=0,theliney = —x.

In Figure 12.5(b) we see a graph of the surface. Note how the y-axis is point-
ing away from the viewer to more closely resemble the orientation of the level
curves in (a).

Seeing the level curves helps us understand the graph. For instance, the
graph does not make it clear that one can “walk” along the line y = —x without
elevation change, though the level curve does.

Functions of Three Variables
We extend our study of multivariable functions to functions of three vari-

ables. (One can make a function of as many variables as one likes; we limit our
study to three variables.)

Definition 78 Function of Three Variables

Let D be a subset of R3. A function f of three variables is a rule that
assigns each triple (x, y, z) in Davalue w = f(x,y,z) inR. Dis the domain
of f; the set of all outputs of fis the range.

(b)

Note how this definition closely resembles that of Definition 77.

Figure 12.5: Graphing the level curves in
Example 393 Understanding a function of three variables & phing

247+ 3sin Example 392.
Let f(x,y,z) = Xz ssihy Evaluate f at the point (3,0,2) and find the
X+2y—z
domain and range of f.
32 +2+3sin0
3,0,2) = — =11.
SOLUTION f(3,0,2) 3720002

As the domain of fis not specified, we take it to be the set of all triples (x, y, 2)
for which f(x, y, ) is defined. As we cannot divide by 0, we find the domain D is

D={(xy,2) | x+2y—z#0}.

We recognize that the set of all points in R? that are not in D form a plane in
space that passes through the origin (with normal vector (1,2, —1)).

We determine the range R is R; that is, all real numbers are possible outputs
of f. There is no set way of establishing this. Rather, to get numbers near 0 we
can let y = 0 and choose z ~ —x?. To get numbers of arbitrarily large magni-
tude, we can let z =~ x + 2y.

Notes:
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Figure 12.6: A table of c¢ values and the
corresponding radius r of the spheres of
constant value in Example 394.
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1.
0.5

0.25
0.125
0.0625

r
0.25
0.35

0.5
0.71
1.
1.41
2.
2.83
4.

Level Surfaces

It is very difficult to produce a meaningful graph of a function of three vari-
ables. A function of one variable is a curve drawn in 2 dimensions; a function of
two variables is a surface drawn in 3 dimensions; a function of three variables is
a hypersurface drawn in 4 dimensions.

There are a few techniques one can employ to try to “picture” a graph of
three variables. One is an analogue of level curves: level surfaces. Given w =
f(x,y,2), the level surface at w = c is the surface in space formed by all points
(Xa Y, Z) wheref(x, Y, Z) =

Example 394 Finding level surfaces
If a point source S is radiating energy, the intensity / at a given point P in space
is inversely proportional to the square of the distance between S and P. That is,

k
henS = (0,0,0), I(x,y,2) = ————
when (0,0,0), I(x,y,2) pERT

Let k = 1; find the level surfaces of /.

for some constant k.

SOLUTION We can (mostly) answer this question using “common sense.”
If energy (say, in the form of light) is emanating from the origin, its intensity will
be the same all a points equidistant from the origin. That is, at any point on
the surface of a sphere centered at the origin, the intensity should be the same.
Therefore, the level surfaces are spheres.

We now find this mathematically. The level surface at | = c is defined by

1
X2+y2+22'

A small amount of algebra reveals

Py =1

c

Given an intensity ¢, the level surface | = cis a sphere of radius 1/4/c, centered
at the origin.

Figure 12.6 gives a table of the radii of the spheres for given c values. Nor-
mally one would use equally spaced c values, but these values have been chosen
purposefully. At a distance of 0.25 from the point source, the intensity is 16; to
move to a point of half that intensity, one just moves out 0.1 to 0.35 — not much
at all. To again halve the intensity, one moves 0.15, a little more than before.

Note how each time the intensity if halved, the distance required to move
away grows. We conclude that the closer one is to the source, the more rapidly
the intensity changes.

Notes:



Exercises 12.1

Terms and Concepts

1. Give two examples (other than those given in the text) of
“real world” functions that require more than one input.

2. The graph of a function of two variables is a

3. Most people are familiar with the concept of level curves in
the context of maps.

4. T/F: Along a level curve, the output of a function does not
change.

5. The analogue of a level curve for functions of three vari-
ables is a level

6. What does it mean when level curves are close together?
Far apart?

Problems

Exercises 7 — 14, give the domain and range of the multivari-
able function.

7. fix,y) =X +y* +2

8. flx,y) =x+2y

9. flx,y) =x—2y

1
10. f(x,y) = g
1
11. fix,y) = 1yt

12. f(x,y) = sinxcosy

13. f(x,y) = /9 — x> — y?

1
18, f(x,y) = e
fxy) = s 75

Exercises 15 — 22, describe in words and sketch the level
curves for the function and given c values.

15. f(x,y) =3x—2y;c=—2,0,2

16. f(x,y) =x* —y;;c=—1,0,1

17. f(x,y) =x—y5c=-2,02

1 _y?
18. flx,y) = =5, = €= 2,02
2x — 2y
19. f(Xay):m}C:*LO’l
3
—X -1
20. flx,y) = =" —jc=-3,-1,0,133

21 flx,y) = V/x®+ 4y, c=1,2,3,4
22. fx,y) =X +4y°;c=1,2,3,4

Exercises 23 — 26, give the domain and range of the functions
of three variables.

X
23. flx,y,2) = Xt2y—az

1

l_XZ_yZ_ZZ

25. f(x,y,2) = /z—x* 4+ y?

26. f(x,y,z) = 2*sinxcosy

24. f(x,y,2) =

Exercises 27 — 30, describe the level surfaces of the given func-
tions of three variables.

27. f(x,y,2) = 4y + 2
28. f(x,y,z) =z — X 4y

2 2
X +y
29. fix,y,2) = =+

30. f(x,y,2) =
X—y
31. Compare the level curves of Exercises 21 and 22. How are
they similar, and how are they different? Each surface is a
quadric surface; describe how the level curves are consis-
tent with what we know about each surface.
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Figure 12.7: lllustrating open and closed
sets in the x-y plane.
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12.2 Limits and Continuity of Multivariable Functions

We continue with the pattern we have established in this text: after defining a
new kind of function, we apply calculus ideas to it. The previous section defined
functions of two and three variables; this section investigates what it means for
these functions to be “continuous.”

We begin with a series of definitions. We are used to “open intervals” such
as (1, 3), which represents the set of all x such that 1 < x < 3, and “closed
intervals” such as [1, 3], which represents the set of all x such that 1 < x < 3.
We need analogous definitions for open and closed sets in the x-y plane.

Definition 79 Open Disk, Boundary and Interior Points, Open and
Closed Sets, Bounded Sets

An open disk B in R? centered at (xo, yo) with radius r is the set of all
points (x,y) such that v/(x — x0)2 + (y — yo)? < r.

Let S be a set of points in R2. A point P in R? is a boundary point of S
if all open disks centered at P contain both pointsin Sand points notin S.

A point Pin Sis an interior point of S if there is an open disk centered at
P that contains only points in S.

A set Sis open if every point in S is an interior point.
A set Sis closed if it contains all of its boundary points.
A set S is bounded if there is an M > 0 such that the open disk, cen-

tered at the origin, with radius M contains S. A set that is not bounded
is unbounded.

Figure 12.7 shows several sets in the x-y plane. In each set, point P, lies on
the boundary of the set as all open disks centered there contain both points in,
and not in, the set. In contrast, point P, is an interior point for there is an open
disk centered there that lies entirely within the set.

The set depicted in Figure 12.7(a) is a closed set as it contains all of its bound-
ary points. The setin (b) is open, for all of its points are interior points (or, equiv-
alently, it does not contain any of its boundary points). The set in (c) is neither
open nor closed as it contains just some of its boundary points.

Notes:



12.2 Limits and Continuity of Multivariable Functions

Example 395 Determining open/closed, bounded/unbounded

Determine if the domain of the function f(x,y) = /1 — % — % is open, closed,

or neither, and if it is bounded.

SOLUTION This domain of this function was found in Example 390 to be
D={(xy)| % + % < 1}, the region bounded by the ellipse g + % = 1. Since
the region includes the boundary (indicated by the use of “<”), the set contains
all of its boundary points and hence is closed. The region is bounded as a disk
of radius 4, centered at the origin, contains D.

Example 396 Determining open/closed, bounded/unbounded
Determine if the domain of f(x,y) = ﬁ is open, closed, or neither.

SOLUTION As we cannot divide by 0, we find the domain to be D =
{(x,y) | x —y # 0}. In other words, the domain is the set of all points (x, y) not
on the liney = x.

The domain is sketched in Figure 12.8. Note how we can draw an open disk
around any point in the domain that lies entirely inside the domain, and also
note how the only boundary points of the domain are the points on the line
y = x. We conclude the domain is an open set. The set is unbounded.

Limits

Recall a pseudo—definition of the limit of a function of one variable: “lim f(x) =
X—C

L” means that if x is “really close” to ¢, then f(x) is “really close” to L. A similar
pseudo—definition holds for functions of two variables. We'll say that

“lim x,y)=L"
(x,y)—>(Xo,yo)f( y)

means “if the point (x, y) is really close to the point (xo, o), then f(x, y) is really
close to L.” The formal definition is given below.

Definition 80 Limit of a Function of Two Variables

Let f(x, y) be a function of two variables and let (xo, ¥o) be a point in the
domain of f. The limit of f(x, y) as (x, y) approaches (xo, o) is L, denoted

lim x,y) =1L,
(x.,y)—>(Xo,yo)f( Y)

if, for every € > O there is a 6 > 0 such that if (x,y) is in the open disk
centered at (xo, yo) with radius 0, then |f(x,y) — L| < e.

Notes:

Figure 12.8: Sketching the domain of the
function in Example 396.
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L (Xo,}/o,L)

—————

- —_————

l\ - ,
X (X07 Yo, O)
Figure 12.9: Illustrating the definition of
a limit. The open disk in the x-y plane has

radius 0. Let (x,y) be any point in this
disk; f(x, y) is within € of L.
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The concept behind Definition 80 is sketched in Figure 12.9. Given ¢ > 0,
find § > 0 such that if (x, y) is any point in the open disk centered at (xo, yo) in
the x-y plane with radius ¢, then f(x, y) should be within ¢ of L.

Computing limits using this definition is rather cumbersome. The following
theorem allows us to evaluate limits much more easily.

Theorem 101 Basic Limit Properties of Functions of Two Variables

Let b, xo, Yo, L and K be real numbers, let n be a positive integer, and let
fand g be functions with the following limits:

lim

x,y) =K.
(va)—>(X0~,YO)g( y)

lim and
(%,y)— (x0,¥0)

fix,y) =1

The following limits hold.

lim b=>b

(va)ﬁ()(vaO)

1. Constants:

lim
(%,¥) = (x0,¥0)

(fx,y) £ g(x,y)) =L+K

2. ldentity X = Xo; Yy=Yo

lim
(%,¥) = (Xo,¥0)

3. Sums/Differences: lim
(x,y) = (x0,¥0)
lim
(va)*)(XOﬂyO)

4. Scalar Multiples: b-f(x,y) =bL

5. Products: lim  f(x,y)-g(x,y) = LK
(va)*)(x(hyﬂ)

6. Quotients: fix,y)/a(x,y) = L/K, (K # 0)
(%)= (x0,¥0)

7. Powers: lim  fix,y)"=1L"

(6y) = (x0,¥0)

This theorem, combined with Theorems 2 and 3 of Section 1.3, allows us to
evaluate many limits.

Example 397 Evaluating a limit
Evaluate the following limits:
3xy

. y
1. lim =~ 4 cos(x 2. im _-—
- cos(xy) (x.y)—(0,0) X* 4 y2

(xy)—(1,m) X

SOLUTION

Notes:
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1. The aforementioned theorems allow us to simply evaluate y/x + cos(xy)
when x = 1 and y = 7. If an indeterminate form is returned, we must do
more work to evaluate the limit; otherwise, the result is the limit. There-
fore

m L4 cos(xy) T 4 cos
4 - T
xy)—(1,m) X 1

=7 —1.

2. We attempt to evaluate the limit by substituting 0 in for x and y, but the
result is the indeterminate form “0/0.” To evaluate this limit, we must
“do more work,” but we have not yet learned what “kind” of work to do.
Therefore we cannot yet evaluate this limit.

When dealing with functions of a single variable we also considered one—

sided limits and stated

limf(x) =L ifandonlyif, lim f(x) =L and lim f(x) =L.

X—c¢ x—ct X—Cc~
That is, the limit is L if and only if f(x) approaches L when x approaches c from
either direction, the left or the right.

In the plane, there are infinite directions from which (x, y) might approach
(X0, ¥0). Infact, we do not have to restrict ourselves to approaching (xo, yo) from
a particular direction, but rather we can approach that point along a path that is
not a straight line. It is possible to arrive at different limiting values by approach-
ing (xo, o) along different paths. If this happens, we say that  lim  f(x,y)

(x,y)—=(x0,¥0)
does not exist (this is analogous to the left and right hand limits of single variable
functions not being equal).

Our theorems tell us that we can evaluate most limits quite simply, without
worrying about paths. When indeterminate forms arise, the limit may or may
not exist. If it does exist, it can be difficult to prove this as we need to show the
same limiting value is obtained regardless of the path chosen. The case where
the limit does not exist is often easier to deal with, for we can often pick two
paths along which the limit is different.

Example 398 Showing limits do not exist
: 3xy . . . :
1. Show lim ——— does notexist by finding the limits along the lines
(x.y)—(0,0) X= +y
y = mx.
sin(x;
2. Show lim ﬁ does not exist by finding the limit along the path
(xy)—(0,0) X+Yy
y = —sinx.

Notes:
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662

SOLUTION

lim
() —(0,0) X* + ¥
with mx and evaluating the resulting limit:

1. Evaluating along the lines y = mx means replace all y's

3x(mx) , 3mx?
im = lim
(xm)—(0,0) X2 + (mx)?  x—=0 x2(m? + 1)
. 3m
= lim
x—=0m?2 +1

~ 3m
C omi41

While the limit exists for each choice of m, we get a different limit for each
choice of m. That is, along different lines we get differing limiting values,
meaning the limit does not exist.

2. Letf(x,y) = %) \We are to show that  lim f(x,y) does not exist
xty (6,¥)—(0,0)
by finding the limit along the path y = —sinx. First, however, consider
the limits found along the lines y = mx as done above.
i sin (x(mx))  sin(mx?)
(m0)—(00) X+mx  x=0x(m+1)
; 2
sin(mx 1
x—0 X m+1
By applying L'Hopital’s Rule, we can show this limit is 0 except when m =
—1, that is, along the line y = —x. This line is not in the domain of f, so
we have found the following fact: along every line y = mx in the domain
off, lim f(x,y)=0.
(x,y)—(0,0) G)
Now consider the limit along the path y = — sinx:
sin ( — xsinx sin ( — xsinx
S (oxsing _ o, sin (= xsing
(x,— sinx)—(0,0) X —sinx x—0 X —sinx
Now apply L'Hdpital’s Rule twice:
i 8 (= xsinx)(—sinx — x cos x) (“ = 0/0%)
x—0 1— cosx
i sin ( — xsinx) (— sinx — xcos x)> + cos ( — xsinx) (—2 cos x + xsin x)
= Ilim
XL>O sin x
= “2/0” = the limit does not exist.
Step back and consider what we have just discovered. Along any liney =
mx in the domain of the f(x, y), the limit is 0. However, along the path
Notes:
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y = — sinx, which lies in the domain of the f(x, y) for all x # 0, the limit
does not exist. Since the limit is not the same along every path to (0, 0),

sin
wesay lim i)

——= does not exist.
(xy)—(0,0) X+Yy

Example 399 Finding a limit

Let f(x )*Lzyz Find lim  f(x,y)
ey T o See”

SOLUTION It is relatively easy to show that along any line y = mx, the
limit is 0. This is not enough to prove that the limit exists, as demonstrated in
the previous example, but it tells us that if the limit does exist then it must be 0.

To prove the limit is 0, we apply Definition 80. Let £ > 0 be given. We want
to find § > 0 such that if \/(x — 0)2 + (y — 0)2 < 4, then [f(x,y) — 0| < e.
5y?

X2+y2

Set § < 4/¢/5. Note that

VX2 +y2 < 6, then x® < &%

Let \/(x — 0)2 + (y — 0)2 < 6. Consider |f(x,y) — O]:

< 5forall (x,y) # (0,0), and that if

|f(X7y) _O| =

5x2y?
Y o
X2+y2

Thus if \/(x —0)2+ (y — 0)2 < § then |f(x,y) — 0| < &, which is what we
5 2,,2
wanted to show. Thus  lim XY
()= (0,0) X2 +y?

Continuity

Definition 3 defines what it means for a function of one variable to be con-
tinuous. In brief, it meant that the graph of the function did not have breaks,
holes, jumps, etc. We define continuity for functions of two variables in a similar
way.

Notes:
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Definition 81 Continuous
Let a function f(x, y) be defined on an open disk B containing the point
(X07y0)'

1. fis continuous at (xo,yo) if  lim  f(x,y) = f(xo, ¥o)-
(%,y)—(x0,¥0)

2. fis continuous on Biif fis continuous at all points in B. If fis contin-
uous at all points in R?, we say that fis continuous everywhere.

Example 400 Continuity of a function of two variables
cos y sin x X 7& 0

Let f(x,y) = { X

cosy x=0

. Is f continuous at (0,0)? Is f continuous

everywhere?
SOLUTION To determine if fis continuous at (0, 0), we need to compare
lim X,y) to f(0,0).

i (o,o)f( y) to f(0,0)

Applying the definition of f, we see that f(0,0) = cos0 = 1.
We now consider the limit  lim  f(x,y). Substituting O for x and y in
(x,y)—(0,0)
(cosysinx)/x returns the indeterminate form “0/0”, so we need to do more
work to evaluate this limit. )
sin x
Consider two related limits: lim cosy and lim ——. The first
(x,y)—(0,0) (xy)—(0,0) X

limit does not contain x, and since cos y is continuous,

lim cosy=limcosy=cos0=1.
(x,y)—(0,0) y—0

The second limit does not contain y. By Theorem 5 we can say

. sin x . sinx
lim — = lim — =1.
(y)—(0,0) X x=0 X
Finally, Theorem 101 of this section states that we can combine these two limits
as follows:

i cosysinx . sinx
lim ——— = lim (cosy) <>
(xy)—(0,0) X (x,y)—(0,0) X
. . sinx
:( lim cosy)( lim )
(xy)—(0,0) (xy)—(0,0) X

= (1)(1)
=1.

Notes:
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We have found that  lim oY% _ £(0,0), so f is continuous at
(x,y)—(0,0) X
(0,0).
A similar analysis shows that f is continuous at all points in R?. As long as
x # 0, we can evaluate the limit directly; when x = 0, a similar analysis shows
that the limit is cos y. Thus we can say that f is continuous everywhere. A graph

of fis given in Figure 12.10. Notice how it has no breaks, jumps, etc.

The following theorem is very similar to Theorem 8, giving us ways to com-
bine continuous functions to create other continuous functions.

Theorem 102 Properties of Continuous Functions

Let f and g be continuous on an open disk B, let ¢ be a real number, and
let n be a positive integer. The following functions are continuous on B.

1. Sums/Differences: f+g

2. Constant Multiples: ¢ - f

3. Products: f-a

4. Quotients: f/a (aslongsasg # 0on /)

5. Powers: f"

6. Roots: \Vf (if n is even then f > 0 on /; if nis odd,
then true for all values of fon 1.)

7. Compositions: Adjust the definitions of f and g to: Let f be

continuous on B, where the range of fon B is
J, and let g be a single variable function that is
continuous on J. Then g o f, i.e., g(f(x,y)), is
continuous on B.

Example 401 Establishing continuity of a function
Let f(x,y) = sin(x? cos y). Show f is continuous everywhere.

SOLUTION We will apply both Theorems 8 and 102. Let f;(x,y) = X2
Since y is not actually used in the function, and polynomials are continuous (by
Theorem 8), we conclude f; is continuous everywhere. A similar statement can
be made about f,(x,y) = cosy. Part 3 of Theorem 102 states that f3 = f - f>
is continuous everywhere, and Part 7 of the theorem states the composition of
sine with f3 is continuous: that is, sin(f3) = sin(x? cosy) is continuous every-
where.

Notes:

Figure 12.10: Agraph of f(x, y) in Example

400.
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Functions of Three Variables

The definitions and theorems given in this section can be extended in a natu-
ral way to definitions and theorems about functions of three (or more) variables.
We cover the key concepts here; some terms from Definitions 79 and 81 are not
redefined but their analogous meanings should be clear to the reader.

Definition 82 Open Balls, Limit, Continuous

1. An open ball in R? centered at (xo, Yo, Zo) with radius r is the set of all
points (x, y,z) such that v/(x —x0)2 + (y — yo)2 + (z — 20)2 = r.

2. Let f(x,y,z) be a function of three variables and let (xo,y0,20) be a
point in the domain of f. The limit of f(x, y, z) as (x,y, z) approaches
(X0, Yo, 20) is L, denoted

lim x,y,2) =1L,
(x,y,z)%(xo,yo,zl))f( )
if, for every ¢ > 0 thereis a 0 > 0 such that if (x,y,z) is in the open
ball centered at (X, Yo, Zo) with radius §, then |f(x,y,z) — L| < e.

3. Let f(x,y,z) be defined on an open ball B containing (xo, Yo,20). fis

continuous at (xo, Yo, 20) if lim f(x,y,2) = f(x0,Y0,20)-
(x:y,2) = (X0,¥0,20)

These definitions can also be extended naturally to apply to functions of four
or more variables. Theorem 102 also applies to function of three or more vari-
ables, allowing us to say that the function

ex2+y yZ +ZZ +3

flxy.2) = sin(xyz) + 5

is continuous everywhere.

Notes:



Exercises 12.2

Terms and Concepts
1. Describe in your own words the difference between bound-
ary and interior point of a set.

2. Use your own words to describe (informally) what
lim  f(x,y) = 17 means.

() —(1,2)
3. Give an example of a closed, bounded set.
4. Give an example of a closed, unbounded set.
5. Give an example of a open, bounded set.
6. Give an example of a open, unbounded set.
Problems

Exercises 7 — 10, give one boundary point and one interior
point, when possible, of the given set S. State whether Sis an
open or a closed set.

7. 5= {(x7y) (c-17 (y—93)2 31}

4
8. s={(xy |y #x}
9. S={(x,y) |X¥ +y =1}
10. S = {(x,y)|ly > sinx}

Exercises 11 — 14, give the domain of the given function and
state whether it is an open or closed set.

4y
11. f(x,y) = P
12. f(x7y) = Vyixz
1

13. f(x,y) = e

X — )P
XZ + y2
Exercises 15 — 20, a limit is given. Evaluate the limit along the

paths given, then state why these results show why the given
limit does not exist.

14. f(x,y) =

2 2
> (x,Y)le(OVO) %
(a) Alongthe pathy = 0.
(b) Along the path x = 0.
X+y

16. im
(xy)—=(0,0) X — ¥

(a) Along the pathy = mx.

xy —y°

17. im
(x9)—(0,0) ¥* + X

(a) Along the path y = mx.
(b) Along the path x = 0.
sin(x?)

()—(0,0) Y

18.

(a) Along the pathy = mx.
(b) Along the path y = x*.

xX+y—3

19. lim
x2—1

(xy)—(1,2)
(a) Alongthe pathy = 2.
(b) Alongthe pathy = x + 1.
20 (x,y)ﬂr(?m/Z) %
(a) Along the path x = .

(b) Alongthe pathy = x — /2.
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20
—4 _
-2 —, 4
% 2 2
4 4y
(a)
z
20
—4 _
-2 —, 4
X 2 2
4 4y

(b)

Figure 12.11: By fixing y = 2, the surface
f(x,y) = x* + 2y* is a curve in space.

Alternate notations for fi(x, y) include:

0 of Oz
af(xayL aa av

with similar notations for f,(x,y). For
ease of notation, fi(x,y) is often abbre-
viated fy.
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12.3 Partial Derivatives

Let y be a function of x. We have studied in great detail the derivative of y with
respect to x, that s, %, which measures the rate at which y changes with respect
to x. Consider now z = f(x, y). It makes sense to want to know how z changes
with respect to x and/or y. This section begins our investigation into these rates

of change.

Consider the function z = f(x,y) = x> + 2)?, as graphed in Figure 12.11(a).
By fixing y = 2, we focus our attention to all points on the surface where the
y-value is 2, shown in both parts (a) and (b) of the figure. These points form a
curve in space: z = f(x,2) = x*> + 8 which is a function of just one variable. We
can take the derivative of z with respect to x along this curve and find equations
of tangent lines, etc.

The key notion to extract from this example is: by treating y as constant (it
does not vary) we can consider how z changes with respect to x. In a similar
fashion, we can hold x constant and consider how z changes with respect to
y. This is the underlying principle of partial derivatives. We state the formal,
limit—based definition first, then show how to compute these partial derivatives
without directly taking limits.

Definition 83 Partial Derivative
Let z = f(x, y) be a continuous function on an open set S in R?.

1. The partial derivative of f with respect to x is:

o fxthy) —flxy)
fx(xay) _’!l_rn) h .

2. The partial derivative of f with respect to y is:

o fooy+h) —flixy)
fy(X7 y) - ’lyl_rpo h .

Example 402 Computing partial derivatives with the limit definition
Let f(x,y) = x?y + 2x + y>. Find f,(x, y) using the limit definition.

Notes:



SOLUTION Using Definition 83, we have:
. f(X‘i’h,y)*f(X,y)
x\ X = |
filxy) = lim h
. (x+h)2y+2(x+h)+y>— Py +2x+ )
N h
—im (X%y + 2xhy + h*y + 2x +2h + > — (xX’y + 2x + y*)
h—0 h
__ 2xhy + h’y + 2h
= lim ——
h—0 h

= lim 2xy + hy + 2
h—0

= 2xy + 2.
We have found fy(x,y) = 2xy + 2.

Example 402 found a partial derivative using the formal, limit—based defi-
nition. Using limits is not necessary, though, as we can rely on our previous
knowledge of derivatives to compute partial derivatives easily. When comput-
ing fx(x,y), we hold y fixed — it does not vary. Therefore we can compute the
derivative with respect to x by treating y as a constant or coefficient.

Justas & (5x2) = 10x, we compute 2 (x2y) = 2xy. Here we are treating y
as a coefficient.

Justas £ (53%) = 0, we compute 2 (y*) = 0. Here we are treating y as a
constant. More examples will help make this clear.

Example 403 Finding partial derivatives
Find fy(x, y) and f,(x, y) in each of the following.

1. fix,y) =y* + 5y —x+7
2. f(x,y) = cos(xy?) + sinx

3. flx,y) =V V¥ +1

SOLUTION

1. We have f(x,y) = x3y? + 5> — x + 7.
Begin with f,(x, y). Keep y fixed, treating it as a constant or coefficient, as
appropriate:
f(x,y) =334 — 1.

Note how the 5y? and 7 terms go to zero.

Notes:

12.3 Partial Derivatives
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To compute f,(x, y), we hold x fixed:
f,(x,y) = 2X°y + 10y.
Note how the —x and 7 terms go to zero.

2. We have f(x, y) = cos(xy?) + sinx.
Begin with fy(x, y). We need to apply the Chain Rule with the cosine term;
y? is the coefficient of the x-term inside the cosine function.
f(x,y) = —sin(xy?)(y?) + cosx = —y? sin(xy?) + cos x.

To find f,(x,y), note that x is the coefficient of the y? term inside of the
cosine term; also note that since x is fixed, sin x is also fixed, and we treat
it as a constant.

£, (x,y) = —sin(xy?)(2xy) = —2xysin(xy?).

3. We have f(x,y) = eV VX2 1.
Beginning with f,(x, y), note how we need to apply the Product Rule.

2.3 231 _
f(x,y) = e (2xy*) v/ x? —|—1+e"”3£(x2 +1) 12
2.3 e)(zya
R A S —
Y 2vx*+1

Note that when finding f, (x, ) we do not have to apply the Product Rule;

since v/x% + 1 does not contain y, we treat it as fixed and hence becomes
2.3

a coefficient of the e*7 term.

f(xy) = e"z”s(.%xzyz)\/x2 11=332e V2 + 1.

We have shown how to compute a partial derivative, but it may still not be
clear what a partial derivative means. Given z = f(x, y), f«(x,y) measures the
rate at which z changes as only x varies: y is held constant.

Imagine standing in a rolling meadow, then beginning to walk due east. De-
pending on your location, you might walk up, sharply down, or perhaps not
change elevation at all. This is similar to measuring z,: you are moving only east
(in the “x”-direction) and not north/south at all. Going back to your original lo-
cation, imagine now walking due north (in the “y”-direction). Perhaps walking
due north does not change your elevation at all. This is analogous to z, = 0: z
does not change with respect to y. We can see that z, and z, do not have to be
the same, or even similar, as it is easy to imagine circumstances where walking
east means you walk downhill, though walking north makes you walk uphill.

Notes:
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The following example helps us visualize this more.

Example 404 Evaluating partial derivatives
Letz = f(x,y) = —x* — %yz + xy + 10. Find f,(2,1) and f,(2, 1) and interpret z
their meaning. 10
L
SOLUTION We begin by computing fy(x,y) = —2x + y and f,(x,y) = /
—y + x. Thus

fx(2,1)=-3 and f,(2,1)=1.

It is also useful to note that f(2,1) = 7.5. What does each of these numbers 10
mean?
5
Consider f,(2,1) = —3, along with Figure 12.12(a). If one “stands” on the e
surface at the point (2, 1,7.5) and moves parallel to the x-axis (i.e., only the x- ™~

value changes, not the y-value), then the instantaneous rate of change is —3.

Increasing the x-value will decrease the z-value; decreasing the x-value will in- 5 N

crease the z-value. X

Now consider f,(2,1) = 1, illustrated in Figure 12.12(b). Moving along the (b)
curve drawn on the surface, i.e., parallel to the y-axis and not changing the x-

values, increases the z-value instantaneously at a rate of 1. Increasing the y-
value by 1 would increase the z-value by approximately 1.

Figure 12.12: lllustrating the meaning of
partial derivatives.

Since the magnitude of f, is greater than the magnitude of f, at (2, 1), itis
“steeper” in the x-direction than in the y-direction.

Second Partial Derivatives

Let z = f(x,y). We have learned to find the partial derivatives f,(x,y) and
f,(x,y), which are each functions of xand y. Therefore we can take partial deriva-
tives of them, each with respect to x and y. We define these “second partials”
along with the notation, give examples, then discuss their meaning.

Notes:
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Note: The terms in Definition 84 all de-
pend on limits, so each definition comes
with the caveat “where the limit exists.”
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Definition 84 Second Partial Derivative, Mixed Partial Derivative

Let z = f(x, y) be continuous on an open set S.

1. The second partial derivative of f with respect to x then x is
o (of 0*f
Ox <8X> = 2 = (fx)X:fxx

2. The second partial derivative of f with respect to x then y is
o (of 0*f
ol el = (fx) = fxy
dy \ Ox Oyox y

o? o2
Similar definitions hold for aT/JZ‘ = f,y and 0x8fy = fix-

The second partial derivatives f,, and f,x are mixed partial derivatives.

The notation of second partial derivatives gives some insight into the nota-

tion of the second derivative of a function of a single variable. If y = f(x), then
2

d
f"(x) = d—)zl The “d?y” portion means “take the derivative of y twice,” while
X
“dx®>” means “with respect to x both times.” When we only know of functions of
a single variable, this latter phrase seems silly: there is only one variable to take
the derivative with respect to. Now that we understand functions of multiple
variables, we see the importance of specifying which variables we are referring
to.

Example 405 Second partial derivatives
For each of the following, find all six first and second partial derivatives. That is,
find
fX7 fyv fxx> fyya fxy and fyx .
1. f(x,y) = x*y* + 2xy> + cosx

X3

2, f(x,y) = 5

<

3. fix,y) = €*sin(x’y)

SOLUTION In each, we give f, and f, immediately and then spend time de-
riving the second partial derivatives.

Notes:
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1. f(x,y) = x*y* + 2xy* + cosx
flx,y) = 3x%y% + 2y —sinx
f(x,y) = 2x3 y + 6xy?

(X, y) = (X) _9 (3X y* +2y? — sinx) = 6xy* — cosx
3
fy(x,y) = (y) = y(2x y+ 6xy%) = 2 + 12xy

dy

0 0 ) 5 5
fo(x,y) = a*(x)— y(3xy +2y° — SInX):6xy—|—6y

9

Ox

B
flxy) = - (F) = 5. (2¢y + 6x/°) = 6y + 6y”
3
2 f(Xay) :Xay_2
2
flxy) = 25
2 3
£, (x,y) = —y%
0 0 ,3x% (3%
fXX(Xay) = a(x) = a(?) = F

o, 2, 6
fyy(x,y)zafy(y)zafy(*yf);):%

0 ,3x° 6x>
fxy(X>y) (X) ay( )2 ) = _yT

0 23 6x°
fyx(X,y) = a(x) = a( — ?) = _F

3. flx,y) = € sin(x’y)
Because the following partial derivatives get rather long, we omit the extra
notation and just give the results. In several cases, multiple applications
of the Product and Chain Rules will be necessary, followed by some basic
combination of like terms.
fx(x,y) = €“sin(x’y) + 2xye* cos(x’y)
f,(x,y) = x*€* cos(x’y)
fux (X, y) = € sin(x’y) + dxye”* cos(x%y) + 2ye* cos(x’y) — 4x*y2e* sin(x’y)

) =
fy(x,y) = —x*e*sin(x%y)
fry (X, ) = x*€* cos(x’y) + 2xe* cos(xX’y) — 2x3ye* sin(x’y)
Fx(x,y) = x*e* cos(x%y) + 2xe* cos(x’y) — 2X3ye* sin(x’y)
Notes:
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Notice how in each of the three functions in Example 405, f,, = f,x. Due to
the complexity of the examples, this likely is not a coincidence. The following
theorem states that it is not.

Theorem 103 Mixed Partial Derivatives

Let f be defined such that f,, and f, are continuous on an open set S.
Then for each point (x,y) in S, fi, (x,¥) = fix(x,¥).

Finding f,, and f,, independently and comparing the results provides a con-
venient way of checking our work.

Understanding Second Partial Derivatives

Now that we know how to find second partials, we investigate what they tell
us.

Again we refer back to a function y = f(x) of a single variable. The second
derivative of fis “the derivative of the derivative,” or “the rate of change of the
rate of change.” The second derivative measures how much the derivative is
changing. If f”/(x) < 0, then the derivative is getting smaller (so the graph of fis
concave down); if f”/(x) > 0, then the derivative is growing, making the graph
of f concave up.

Now consider z = f(x, y). Similar statements can be made about f,, and f,,
as could be made about f”/(x) above. When taking derivatives with respect to
x twice, we measure how much f, changes with respect to x. If f(x,y) < 0,
it means that as x increases, f, decreases, and the graph of f will be concave
down in the x-direction. Using the analogy of standing in the rolling meadow
used earlier in this section, f,, measures whether one’s path is concave up/down
when walking due east.

Similarly, f,, measures the concavity in the y-direction. If f,,(x,y) > 0, then
fy is increasing with respect to y and the graph of f will be concave up in the y-
direction. Appealing to the rolling meadow analogy again, f,, measures whether
one’s path is concave up/down when walking due north.

We now consider the mixed partials f,, and f,x. The mixed partial f,, mea-
sures how much f, changes with respect to y. Once again using the rolling meadow
analogy, f, measures the slope if one walks due east. Looking east, begin walk-
ing north (side—stepping). Is the path towards the east getting steeper? If so,
fiy > 0. Is the path towards the east not changing in steepness? If so, then
fry = 0. Asimilar thing can be said about f,,: consider the steepness of paths
heading north while side—stepping to the east.

The following example examines these ideas with concrete numbers and

Notes:



graphs.

Example 406 Understanding second partial derivatives
Let z = x> — y? + xy. Evaluate the 6 first and second partial derivatives at
(—=1/2,1/2) and interpret what each of these numbers mean.

SOLUTION We find that:

fx(Xa y) - 2X+y1 fy(xa y) = 72y+xl fXX(va) = 21 fyy(Xa y) =-2 and
fiy(x,¥) = fx(x,y) = 1. Thus at (—1/2,1/2) we have

£(=1/2,1/2) = -1/2,  £,(-1/2,1/2) = =3/2.

The slope of the tangent line at (—1/2,1/2, —1/4) in the direction of x is —1/2:
if one moves from that point parallel to the x-axis, the instantaneous rate of
change will be —1/2. The slope of the tangent line at this point in the direction
of yis —3/2: if one moves from this point parallel to the y-axis, the instantaneous
rate of change will be —3/2. These tangents lines are graphed in Figure 12.13(a)
and (b), respectively, where the tangent lines are drawn in a solid line.

Now consider only Figure 12.13(a). Three directed tangent lines are drawn
(two are dashed), each in the direction of x; that is, each has a slope determined
by f,. Note how as y increases, the slope of these lines get closer to 0. Since the
slopes are all negative, getting closer to 0 means the slopes are increasing. The
slopes given by f, are increasing as y increases, meaning f,, must be positive.

Since f, = f,x, We also expect f, to increase as x increases. Consider Figure
12.13(b) where again three directed tangent lines are drawn, this time each in
the direction of y with slopes determined by f,. As x increases, the slopes be-
come less steep (closer to 0). Since these are negative slopes, this means the
slopes are increasing.

Thus far we have a visual understanding of f, f,, and f,, = f,x. We now inter-
pret fix and f,,. In Figure 12.13(a), we see a curve drawn where x is held constant
at x = —1/2: only y varies. This curve is clearly concave down, corresponding
to the fact that f,, < 0. In part (b) of the figure, we see a similar curve where y
is constant and only x varies. This curve is concave up, corresponding to the fact
that f, > 0.

Partial Derivatives and Functions of Three Variables

The concepts underlying partial derivatives can be easily extend to more
than two variables. We give some definitions and examples in the case of three
variables and trust the reader can extend these definitions to more variables if
needed.

Notes:

12.3 Partial Derivatives

Figure 12.13: Understanding the second
partial derivatives in Example 406.
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Definition 85 Partial Derivatives with Three Variables

Let w = f(x,y, z) be a continuous function on an open set S in R3.
The partial derivative of f with respect to x is:
f(X+ h,y,Z) _f(Xayaz)

= lim .
h—0 h

fx(X7 Y, z)

Similar definitions hold for f,(x, y, z) and f,(x, y, z).

By taking partial derivatives of partial derivatives, we can find second partial
derivatives of f with respect to z then y, for instance, just as before.

Example 407 Partial derivatives of functions of three variables
For each of the following, find £, f,, f2, fxz fyzr @and fo.
1 f(X7 Y, Z) = X2y324 + X2y2 + X3Z3 + y4Z4

2. f(x,y,2) = xsin(yz)

SOLUTION
1. fi = 2xy32% + 2xy? + 3x%23;  f, = 3x%y?2* + 2%y + 4y32%;
f; = &Cy32 + 332 + 4y* B35 f, = 8xy328 49X
frr = 123y°22 + 16y°2%;  f,, = 12x%y32% + 6x°z + 12y°22
2. fy=sin(yz); f, =xzcos(yz); f, = xycos(yz);
fie =ycos(yz); fy, = xcos(yz) — xyzsin(yz); fo; = —xy? sin(xy)

Higher Order Partial Derivatives

We can continue taking partial derivatives of partial derivatives of partial
derivatives of ...; we do not have to stop with second partial derivatives. These
higher order partial derivatives do not have a tidy graphical interpretation; nev-
ertheless they are not hard to compute and worthy of some practice.

We do not formally define each higher order derivative, but rather give just
a few examples of the notation.

a (0 (0
fxyx(X7 y) = a (ay <8)J:>> and

o (0 [0
fxyz(X7 y,z) = & (ay <8§:>) .

Notes:
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Example 408 Higher order partial derivatives

1. Let f(x,y) = x*y? + sin(xy). Find fyu, and fyx.

2. Letf(x,y,z) = x*€¥ + cos(z). Find fy,.

SOLUTION

1. To find f,, we first find fy, then fy,, then f,,:

fio=2xy> +ycos(xy)  fx = 2y — y*sin(xy)
foy = 4y — 2ysin(xy) — xy* cos(xy).

To find f,x, we first find f,, then f,,, then f:

fy = 2x°y + xcos(xy) fyx = 4xy + cos(xy) — xy sin(xy)
fyx = 4y — ysin(xy) — (ysin(xy) + xy* cos(xy))
= 4y — 2ysin(xy) — xy? cos(xy).

Note how fy = fyxx-

2. To find fyy,, we find f,, then £y, then £y,

i =32eY +x°yeY  f, =33 + e + x'ye? = 4de? + x'ye”
fxyz =0.

In the previous example we saw that f,,, = f,x; this is not a coincidence.
While we do not state this as a formal theorem, as long as each partial derivative
is continuous, it does not matter the order in which the partial derivatives are
taken. For instance, fuy = fiyx = fyxx-

This can be useful at times. Had we known this, the second part of Exam-
ple 408 would have been much simpler to compute. Instead of computing f,
in the x, y then z orders, we could have applied the z, then x then y order (as
fryz = fay)- Itis easy to see that f, = —sinz; then f,, and f,,, are clearly O as f,
does not contain an x or y.

Notes:
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A brief review of this section: partial derivatives measure the instantaneous
rate of change of a multivariable function with respect to one variable. With
z = f(x,y), the partial derivatives f, and f, measure the instantaneous rate of
change of z when moving parallel to the x- and y-axes, respectively. How do we
measure the rate of change at a point when we do not move parallel to one of
these axes? What if we move in the diretion given by the vector (2,1)? Can
we measure that rate of change? The answer is, of course, yes, we can. This is
the topic of the section after next. First, we need to define what it means for a
function of two variables to be differentiable.

Notes:
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Exercises 12.3

Terms and Concepts

1.

. In the mixed partial fraction

What is the difference between a constant and a coeffi-
cient?

. Given afunction z = f(x, y), explain in your own words how

to compute f,.

. In the mixed partial fraction f,,, which is computed first, f

or f,?

2

Oxdy

, which is computed first,

feorfy?

Problems

Exercises 5 — 8, evaluate f,(x,y) and f,(x, y) at the indicated
point.

5.

6.

7.

8.

flx,y) =Xy —x+2y+3at(1,2)
flxy
flxy
flx,y

)
) =x —3x+y* —6yat(—1,3)
) = sinycosxat (7/3,7/3)

)

= In(xy) at (=2, —3)

Exercises 9 — 26, find f, fy, fuo fyys fiy and fyx.

9.

10.

11.

12.

13.

14.

f,y) =xy+ 3% +4y—5
fix,y) =y +3x* + 3%y + X°

X
f(x,y)—;

4
f(x7y) = E
fox,y) = e

flx,y) =+

15. f(x,y) = sinxcosy

16. f(x,y) = (x+y)’

17. f(x,y) = cos(5xy®)

18. f(x,y) = sin(5x* + 2y°)
19. f(x,y) = Vaxy* +1
20. f(x,y) = (2x + 5y)\/y
21. fix,y) = )ﬁ

22. f(x,y) = 5x — 17y
23. fix,y) =3¢ +1
24. f(x,y) = In(x* +y)

25. f(x7y) =

26. f(x,y) = 5€"siny +9

Exercises 27 — 30, form a function z = f(x, y) such that f, and
fy match those given.

27. fk=siny+1, f, =xcosy

28. fi=x+4+y, fy=x+vy

29. fy=6xy —4y%, f, =3 —8xy+2
2x £, = 2y

x2+y2' V_Xeryz

Exercises 31 - 34, find f, f,, fz, f. and fy,.

30. fx =

31. f(x,y,2) = xe”™¥

32. f(x,y,2) =Xy + Xz +y’z
3
T 7yz

34. f(x,y,2) = In(xyz)

33. f(x,y,2)
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12.4 Differentiability and the Total Differential

We studied differentials in Section 4.4, where Definition 18 states thatif y = f(x)
and fis differentiable, then, dy = f’(x)dx. One important use of this differential
is in Integration by Substitution. Another important application is approxima-
tion. Let Ax = dx represent a change in x. When dx is small, dy ~ Ay, the
change in y resulting from the change in x. Fundamental in this understanding
is this: as dx gets small, the difference between Ay and dy goes to 0. Another
way of stating this: as dx goes to 0, the error in approximating Ay with dy goes
to 0.

We extend this idea to functions of two variables. Let z = f(x,y), and let
Ax = dx and Ay = dy represent changes in x and y, respectively. Let Az =
f(x+dx,y+dy) —f(x,y) be the change in z over the change in x and y. Recalling
that f, and f, give the instantaneous rates of z-change in the x- and y-directions,
respectively, we can approximate Az with dz = f,dx + f,dy; in words, the total
change in z is approximately the change caused by changing x plus the change
caused by changing y. In a moment we give an indication of whether or not this
approximation is any good. First we give a name to dz.

Definition 86 Total Differential

Let z = f(x,y) be continuous on an open set S. Let dx and dy represent
changes in x and y, respectively. Where the partial derivatives f, and f,
exist, the total differential of z is

dz = f(x,y)dx + f,(x, y)dy.

Example 409 Finding the total differential
Let z = x*e¥. Find dz.

SOLUTION We compute the partial derivatives: f, = 4x*¢¥ and f, =
3x*e¥. Following Definition 86, we have

dz = 4x*e¥dx + 3x*e¥dy.

We can approximate Az with dz, but as with all approximations, there is
error involved. A good approximation is one in which the error is small. At a
given point (xo, ¥o), let Ex and E, be functions of dx and dy such that E,dx + E,dy
describes this error. Then

Az = dz + Exdx + E,dy
:fx(XOa yO)dX +fy(X07yO)dy + Exdx + Eydy-

Notes:
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If the approximation of Az by dz is good, then as dx and dy get small, so does
Exdx + E,dy. The approximation of Az by dz is even better if, as dx and dy go to
0, so do E, and E,. This leads us to our definition of differentiability.

Definition 87 Multivariable Differentiability

Let z = f(x,y) be defined on an open set S containing (xo, o) Where
fi(xo0,¥0) and f,(xo, o) exist. Let dz be the total differential of zat (xo, yo),
let Az = f(xo + dx, yo + dy) — f(Xo, ¥o), and let Ex and E, be functions of
dx and dy such that

Az = dz + Exdx + E,dy.

1. fis differentiable at (xo, o) if, given ¢ > 0, thereisa ¢ > 0 such
that if || (dx, dy) || < J, then || (Ex, E,) || < . That s, as dx and dy
goto0,sodo £ andE,.

2. fis differentiable on Sif fis differentiable at every pointin S. If fis
differentiable on R?, we say that f is differentiable everywhere.

Example 410 Showing a function is differentiable
Show f(x, y) = xy + 3y? is differentiable using Definition 87.

SOLUTION We begin by finding f(x + dx,y + dy), Az, f; and f,,.

flx+dx,y +dy) = (x+ dx)(y + dy) + 3(y + dy)?
= xy + xdy + ydx + dxdy + 3y? + 6ydy + 3dy>.
Az = f(x + dx,y + dy) — f(x,y), so
Az = xdy + ydx + dxdy + 6ydy + 3dy?.
It is straightforward to compute f, = y and f, = x+ 6y. Consider once more Az:
Az = xdy + ydx + dxdy + 6ydy + 3dy? (now reorder)
= ydx + xdy + 6ydy + dxdy + 3dy?
= (y) dx+ (x + 6y)dy + (dy) dx + (3dy) dy
~ ~— —~ ~——
fx fy Ex Ey
= fydx + f,dy + Exdx + E,dy.

With E, = dy and E, = 3dy, itis clear that as dxand dy goto 0, E; and E, also go
to 0. Since this did not depend on a specific point (xo, ¥o), we can say that f(x, y)

Notes:
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is differentiable for all pairs (x, y) in R?, or, equivalently, that f is differentiable
everywhere.

Our intuitive understanding of differentiability of functions y = f(x) of one
variable was that the graph of f was “smooth.” A similar intuitive understand-
ing of functions z = f(x,y) of two variables is that the surface defined by f is
also “smooth,” not containing cusps, edges, breaks, etc. The following theorem
states that differentiable functions are continuous, followed by another theo-
rem that provides a more tangible way of determining whether a great number
of function are differentiable or not.

Theorem 104 Continuity and Differentiability of Multivariable
Functions

Let z = f(x,y) be defined on an open set S containing (xo, o). If fis
differentiable at (xo, o), then fis continuous at (xo, ¥o)-

Theorem 105 Differentiability of Multivariable Functions

Let z = f(x, y) be defined on an open set S containing (xo, o). If f; and
fy are both continuous on §, then fis differentiable on S.

The theorems assure us that essentially all functions that we see in the course
of our studies here are differentiable (and hence continuous) on their natural do-
mains. There is a difference between Definition 87 and Theorem 105, though: it
is possible for a function f to be differentiable yet f, and/or f, is not continuous.
Such strange behavior of functions is a source of delight for many mathemati-
cians.

When f, and f, exist at a point but are not continuous at that point, we need
to use other methods to determine whether or not f is differentiable at that
point.

For instance, consider the function

_ [ 7 () #(0,0)
o) ={ 7 ”

Notes:
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We can find f,(0, 0) and £, (0, 0) using Definition 83:

. f(0+h,0) —£(0,0)
— i 0 —0:
T T
=g =0

Both f and f, exist at (0, 0), but they are not continuous at (0, 0), as

X(XZ _ yZ)

y(y> — %)
(XZ +y2)2

fxy) = (X2 +y2)2

and fx,y) =
are not continuous at (0,0). (Take the limit of f, as (x,y) — (0,0) along the
x- and y-axes; they give different results.) So even though f, and f, exist at ev-
ery point in the x-y plane, they are not continuous. Therefore it is possible, by
Theorem 105, for f to not be differentiable.

Indeed, it is not. One can show that fis not continuous at (0, 0) (see Exam-
ple 398), and by Theorem 104, this means f is not differentiable at (0, 0).

Approximating with the Total Differential

By the definition, when fis differentiable dz is a good approximation for Az
when dx and dy are small. We give some simple examples of how this is used
here.

Example 411 Approximating with the total differential
Let z = y/xsiny. Approximate f(4.1,0.8).

SOLUTION Recognizing that /4 ~ 0.785 =~ 0.8, we can approximate
f(4.1,0.8) using (4, 7/4). We can easily compute f(4, 7/4) = \/4sin(r/4) =
2 (?) = /2 &~ 1.414. Without calculus, this is the best approximation we

could reasonably come up with. The total differential gives us a way of adjusting
this initial approximation to hopefully get a more accurate answer.

Welet Az = f(4.1,0.8) —f(4, /4). The total differential dz is approximately
equal to Az, so

f(4.1,0.8) —f(4,7/4) ~dz = f(4.1,0.8) ~ dz+f(4,7/4). (12.1)

To find dz, we need f, and f,,.

Notes:
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b y) = % N fu(8,7/8) = S‘;\%“
- @ = V2/8.

fy(x,y) = Vxcosy = fy(4,7/4) = ﬂ?
=2.

Approximating 4.1 with 4 gives dx = 0.1; approximating 0.8 with 7/4 gives
dy =~ 0.015. Thus

dz(4,7/4) = £,(4,7/4)(0.1) + ,(4, 7/4)(0.015)

- %0-1) +1/2(0.015)

~ 0.039.
Returning to Equation (12.1), we have
f(4.1,0.8) ~ 0.039 + 1.414 = 1.4531.

We, of course, can compute the actual value of f(4.1, 0.8) with a calculator; the
actual value, accurate to 5 places after the decimal, is 1.45254. Obviously our
approximation is quite good.

The point of the previous example was not to develop an approximation
method for known functions. After all, we can very easily compute f(4.1,0.8)
using readily available technology. Rather, it serves to illustrate how well this
method of approximation works, and to reinforce the following concept:

“New position = old position 4+ amount of change,” so
“New position = old position + approximate amount of change.”

In the previous example, we could easily compute f(4, 7/4) and could ap-
proximate the amount of z-change when computing f(4.1,0.8), letting us ap-
proximate the new z-value.

It may be surprising to learn that it is not uncommon to know the values of
f, fx and f, at a particular point without actually knowing f. The total differential
gives a good method of approximating f at nearby points.

Example 412 Approximating an unknown function
Given that f(2, —3) = 6, f,(2, —3) = 1.3 and (2, —3) = —0.6, approximate
f(2.1,-3.03).

Notes:
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SOLUTION The total differential approximates how much fchanges from
the point (2, —3) to the point (2.1, —3.03). With dx = 0.1 and dy = —0.03, we
have

dz = f,(2, —3)dx + f,(2, —3)dy
=1.3(0.1) + (—0.6)(—0.03)
=0.148.

The change in z is approximately 0.148, so we approximate f(2.1,—3.03) =
6.148.

Error/Sensitivity Analysis

The total differential gives an approximation of the change in z given small
changes in x and y. We can use this to approximate error propagation; that is,
if the input is a little off from what it should be, how far from correct will the
output be? We demonstrate this in an example.

Example 413 Sensitivity analysis

Acylindrical steel storage tank is to be built that is 10ft tall and 4ft across in diam-
eter. It is known that the steel will expand/contract with temperature changes;
is the overall volume of the tank more sensitive to changes in the diameter or in
the height of the tank?

SOLUTION A cylindrical solid with height h and radius r has volume V =
7r’h. We can view V as a function of two variables, r and h. We can compute
partial derivatives of V:

g—\: =V,(r,h) =27rh  and g—: = Vy(r,h) = 7P

The total differential is dV = (2rrh)dr + (wr*)dh. When h = 10 and r = 2, we
have dV = 40xdr + 4mwdh. Note that the coefficient of dr is 40w ~ 125.7; the
coefficient of dh is a tenth of that, approximately 12.57. A small change in radius
will be multiplied by 125.7, whereas a small change in height will be multiplied
by 12.57. Thus the volume of the tank is more sensitive to changes in radius
than in height.

The previous example showed that the volume of a particular tank was more
sensitive to changes in radius than in height. Keep in mind that this analysis only
applies to a tank of those dimensions. A tank with a height of 1ft and radius of
5ft would be more sensitive to changes in height than in radius.

Notes:
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One could make a chart of small changes in radius and height and find exact
changes in volume given specific changes. While this provides exact numbers, it
does not give as much insight as the error analysis using the total differential.

Differentiability of Functions of Three Variables

The definition of differentiability for functions of three variables is very simi-
lar to that of functions of two variables. We again start with the total differential.

Definition 88 Total Differential

Let w = f(x, y, z) be continuous on an open set S. Let dx, dy and dz rep-
resent changes in x, y and z, respectively. Where the partial derivatives
fx fy and £, exist, the total differential of w is

dz = fu(x, y, 2)dx + f,(x,y,2)dy + f>(x,y, 2)dz.

This differential can be a good approximation of the change in w when w =
f(x,y,2) is differentiable.

Definition 89 Multivariable Differentiability

Let w = f(x,y,2) be defined on an open ball B containing (xo, Yo, 20)
where f(xo, Y0,20), fy(Xo,Y0,20) and fy(xo, Yo, 20) exist. Let dw be the
total differential of w at (xo, Yo, 20), let Aw = f(xo + dx, yo + dy,z0 +
dz) — f(xo, Yo, 20), and let Ey, E, and E, be functions of dx, dy and dz such
that

Aw = dw + Exdx + E,dy + E,dz.

1. fis differentiable at (xo, yo,20) if, given ¢ > 0, thereisa § > 0
such that if || (dx, dy, dz) || <, then || (Ex, Ey, E;) || < €.

2. fis differentiable on B if f is differentiable at every point in B. If f
is differentiable on R3, we say that fis differentiable everywhere.

Just as before, this definition gives a rigorous statement about what it means
to be differentiable that is not very intuitive. We follow it with a theorem similar
to Theorem 105.

Notes:
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Theorem 106 Continuity and Differentiability of Functions of Three
Variables

Let w = f(x, y, z) be defined on an open ball B containing (xo, ¥o, 20)-
1. Iffis differentiable at (xo, yo, Z0), then fis continuous at (xo, Vo, o).

2. Iff, fy and f, are continuous on B, then f is differentiable on B.

This set of definition and theorem extends to functions of any number of
variables. The theorem again gives us a simple way of verifying that most func-
tions that we enounter are differentiable on their natural domains.

Summary

This section has given us a formal definition of what it means for a functions
to be “differentiable,” along with a theorem that gives a more accessible un-
derstanding. The following sections return to notions prompted by our study of
partial derivatives that make use of the fact that most functions we encounter
are differentiable.

Notes:
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Exercises 12.4

Terms and Concepts

1. T/F:If f(x,y) is differentiable on S, the fis continuous on S.

2. T/F:If fy and f, are continuous on S, then fis differentiable
onS.

3. T/F:Ifz = f(x, y) is differentiable, then the change in z over
small changes dx and dy in x and y is approximately dz.

4. Finish the sentence: “The new z-value is approximately the
old z-value plus the approximate ."

Problems

Exercises 5 — 8, find the total differential dz.
5.z :xsiny—i—x2

6. z=(2¢ + 3y)?

7. 2z=5x—-7y

8. z=xe"™

Exercises 9 — 12, a function z = f(x, y) is given. Give the indi-
cated approximation using the total differential.

9. flx,y) = +/x*+y. Approximate f(2.95,7.1) knowing
f(3,7) = 4.

10. f(x,y) = sinxcosy. Approximate f(0.1,—0.1) knowing
f(0,0)=0
11. f(x,y) = x’y — xy*. Approximate f(2.04,3.06) knowing

12. f(x,y) = In(x — y). Approximate f(5.1,3.98) knowing
f(5,4) =0.
Exercises 13 — 16 ask a variety of questions dealing with ap-
proximating error and sensitivity analysis.

13. Acylindrical storage tank is to be 2ft tall with a radius of 1ft.
Is the volume of the tank more sensitive to changes in the
radius or the height?

14. Projectile Motion: The x-value of an object moving un-
der the principles of projectile motion is x(0,vo,t) =
(vo cos 0)t. A particular projectile is fired with an initial ve-
locity of vo = 250ft/s and an angle of elevation of # = 60°.
It travels a distance of 375ft in 3 seconds.

Is the projectile more sensitive to errors in initial speed or
angle of elevation?

15. The length ¢ of a long wall is to be approximated. The angle
0, as shown in the diagram (not to scale), is measured to
be 85°, and the distance x is measured to be 30". Assume
that the triangle formed is a right triangle.

Is the measurement of the length of £ more sensitive to er-
rors in the measurement of x or in 6?

16. Itis “common sense” that it is far better to measure a long
distance with a long measuring tape rather than a short
one. A measured distance D can be viewed as the prod-
uct of the length ¢ of a measuring tape times the number
n of times it was used. For instance, using a 3’ tape 10
times gives a length of 30’. To measure the same distance
with a 12’ tape, we would use the tape 2.5 times. (l.e.,
30 =12 x 2.5.) Thus D = n/.

Suppose each time a measurement is taken with the tape,
the recorded distance is within 1/16” of the actual distance.
(e, d¢ = 1/16” ~ 0.005ft). Using differentials, show
why common sense proves correct in that it is better to use
a long tape to measure long distances.

Exercises 17 — 18, find the total differential dw.
17. w= xzyz3
18. w =¢€*sinylnz

Exercises 19 — 22, use the information provided and the total
differential to make the given approximation.

19. f(3,1) = 7, £«(3,1) =9, f,(3,1) = —2. Approximate
£(3.05,0.9).

20. f(—4,2) = 13, fi(—4,2) = 2.6, f,(—4,2) = 5.1. Ap-
proximate f(—4.12,2.07).

21. f(2,4,5) = -1, f(2,4,5) = 2, f,(2,4,5) = -3,
f2(2,4,5) = 3.7. Approximate f(2.5,4.1,4.8).

22. f(3,3,3) =5, fx(?’7 3, 3) =2, fy(3,3,3) =0, ]‘1(37 3, 3) =
—2. Approximate f(3.1,3.1,3.1).
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12.5 The Multivariable Chain Rule

d

The Chain Rule, as learned in Section 2.5, states that ™ (f(g(x))) =f"(g(x))g' (x).
X

If t = g(x), we can express the Chain Rule as

df  dfdt

dx  dtdx’
In this section we extend the Chain Rule to functions of more than one variable.

Theorem 107 Multivariable Chain Rule, Part |

Letz = f(x,y), x = g(t) and y = h(t), where f, g and h are differentiable
functions. Then z = f(x,y) = f(g(t), h(t)) is a function of t, and

dt dt_fx(x’y)dt +fy<x’y)dt
oo, oy
~ Oxdt  Oydt’ z

It is good to understand what the situation of z = f(x,y), x = g(t) and
y = h(t) describes. We know that z = f(x,y) describes a surface; we also
recognize that x = g(t) and y = h(t) are parametric equations for a curve in
the x-y plane. Combining these together, we are describing a curve that lies on
the surface described by f. The parametric equations for this curve are x = g(t),
y = h(t) and z = f(g(t), h(t)).

Consider Figure 12.14 in which a surface is drawn, along with a dashed curve
in the x-y plane. Restricting f to just the points on this circle gives the curve
shown on the surface. The derivative Z—{ gives the instantaneous rate of change
of f with respect to t.

We now practice applying the Multivariable Chain Rule.

Example 414 Using the Multivariable Chain Rule

dz
Let z = x’y + x, where x = sint and y = e°.. Find pon using the Chain Rule.

Figure 12.14: Understanding the applica-
tion of the Multivariable Chain Rule.

SOLUTION Following Theorem 107, we find

dx dy
X =2 1 — 2 - = t =5 St'
f(x,y) xy + fy(x,y) =x i cos o e

Applying the theorem, we have

dz
i (2xy + 1) cost + 5x°e”".

Notes:
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Figure 12.15: Plotting the path of a parti-
cle on a surface in Example 415.
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This may look odd, as it seems that % is a function of x, y and t. Since x and y
are functions of t, % is really just a function of t, and we can replace x with sin t
and y with e

dz 5

i (2xy + 1) cost + 5x°e®* = (2sin(t)e® + 1) cost + 5 sin’ t.

The previous example can make us wonder: if we substituted for x and y at
the end to show that % is really just a function of t, why not substitute before
differentiating, showing clearly that z is a function of t?

Thatis, z = x’y + x = (sint)%e + sint. Applying the Chain and Product
Rules, we have

dz
i 2sintcoste® + 5sin’te’ + cost,

which matches the result from the example.

This may now make one wonder “What'’s the point? If we could already find
the derivative, why learn another way of finding it?” In some cases, applying
this rule makes deriving simpler, but this is hardly the power of the Chain Rule.
Rather, in the case where z = f(x,y), x = g(t) and y = h(t), the Chain Rule is
extremely powerful when we do not know what f, g and/or h are. It may be hard
to believe, but often in “the real world” we know rate—of—change information
(i.e., information about derivatives) without explicitly knowing the underlying
functions. The Chain Rule allows us to combine several rates of change to find
another rate of change. The Chain Rule also as theoretic use, giving us insight
into the behavior of certain constructions (as we’ll see in the next section).

We apply the Chain Rule once more to solve a max/min problem.

Example 415 Applying the Multivariable Chain Rule

Consider the surface z = x*> + y?> — xy, on which a particle moves with x and y
coordinates given by x = costand y = sint. Find % when t = 0, and find where
the particle reaches its maximum/minimum z-values.

SOLUTION It is straightforward to compute
dx dy
X,y) = 2x — X,y) =2y — X — = —sint — = cost.
fx,y) y  filxy)=2y ™ ™

Combining these according to the Chain Rule gives:

d.
d{ = —(2x —y)sint+ (2y — x) cos t.

Notes:



d
Whent = 0,x = 1andy = 0. Thus d{ = —(2)(0) + (—1)(1) = —1. When

t = 0, the particle is moving down, as shown in Figure 12.15.
To find where z-value is maximized/minimized on the particle’s path, we set
dz

7=0 and solve for t:

dz .
p =0=—(2x—y)sint+ (2y — x) cost

0= —(2cost—sint)sint + (2sint — cost) cost
0 =sin’t —cos’t
cos’t = sin’ t
t= n% (for odd n)
We can use the First Derivative Test to find that on [0, 27|, z has reaches its

absolute maximum at t = 7/4 and 57/4; it reaches its absolute minimum at
t = 37 /4 and 77/4, as shown in Figure 12.15.

We can extend the Chain Rule to include the situation where z is a function
of more than one variable, and each of these variables is also a function of more
than one variable. The basic case of this is where z = f(x, y), and x and y are
functions of two variables, say s and t.

Theorem 108 Multivariable Chain Rule, Part Il

1. Letz = f(x,y), x = g(s,t) and y = h(s,t), where f, g and h are
differentiable functions. Then z is a function of s and t, and

0z 6f@ of oy

¢ — = ——, and
Js  Ox0s * dy 0s
. 02 _0fox  of oy
ot Oxot  Ody ot
2. Letz = f(x1, %2, - . - , Xm) be a differentiable function of m variables,
where each of the x; is a differentiable function of the variables
ti,tp,...,t,. Then zis a function of the t;, and
o _ofom | o ox | OF O
ot - Ox1 Ot 0x; Ot Oxm Ot; '

Notes:
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Example 416 Using the Multivarible Chain Rule, Part Il
Letz = x’y +x,x = s> + 3tand y = 2s — t. Find % and %, and evaluate each
whens=1andt = 2.

SOLUTION Following Theorem 108, we compute the following partial
derivatives: of of
— = 2X 1 = =X
Ox y+ Oy ’
ox ox oy ay
= =2 — =3 = =2 = =1
as 7 at ds ot
Thus
z
5= (2xy + 1)(2s) + (X*)(2) = 4xys +2s +2x*, and
s
0z ) 5
pri (2xy +1)(3) + (¥*)(—1) = 6xy — x* + 3.
Whens=1landt=2,x=7andy =0, so
92 _ 100 a4
— = an — = —46.
0Os ot
Example 417 Using the Multivarible Chain Rule, Part Il

Let w = xy + 22, where x = t?e®, y = tcoss, and z = ssin t. Find % whens =0
and t = .

SOLUTION Following Theorem 108, we compute the following partial
derivatives:
of of of
a - y 87)/ =X E - 22,
%:Ztes @zcoss &:scost.
ot ot ot
Thus

% = y(2te*) + x(coss) + 2z(scost).

Whens =0andt = 7, we have x = 72, y = wand z = 0. Thus

%—V: = n(27) + 7 = 372,
Implicit Differentiation

We studied finding % when y is given as an implicit function of x in detail
in Section 2.6. We find here that the Multivariable Chain Rule gives a simpler
method of finding %.

Notes:



For instance, consider the implicit function x2y — xy® = 3. We learned to use

the following steps to find %:

d d
5 (=) = 5. (3)
d d
wy+ Y _p Y o
dx dx

dy  uxy—y
dx  x2 —3xy?’

(12.2)

Instead of using this method, consider z = x?y — xy®. The implicit function
above describes the level curve z = 3. Considering x and y as functions of x, the

Multivariable Chain Rule states that

d _onde  oedy
dx  Oxdx Oydx’

(12.3)

Since z is constant (in our example, z = 3), 2 = 0. We also know % = 1.

7 dx

Equation (12.3) becomes

0= 92qy 2
-~ Ox dy dx
G _ oo
dx  Ox/ Oy
K
5y

Note how our solution for ‘% in Equation (12.2) is just the partial derivative

d

of z, with respect to x, divided by the partial derivative of z with respect to y.

We state the above as a theorem.

Theorem 109 Implicit Differentiation

as an implicit function of x, for some constant c. Then

dy _ f(xy)

dx f(xy)

Let f be a differentiable function of x and y, where f(x,y) = c defines y

We practice using Theorem 109 by applying it to a problem from Section 2.6.

Notes:

12.5 The Multivariable Chain Rule
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Example 418 Implicit Differentiation

Given the implicitly defined function sin(x?y?) + y® = x + y, find y’. Note: this
is the same problem as given in Example 68 of Section 2.6, where the solution
took about a full page to find.

SOLUTION Let f(x,y) = sin(x*y?) + y* — x — y; the implicitly defined
function above is equivalent to f(x, y) = 0. We find % by applying Theorem 109.
We find

f(x,y) = 2xy* cos(x*y*) — 1 and  f,(x,y) = 2y cos(x’y*) — 1,
so

dy  2xy*cos(¥’y’) —1
dx  2x%ycos(x%y?) —1’

which matches our solution from Example 68.

Notes:



Exercises 12.5

Terms and Concepts

1. Let a level curve of z = f(x,y) be described by x = g(t),
_ ; dz _
y = h(t). Explain why % = 0.

2. Fill in the blank: The single variable Chain Rule states
d ’
—(flat0)) =F'(ab0)- .

3. Fill in the blank: The Multivariable Chain Rule states

df  of dy

dt ~ ox * dt

4. If z = f(x,y), where x = g(t) and y = h(t), we can substi-
tute and write z as an explicit function of t.
T/F: Using the Multivariable Chain Rule to find % is some-
times easier than first substituting and then taking the
derivative.

5. T/F: The Multivariable Chain Rule is only useful when all the
related functions are known explicitly.

6. The Multivariable Chain Rule allows us to compute im-

plicit derivatives by easily by just computing two

derivatives.

Problems
In Exercises 7 — 12, functions z = f(x,y), x = g(t) and
y = h(t) are given.

d
(a) Use the Multivariable Chain Rule to compute d—i

d
(b) Evaluate d—i at the indicated t-value.

7. z = 3x+ 4y, x =t y =2t

8. z=x*— ), x =t y=1t>—1; t=1

9. z = 5x + 2y, X = 2cost + 1, y = sint — 3;
t=mn/4
10. z X X = cost, sint t=m/2
. = =, = ) = B =T
y+1 Y
11. z=x* +2y%, X =sint, y = 3sint; t=m/4

12. z = cosxsiny, X = 7t, y=2nt+7/2; t=3

In Exercises 13 — 18, functions z = f(x,y), x = g(t) and
y = h(t) are given. Find the values of t where % = 0. Note:
these are the same surfaces/curves as found in Exercises 7 —
12.

13. z=3x+ 4y, x="t, y =2t

14, z=x" — %, X =t y=t"—-1

15. z="5x+ 2y, x=2cost+1, y=sint—3
16. z:ﬁ, X = cost, y =sint

17. z:x2+2y2, X =sint, y =3sint

18. z = cosxsiny, X = 7t, y=2nt+ /2

In Exercises 19 — 22, functions z = f(x,y), x = g(s,t) and
y = h(s, t) are given.

19)
(a) Use the Multivariable Chain Rule to compute a—z and
0z

a.
(b) Evaluate % and % at the indicated s and t values.
s

19.z:x2y, X=5—t y = 25 + 4t; s=1,t=0

20. z = cos (mx + gy), x = st?,

y=5t s=1t=1
21. z=x*+y*, x=scost, y=ssint; s= 2,t=m7/4
2. z=e WP y_¢
. . dy T L
In Exercises 23 - 26, find p™ using Implicit Differentiation and
X

Theorem 109.
23. x*tany = 50
24, (3 +2y°)' =2

X4y

25.
x+y?

17

26. In(xX* +xy+y’) =1
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12.6 Directional Derivatives

Partial derivatives give us an understanding of how a surface changes when we
move in the x and y directions. We made the comparison to standing in a rolling
meadow and heading due east: the amount of rise/fall in doing so is comparable
to fy. Likewise, the rise/fall in moving due north is comparable to f,. The steeper
the slope, the greater in magnitude f,,.

But what if we didn’t move due north or east? What if we needed to move
northeast and wanted to measure the amount of rise/fall? Our partial deriva-
tives alone cannot measure this. This section investigates directional deriva-
tives, which are a measure of this.

We begin with a definition.

Definition 90 Directional Derivatives

Let z = f(x,y) be continuous on an open set S and let & = (u;,u,) be a
unit vector. For all points (x, y), the directional derivative of fat (x, y) in
the direction of i is

fx+ huy,y + huy) — f(x,y)

Daf(x,y) = Jim p -

The partial derivatives f, and f, are defined with similar limits, but only x or
y varies with h, not both. Here both x and y vary with a weighted h, determined
by a particular unit vector i. This may look a bit intimidating but in reality it is
not too difficult to deal with; it often just requires extra algebra. However, the
following theorem reduces this algebraic load.

Theorem 110 Directional Derivatives

Let z = f(x, y) be differentiable on an open set S containing (xo, ¥o), and
let & = (uy, uy) be a unit vector. The directional derivative of fat (xo, yo)
in the direction of 4 is

D f(x0, ¥o) = fx(Xo0, yo)u1 + f, (X0, Yo)u2.

Example 419 Computing directional derivatives
Letz = 14 — x* — y? and let P = (1, 2). Find the directional derivative of f, at P,
in the following directions:

1. toward the point Q = (3,4),

2. in the direction of (2, —1), and

Notes:
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3. toward the origin.

SOLUTION The surface is plotted in Figure 12.16, where the point P =
(1,2) isindicated in the x, y-plane as well as the point (1, 2, 9) which lies on the
surface of f. We find that fy(x,y) = —2x and f(1,2) = —2; f,(x,y) = —2y and
f,(1,2) = —4.

1. Let G; be the unit vector that points from the point (1,2) to the point
Q = (3,4), as shown in the figure. The vector PQ = (2, 2); the unit vector
in this direction is &, = (1/1/2,1/v/2). Thus the directional derivative of
fat (1,2) in the direction of u is

- _ . _ ~ Figure 12.16: Understanding the direc-
Dulf(ly 2) = 2(1/\&) + ( 4)(1/\/5) - 6/\/5 ~ —4.24. tional derivative in Example 419.

Thus the instantaneous rate of change in moving from the point (1, 2,9)
on the surface in the direction of ii; (which points toward the point Q) is
about —4.24. Moving in this direction moves one steeply downward.

2. We seek the directional derivative in the direction of (2, —1). The unit
vector in this direction is 4, = (2/4/5,—1/+/5). Thus the directional
derivative of fat (1, 2) in the direction of i, is

D3,f(1,2) = —2(2/V/5) + (=4)(-1/V/5) = 0.

Starting on the surface of fat (1, 2) and moving in the direction of (2, —1)
(or d3) results in no instantaneous change in z-value. This is analogous to
standing on the side of a hill and choosing a direction to walk that does not
change the elevation. One neither walks up nor down, rather just “along
the side” of the hill.

Finding these directions of “no elevation change” is important.

3. At P = (1,2), the direction towards the origin is given by the vector
(—1,—2); the unit vector in this direction is 43 = (—1/v/5,-2/V/5).
The directional derivative of f at P in the direction of the origin is

Dy.f(1,2) = —2(—1/V/5) + (—4)(=2/+/5) = 10/V/5 ~ 4.47.

Moving towards the origin means “walking uphill” quite steeply, with an
initial slope of about 4.47.

As we study directional derivatives, it will help to make an important con-
nection between the unit vector & = (uy, u,) that describes the direction and
the partial derivatives f, and f,. We start with a definition and follow this with a
Key ldea.

Notes:
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Note: The symbol “V” is named “nabla,”
derived from the Greek name of a Jewish
harp. Oddly enough, in mathematics the
expression Vfis pronounced “del f.”
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Definition 91 Gradient

Let z = f(x, y) be differentiable on an open set S that contains the point
(X07y0)'

1. The gradient of fis Vf(x,y) = (f(x,¥),f,(x,¥)).

2. The gradient of fat (xo, yo) is Vf(xo, o) = (f«(Xo,¥0),fy (X0, Y0))-

To simplify notation, we often express the gradient as Vf = (f,f,). The
gradient allows us to compute directional derivatives in terms of a dot product.

Key Idea 55 The Gradient and Directional Derivatives

The directional derivative of z = f(x, y) in the direction of & is

Dif = Vf- .

The properties of the dot product previously studied allow us to investigate
the properties of the directional derivative. Given that the directional derivative
gives the instantaneous rate of change of z when moving in the direction of 4,
three questions naturally arise:

1. In what direction(s) is the change in z the greatest (i.e., the “steepest up-
hill”)?

2. In what direction(s) is the change in z the least (i.e., the “steepest down-
hill”)?

3. In what direction(s) is there no change in z?
Using the key property of the dot product, we have
Vf-G=|| V|||l d|lcos6 = || Vf || cosb, (12.4)

where 6 is the angle between the gradient and 4. (Since diis a unit vector, || || =
1.) This equation allows us to answer the three questions stated previously.

1. Equation 12.4 is maximized when cos § = 1, i.e., when the gradient and i/
have the same direction; the gradient points in the direction of greatest z
change.

Notes:
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2. Equation 12.4 is minimized when cos § = —1, i.e., when the gradient and
U have opposite directions; the gradient points in the opposite direction
of the least z change.

3. Equation 12.4 is 0 when cos# = 0, i.e., when the gradient and 4 are or-
thogonal to each other; the gradient is orthogonal to directions of no z
change.

This resultis rather amazing. Once againimagine standingin a rolling meadow
and face the direction that leads you steepest uphill. Then the direction that
leads steepest downhill is directly behind you, and side—stepping either left or
right (i.e., moving perpendicularly to the direction you face) does not change
your elevation at all.

Recall that a level curve is defined by a path in the x-y plane along which the
z-values of a function do not change; the directional derivative in the direction of
alevel curve is 0. This is analogous to walking along a path in the rolling meadow
along which the elevation does not change. The gradient at a point is orthogonal
to the direction where the z does not change; i.e., the gradient is orthogonal to
level curves.

We restate these ideas in a theorem, then use them in an example.

Theorem 111 The Gradient and Directional Derivatives

Let z = f(x,y) be differentiable on an open set S with gradient Vf and
let 4 be a unit vector.

1. The maximum value of Dzf is || Vf ||, obtained when the angle
between Vf and i is 0, i.e., the direction of maximal increase is
Vf.

2. The minimum value of D;fis —|| Vf ||, obtained when the angle
between Vfand i is m, i.e., the direction of minimal increase is
—Vf.

3. D;f = 0 when Vfand i are orthogonal.

Example 420 Finding directions of maximal and minimal increase

Let f(x,y) = sinxcosy and let P = (w/3,7/3). Find the directions of max-
imal/minimal increase, and find a direction where the instantaneous rate of z
change is 0.

SOLUTION We begin by finding the gradient. f, = cosxcosy and f, =

Notes:
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(b)

Figure 12.17: Graphing the surface and
important directions in Example 420.

Figure 12.18: At the top of a paraboloid,
all directional derivatives are 0.
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—sinxsiny, thus

Vf = (cosxcosy, —sinxsiny) and, atP, Vf(g, g) = <£11’ —i> .
Thus the direction of maximal increase is (1/4, —3/4). In this direction, the
instantaneous rate of z change is || (1/4, —3/4) || = v/10/4 ~ 0.79.

Figure 12.17 shows the surface plotted from two different perspectives. In
each, the gradient is drawn at P with a dashed line (because of the nature of
this surface, the gradient points “into” the surface). Let & = (uj, u,) be the
unit vector in the direction of Vf at P. Each graph of the figure also contains
the vector (uq, Uy, || Vf||). This vector has a “run” of 1 (because in the x-y plane
it moves 1 unit) and a “rise” of || Vf||, hence we can think of it as a vector with
slope of || Vf|| in the direction of V£, helping us visualize how “steep” the surface
is in its steepest direction.

The direction of minimal increase is (—1/4, 3/4); in this direction the instan-
taneous rate of z change is —@/4 ~ —0.79.

Any direction orthogonal to V£ is a direction of no z change. We have two
choices: the direction of (3,1) and the direction of (—3, —1). The unit vector
in the direction of (3, 1) is shown in each graph of the figure as well. The level
curve at z = \/§/4 is drawn: recall that along this curve the z-values do not
change. Since (3, 1) is a direction of no z-change, this vector is tangent to the
level curve at P.

Example 421 Understanding when Vf = 0
Let f(x,y) = —x® + 2x — y? + 2y + 1. Find the directional derivative of fin any
directionat P = (1,1).

SOLUTION Wefind Vf = (—2x + 2, -2y + 2). AtP,wehave Vf(1,1) =
(0,0). According to Theorem 111, this is the direction of maximal increase.
However, (0, 0) is directionless; it has no displacement. And regardless of the
unit vector d chosen, D; f = 0.

Figure 12.18 helps us understand what this means. We can see that P lies at
the top of a paraboloid. In all directions, the instantaneous rate of change is 0.

So what is the direction of maximal increase? It is fine to give an answer of
0= (0, 0), as this indicates that all directional derivatives are 0.

The fact that the gradient of a surface always points in the direction of steep-
est increase/decrease is very useful, as illustrated in the following example.

Example 422 The flow of water downhill
Consider the surface given by f(x,y) = 20 — x> — 2y?. Water is poured on the
surface at (1,1/4). What path does it take as it flows downhill?

Notes:



SOLUTION Let 7(t) = (x(t),y(t)) be the vector-valued function de-
scribing the path of the water in the x-y plane; we seek x(t) and y(t). We know
that water will always flow downhill in the steepest direction; therefore, at any
point on its path, it will be moving in the direction of —Vf. (We ignore the phys-
ical effects of momentum on the water.) Thus r’(t) will be parallel to Vf, and
there is some constant ¢ such that cVf=r'(t) = (x’(t)7 Y (t)).

We find Vf = (—2x, —4y) and write X'(t) as % and y/(t) as &. Then

cVf= ((t),y' (1))
(—2cx, —4cy) = <dX, dy> .

dt’ dt
This implies
2c ox and 4c dy i.e
—2cX = — - = —, lLe,,
dt TS
1d 1d
_ o lde o 1dy

and c¢= .
2x dt 4y dt

As c equals both expressions, we have

lde 1 dy
2xdt 4y dt’

To find an explicit relationship between x and y, we can integrate both sides with

dx
respect to t. Recall from our study of differentials that Edt = dx. Thus:

1 dx 1 dy
——dt= [ ——dt
2x dt /4ydt

—dx—/—dy

Linix +c= iy

Tinixlecet

2 gV

2In|x| +C=Inly|
=y,

where we skip some algebra in the last step. As the water started at the point
(1,1/4), we can solve for C:

1 1
c1)?=> = =7

Thus the water follows the curve y = x?/4 in the x-y plane. The surface and
the path of the water is graphed in Figure 12.19(a). In part (b) of the figure,

Notes:

12.6 Directional Derivatives

20

X

(b)
Figure 12.19: A graph of the surface de-

scribed in Example 422 along with the
pathin the x-y plane with the level curves.
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the level curves of the surface are plotted in the x-y plane, along with the curve
y = x* /4. Notice how the path intersects the level curves at right angles. As the
path follows the gradient downbhill, this reinforces the fact that the gradient is
orthogonal to level curves.

Functions of Three Variables

The concepts of directional derivatives and the gradient are easily extended
to three (and more) variables. We combine the concepts behind Definitions 90
and 91 and Theorem 110 into one set of definitions.

Definition 92 Directional Derivatives and Gradient with Three Vari-
ables

Let w = F(x,y, z) be differentiable on an open ball B and let i be a unit
vector in R3,

1. The gradient of Fis VF = (Fy, F,, F,).
2. The directional derivative of F in the direction of i/ is

DyF = VF - @.

The same properties of the gradient given in Theorem 111, when fis a func-
tion of two variables, hold for F, a function of three variables.

Theorem 112 The Gradient and Directional Derivatives with Three
Variables

Let w = F(x, y, z) be differentiable on an open ball B, let VF be the gra-
dient of F, and let i be a unit vector.

1. The maximum value of Dz F is || VF ||, obtained when the angle
between VF and i is 0, i.e., the direction of maximal increase is
VF.

2. The minimum value of Dz F is —|| VF ||, obtained when the angle
between VF and i is m, i.e., the direction of minimal increase is
—VF.

3. Dz F = 0 when VF and & are orthogonal.

Notes:
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We interpret the third statement of the theorem as “the gradient is orthog-
onal to level surfaces,” the three—variable analogue to level curves.

Example 423 Finding directional derivatives with functions of three vari-
ables

If a point source S is radiating energy, the intensity / at a given point P in space
is inversely proportional to the square of the distance between S and P. That is,

when S = (0,0,0), I(x,y,2) = ———
(a»)(y) X2+y2+22

Letk = 1, let & = (2/3,2/3,1/3) be a unit vector, and let P = (2,5, 3).
Measure distances in inches. Find the directional derivative of | at P in the di-
rection of d, and find the direction of greatest intensity increase at P.

for some constant k.

SOLUTION We need the gradient V/, meaning we need Iy, |, and /,. Each
partial derivative requires a simple application of the Quotient Rule, giving

v/ — —2x -2y -2z
- (x2 +yz +zz>2’ (Xz —|—y2 _|_22)27 (x2 +y2 +zz>2

-4 -10 -6
VI(2,5,3) = , : ~ (—0.003, —0.007, —0.004)
1444° 1444° 1444
Dzl = VI(2,5,3) -
17
— ' ~ 00078
2166

The directional derivative tells us that moving in the direction of 4 from P re-
sults in a decrease in intensity of about —0.008 units per inch. (The intensity is
decreasing as i moves one farther from the origin than P.)

The gradient gives the direction of greatest intensity increase. Notice that

Vi(2,5,3) :< -4 —-10 -6 >

1444° 1444° 1444
2
- ° (2.5 -3).
1444

That is, the gradient at (2, 5, 3) is pointing in the direction of (—2, —5, —3), that
is, towards the origin. That should make intuitive sense: the greatest increase
in intensity is found by moving towards to source of the energy.

Notes:

12.6 Directional Derivatives
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Exercises 12.6

Terms and Concepts

1. Whatis the difference between a directional derivative and
a partial derivative?

2. Forwhat iis Dz f = f,?

3. Forwhat dis Dzf = f,?

4. The gradient is to level curves.

5. The gradient points in the direction of increase.

6. It is generally more informative to view the directional
derivative not as the result of a limit, but rather as the result
of a product.

Problems

Exercises 7 — 12, a function z = f(x, y). Find V.
7. fx,y) = =Xy +xy* +xy

8. f(x,y) = sinxcosy

_r

X +y?+1

10. f(x,y) = —4x+ 3y

11. fx,y) =X +2y° —xy — 7x

12. f(x,y) = X’y* — 2x

9. fix,y) =

Exercises 13 — 18, a function z = f(x,y) and a point P are
given. Find the directional derivative of f in the indicated di-
rections. Note: these are the same functions as in Exercises
7 through 12.
13. f(x,y) = =Xy +xy* +xy, P = (2,1)
(a) In the direction of vV = (3, 4)
(b) In the direction toward the point Q = (1, —1).

14. f(x,y) = sinxcosy, P = (E E)

4’3
(a) In the direction of vV = (1, 1).
(b) Inthe direction toward the point Q = (0, 0).
_r
x2+y2+17
(@) In the direction of vV = (1, —1).
(b) In the direction toward the point Q = (-2, —2).

15. f(x,y) = P=(1,1).

16. f(x,y) = —4x+3y,P = (5,2)

(@) In the direction of V= (3,1) .

(b) In the direction toward the point Q = (2, 7).
17. fx,y) =X +2y" —xy —7x, P = (4,1)

(@) In the direction of vV = (—2,5)

(b) In the direction toward the point Q = (4,0).
18. f(x,y) = X'y’ —2x, P = (1,1)

(a) Inthe direction of V.= (3,3)

(b) In the direction toward the point Q = (1, 2).

Exercises 19 — 24, a function z = f(x,y) and a point P are
given.

(a) Find the direction of maximal increase of f at P.
(b) What is the maximal value of D; f at P?

(c) Find the direction of minimal increase of f at P.
(d) Give a direction i such that D;f = 0 atP.

Note: these are the same functions and points as in Exercises
13 through 18.

19. f(x,y) = =Xy +xy* +xy, P = (2,1)

T
20. f(x,y) = si = (7,7)
f(x,y) = sinxcosy 23
21, fxy) = — = p=(1,1)
. 7y —X2+y2+1l - b) .

22. f(x,y) = —4x+ 3y, P = (5,4).
23. fx,y) =X +2y* —xy — 7x, P = (4,1)
24. f(x,y) = Xy> —2x, P = (1,1)
Exercises 25 — 28, a function w = F(x, y, z), a vector V and a
point P are given.
(a) Find VF(x,y,z).
(b) Find Dz F at P.
25. F(x,y,z) = 38’2 + 4xy — 37,V = (1,1,1), P = (3,2,1)
26. F(x,y,z) = sin(x) cos(y)e’, v = (2,2,1), P = (0,0,0)
27. F(x,y,2) =Xy’ —y*2*, v =(-1,7,3), P = (1,0, —1)

2 -

28. F(X,y,z) = m, V= (17 17

-2),P=(1,1,1)



12.7 Tangent Lines, Normal Lines, and Tangent Planes

12.7 TangentLlines, NormalLines, and Tangent Planes

Derivatives and tangent lines go hand—in—hand. Given y = f(x), the line tangent 10
to the graph of fat x = xg is the line through (xo,f(xo)) with slope f'(xp); that
is, the slope of the tangent line is the instantaneous rate of change of f at xo.
When dealing with functions of two variables, the graph is no longer a curve
but a surface. At a given point on the surface, it seems there are many lines that
fit our intuition of being “tangent” to the surface.
In Figures 12.20 we see lines that are tangent to curves in space. Since each
curve lies on a surface, it makes sense to say that the lines are also tangent to X
the surface. The next definition formally defines what it means to be “tangent

to a surface. Figure 12.20: Showing various lines tan-

gent to a surface.

Definition 93 Directional Tangent Line

Let z = f(x, y) be differentiable on an open set S containing (xo, yo) and let
U = (u1, u;) be a unit vector.

1. Theline 4, through (Xo7 yo,f(xo,yo)) parallel to (1,0, fx(xo, o)) is the
tangent line to fin the direction of x at (xo, yo).

2. Theline ¢, through (Xo, Yo, f(Xo, ¥o)) parallel to (0, 1,f,(xo, yo)) is the
tangent line to f in the direction of y at (xo, yo)-

3. The line ¢ through (xo, Yo, f(Xo, o)) parallel to (us, uy, Dzf(xo, ¥o))
is the tangent line to f in the direction of & at (xo, o).

It is instructive to consider each of three directions given in the definition in
terms of “slope.” The direction of ¢ is (1,0, fy(xo, Yo)); that is, the “run” is one
unit in the x-direction and the “rise” is f(xo, ¥o) units in the z-direction. Note
how the slope is just the partial derivative with respect to x. A similar statement
can be made for ¢,. The direction of ¢; is (u1, uz, Dz f(Xo,Y0)); the “run” is one
unit in the & direction (where i is a unit vector) and the “rise” is the directional
derivative of z in that direction.

Definition 93 leads to the following parametric equations of directional tan-

gent lines:

X=Xp+t X = Xo X = Xo + u1t
L) =< vy=yo , L(t)=X y=yo+t and (z(t) =< y=yo+uxt

z =29 + fi(Xo, Yo)t z =129+ f,(Xo, Yo)t z =20+ Dgf(xo0,yo)t
Notes:
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(b)

Figure 12.21: A surface and directional
tangent lines in Example 424.
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Example 424 Finding directional tangent lines
Find the lines tangent to the surface z = sinxcosy at (7/2,7/2) in the x and y
directions and also in the direction of V = (—1,1) .

SOLUTION The partial derivatives with respect to x and y are:
fx(x,y) =cosxcosy = fi(m/2,7/2)=0
fy(x,y) = —sinxsiny = f,(n/2,7/2) =—1.

At (m/2,7/2), the z-value is 0.
Thus the parametric equations of the line tangent to f at (7/2,7/2) in the
directions of x and y are:

x=mw/2+t x=m/2
L(t)=< y=m7/2 and 4, (t)=¢ y=m/2+t
z=0 z=—t

The two lines are shown with the surface in Figure 12.21(a). To find the equa-
tion of the tangent line in the direction of V, we first find the unit vector in the
direction of v: i = (—1/v/2,1/V/2). The directional derivative at (7/2, 7, 2) in
the direction of i is

Daf(r/2,m,2) = (0,-1) - (~1/v/2,1/V2) = ~1/V2.

Thus the directional tangent line is

X=1/2—t/\2
) =4 y=m/2+t/V2 .
z=—t/\V2

The curve through (7/2, 7/2,0) in the direction of Vis shown in Figure 12.21(b)
along with £;(t).

Example 425 Finding directional tangent lines
Let f(x,y) = 4xy — x* — y*. Find the equations of all directional tangent lines to

fat(1,1).

SOLUTION First note that f(1, 1) = 2. We need to compute directional
derivatives, so we need Vf. We begin by computing partial derivatives.

i=4y—43=£(1,1)=0; f,=4x—4>=F(1,1)=0.

Thus Vf(1,1) = (0,0). Let & = (uy, u;) be any unit vector. The directional
derivative of fat (1, 1) willbe Dz f(1,1) = (0,0)-{uy, u,) = 0. It does not matter

Notes:
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what direction we choose; the directional derivative is always 0. Therefore

x =14 uqt
L) =4 y=14uyt
z=2

Figure 12.22 shows a graph of f and the point (1,1,2). Note that this point
comes at the top of a “hill,” and therefore every tangent line through this point
will have a “slope” of 0.

That is, consider any curve on the surface that goes through this point. Each
curve will have a relative maximum at this point, hence its tangent line will have
a slope of 0. The following section investigates the points on surfaces where all
tangent lines have a slope of 0.

Normal Lines

When dealing with a function y = f(x) of one variable, we stated that a line
through (c, f(c)) was tangent to f if the line had a slope of f’(c) and was normal
(or, perpendicular, orthogonal) to fif it had a slope of —1/f'(c). We extend the
concept of normal, or orthogonal, to functions of two variables.

Letz = f(x, y) be a differentiable function of two variables. By Definition 93,
at (xo, ¥o), Ix(t) is a line parallel to the vector d, = (1,0, f,(xo,yo)) and £,(t) is
a line parallel to d, = (0,1,fy(x0,¥0)). Since lines in these directions through
(xo, Yo, f(xo, yo)) are tangent to the surface, a line through this point and orthog-
onal to these directions would be orthogonal, or normal, to the surface. We can
use this direction to create a normal line.

The direction of the normal line is orthogonal to EX and d}, hence the direc-

tion is parallel to Ei,, = 3,( X 3,,. It turns out this cross product has a very simple
form:

a))( X C_iy = <1707fx> X <Oa 17fy> - <7fxa 7fy7 1> .

It is often more convenient to refer to the opposite of this direction, namely
{fx,fy, —1). This leads to a definition.

Notes:

Figure 12.22: Graphing f in Example 425.
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Definition 94 Normal Line

Let z = f(x,y) be differentiable on an open set S containing (xo, yo)
where

a = fx(xo,¥0) and b = f,(xo,V0)

are defined.

1. A nonzero vector parallel to i = (a, b, —1) is orthogonal to f at
P = (o, Yo, f(x0,¥0))-

2. Theline £, through P with direction parallel to 7 is the normal line
tofatP.

Thus the parametric equations of the normal line to a surface f at (xo, Yo, f(xo, yo))
is:

X=X+ at
lo(t) = Yy =VYo+bt
z = f(xo,y0) — t
z
Example 426 Finding a normal line
2 Find the equation of the normal linetoz = —x? — y? + 2 at (0, 1).
o SOLUTION We find z:(x,y) = —2x and z,(x,y) = —2y; at (0,1), we
have z, = 0 and z, = —2. We take the direction of the normal line, following
/] Definition 94, to be i = (0, —2, —1). The line with this direction going through
X 2 2 y the point (0,1, 1) is
<2 x=0
l(t)=<¢ y=-2t+1 or {,(t)=(0,—2,—-1)t+ (0,1,1).
z=—-t+4+1
The surface z = —x? + y?, along with the found normal line, is graphed in

Figure 12.23: Graphing a surface with a

normal line from Example 426. Figure 12.23.

The direction of the normal line has many uses, one of which is the defini-
tion of the tangent plane which we define shortly. Another use is in measuring
distances from the surface to a point. Given a point Q in space, it is general geo-
metric concept to define the distance from Q to the surface as being the length
of the shortest line segment PQ over all points P on the surface. This, in turn,
implies that PQ will be orthogonal to the surface at P. Therefore we can mea-
sure the distance from Q to the surface f by finding a point P on the surface such

Notes:
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that PQ is parallel to the normal line to f at P.

Example 427 Finding the distance from a point to a surface
Let f(x,y) = 2 — x> — y? and let Q = (2,2, 2). Find the distance from Q to the
surface defined by f.

SOLUTION This surface used in Example 425, so we know that at (x, y),
the direction of the normal line will be d, = (—2x, —2y, —1). A point P on the
surface will have coordinates (x,y,2 —x? —y?),s0 PQ = (2 — x,2 — y,x* + y?).

—

To find where 135 is parallel to 3,,, we need to find x, y and ¢ such that cﬁa =d,.
cPQ = d,
c(2—x2-y, X +y*) = (-2x,—2y,—1).

This implies
(2 —x) = —2x
c2-y)=-2
O +y*) =-1

In each equation, we can solve for c:

-2x -2y @ -1
2—-x 2—y x4y

The first two fractions imply x = y, and so the last fraction can be rewritten as
c=—1/(2x*). Then
—2x -1
2—x 22
—2x(2¢*) = —1(2 — x)
4 =2—x

4 +x—2=0.

This last equation is a cubic, which is not difficult to solve with a numeric solver.
We find that x = 0.689, hence P = (0.689,0.689, 1.051). We find the distance
from Q to the surface of fis

1PQ || = /(2 —0.689)2 + (2 — 0.689)? + (2 — 1.051) = 2.083.

We can take the concept of measuring the distance from a point to a surface
to find a point Q a particular distance from a surface at a given point P on the

Notes:
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Figure 12.24: Graphing the surface in Ex-
ample 428 along with points 4 units from
the surface.

710

surface.

Example 428 Finding a point a set distance from a surface

Letf(x,y) = x—y*+3. LetP = (2,1,£(2,1)) = (2,1,4). Find points Qin space
that is 4 units from the surface of fat P. That s, find Q such that || PQ || = 4 and
PQis orthogonal to fat P.

SOLUTION We begin by finding partial derivatives:

Hlxy) =1 =  f(21)=1
fyxy) = =2y = f(2,1)=-2

The vector i = (1, —2, —1) is orthogonal to f at P. For reasons that will become
more clear in a moment, we find the unit vector in the direction of r:

i

J:
i

<1/\@, —2/+/6, —1/\f6> ~ (0.408, —0.816, —0.408) .

Thus a the normal line to f at P can be written as
£,(t) = (2,1,4) + t(0.408,—0.816, —0.408) .

An advantage of this parametrization of the line is that letting t = tj gives a
point on the line that is |to| units from P. (This is because the direction of the
line is given in terms of a unit vector.) There are thus two points in space 4 units
from P:

Q =10, (4) Q= En(_4)
~ <3.637 —2.27,2.37) ~ <O.37,4.27,5.63>

The surface is graphed along with points P, Q;, Q, and a portion of the normal
line to fat P.

Tangent Planes

We can the direction of the normal line to define a plane. With a = f,(xo, yo),
b = f,(xo,¥0) and P = (xo, o, f(Xo, ¥0)), the vector i = (a, b, —1) is orthogonal
to f at P. The plane through P with normal vector 7 is therefore tangent to f at
P.

Notes:
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Definition 95 Tangent Plane

let z = f(x,y) be differentiable on an open set S containing
(xo0,¥0), where a = f,(x0,¥0), b = fy(xo,¥0), i = (a,b,—1) and

P: (Xo,yo’f(xo’yO)). K
The plane through P with normal vector 7 is the tangent plane to f at P. - ol

2
The standard form of this plane is X 2 y
—+2
a(x — xo) + b(y — yo) — (2 — f(xo0,¥0)) = 0.
Example 429 Finding tangent planes
Find the equation tangent plane to z = —x* — y*> + 2 at (0, 1). Figure 12.25: Graphing a surface with tan-
gent plane from Example 429.
SOLUTION Note that this is the same surface and point used in Example

426. There we found 7 = (0, —2, —1) and P = (0, 1, 1). Therefore the equation
of the tangent plane is

—2(y—1)—(z—1)=0.

The surface z = —x? + y? and tangent plane are graphed in Figure 12.25.

Example 430 Using the tangent plane to approximate function values
The point (3, —1, 4) lies on the surface of an unknown differentiable function f
where f,(3,—1) = 2 and f,(3, —1) = —1/2. Find the equation of the tangent
plane to f at P, and use this to approximate the value of f(2.9, —0.8).

SOLUTION Knowing the partial derivatives at (3, —1) allows us to form
the normal vector to the tangent plane, @ = (2, —1/2, —1). Thus the equation
of the tangent line to fat P is:

2(x—3)—1/2(y+1)—(z—4) =0 = z=2(x—3)—1/2(y+1)+4. (12.5)

Just as tangent lines provide excellent approximations of curves near their point
of intersection, tangent planes provide excellent approximations of surfaces near
their point of intersection. So (2.9, —0.8) ~ z(2.9, —0.8) = 3.7.

This is not a new method of approximation. Compare the right hand expres-
sion for z in Equation (12.5) to the total differential:

dz=fudx+f,dy and z=_2 (x—3)+-1/2(y+1)+4.
N N e —

f dx 5 dy

dz

Notes:
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Thus the “new z-value” is the sum of the change in z (i.e., dz) and the old z-
value (4). As mentioned when studying the total differential, it is not uncommon
to know partial derivative information about a unknown function, and tangent
planes are used to give accurate approximations of the function.

The Gradient and Normal Lines, Tangent Planes

The methods developed in this section so far give a straightforward method
of finding equations of normal lines and tangent planes for surfaces with explicit
equations of the form z = f(x,y). However, they do not handle implicit equa-
tions well, such as x2 + y? 4 z2 = 1. There is a technique that allows us to find
vectors orthogonal to these surfaces based on the gradient.

Definition 96 Gradient

Let w = F(x,y,z) be differentiable on an open ball B that contains the
point (o, Yo, Zo)-

1. The gradient of Fis VF(x,y,z) = (fi(x,y,2),f,(x,¥,2),f:(x,¥,2)).

2. The gradient of F at (xo, Yo, Z) is

v"'-()(07}/0720) = <fX(X05yOaZO)vfy(XOayO7ZO)7fZ(Xan0aZO)> .

Recall that when z = f(x, y), the gradient Vf = (f,, f,) is orthogonal to level
curves of f. An analogous statement can be made about the gradient VF, where
w = F(x,y,z). Given a point (xo, Yo, 20), let ¢ = F(xo, yo,20). Then F(x,y,z) =
c is a level surface that contains the point (xo, ¥o, ). The following theorem
states that VF(xo, Yo, 20) is orthogonal to this level surface.

Theorem 113 The Gradient and Level Surfaces
Let w = F(x,y,z) be differentiable on an open ball B containing

(X0, Y0, 20) with gradient VF, where F(xo, o, 20) = c.

The vector VF(xo, Yo, Zo) is orthogonal to the level surface F(x,y,z) = ¢
at (xo, Y0, 20)-

The gradient at a point gives a vector orthogonal to the surface at that point.
This direction can be used to find tangent planes and normal lines.

Notes:
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Example 431 Using the gradient to find a tangent plane
X2 2
Find the equation of the plane tangent to the ellipsoid 5 =+ v + i 1 at

6
P=(1,2,1).

SOLUTION We consider the equation of the ellipsoid as a level surface

of a function F of three variables, where F(x,y, z) = 1‘—; + % + %. The gradient
is:

VF(x,y,2) = (Fx, Fy, Fz)
_<X y Z>
T \6'372/°

At P, the gradient is VF(1,2,1) = (1/6,2/3,1/2). Thus the equation of the
plane tangent to the ellipsoid at P is

1(x— 1)+

c 2(y—2)-i—%(z—1):0.

3
The ellipsoid and tangent plane are graphed in Figure 12.26.

Tangent lines and planes to surfaces have many uses, including the study of
instantaneous rates of changes and making approximations. Normal lines also
have many uses. In this section we focused on using them to measure distances
from a surface. Another interesting application is in computer graphics, where
the effects of light on a surface are determined using normal vectors.

The next section investigates another use of partial derivatives: determining
relative extrema. When dealing with functions of the form y = f(x), we found
relative extrema by finding x where f/(x) = 0. We can start finding relative
extrema of z = f(x, y) by setting f, and f, to 0, but it turns out that there is more
to consider.

Notes:

V4
2
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Figure 12.26: An ellipsoid and its tangent
plane at a point.

713



Exercises 12.7

Terms and Concepts

1. Explain how the vector v = (1,0, 3) can be thought of as
having a “slope” of 3.

2. Explain how the vector v = (0.6,0.8, —2) can be thought
of as having a “slope” of —2.

3. T/F: Let z = f(x,y) be differentiable at P. If /i is a normal
vector to the tangent plane of f at P, then 7 is orthogonal
tofcandf, at P.

4. Explain in your own words why we do not refer to the tan-
gent line to a surface at a point, but rather to directional
tangent lines to a surface at a point.

Problems

Exercises 5 — 8, a function z = f(x, y), a vector V and a point
P are given. Give the parametric equations of the following
directional tangent lines to f at P:

(a) 4(t)
(b) £,()
(c) ¢z (t), where i is the unit vector in the direction of V.

5. f(x,y) = 2%y — 4xy*, v = (1,3), P = (2,3).

6. f(x,y) =3 cosxsiny, V= (1,2),P = (n/3,7/6).
7. f(x,y) =3x—5y,vV=(1,1),P = (4,2).

8. fx,y) =x* —2x—y* +4y,v=(1,1),P = (1,2).

Exercises 9 — 12, a function z = f(x, y), a vector V and a point
P are given. Find the equation of the normal line to f at P.
Note: these are the same functions as in Exercises 5 — 8.

9. f(xvy) = szy_ 4Xy2' V= <1,3>1P = (273)
10. f(x,y) = 3cosxsiny, V= (1,2),P = (7/3,7/6).
11. f(x,y) =3x—5y,v=(1,1), P = (4,2).

12. f(x,y) =x* —2x—y* +4y,v = (1,1), P = (1,2).

Exercises 13 — 16, a function z = f(x, y), a vector V and a point
P are given. Find the two points that are 2 units from the sur-
face f at P. Note: these are the same functions as in Exercises
5-8.

13. f(x,y) = 2%y — axy?, v = (1,3), P = (2,3).

y)
14. f(x,y) = 3cosxsiny, V= (1,2),P = (7w /3,7/6).
15. f(x,y) =3x—5y,v=(1,1),P = (4,2).

16. f(x,y) =X —2x—y* +4y,v = (1,1), P = (1,2).

Exercises 17 — 20, a function z = f(x,y), a point P is given.
Find the equation of the tangent plane to f at P. Note: these
are the same functions as in Exercises 5 — 8.

17. f(x,y) = 2%y — 4xy?, vV = (1,3), P = (2,3).

18. f(x,y) = 3cosxsiny, v = (1,2),P = (w/3,7/6).
19. f(x,y) =3x —5y,V = (1,1),P = (4,2).

20. f(x,y) =X —2x—y’ +4y,vV = (1,1),P = (1,2).

Exercises 21 — 24, an implicitly defined function of x, y and z
is given along with a point P that lies on the surface. Use the
gradient VF to:

(a) find the equation of the normal line to the surface at

P, and
(b) find the equation of the plane tangent to the surface
atP.
2 2 2
2. Xy Yy 2 1 atp=(1,v2,16)
8 4 1
» Xy
22. 72 =7 -5 =0atP= (4,-3,V5)

23. xy" —xz* =0,atP=(2,1,—-1)

24. sin(xy) + cos(yz) =0,atP = (2,7/12,4)



12.8 Extreme Values

Given a function z = f(x, y), we are often interested in points where z takes on
the largest or smallest values. For instance, if z represents a cost function, we
would likely want to know what (x, y) values minimize the cost. If z represents
the ratio of a volume to surface area, we would likely want to know where z is
greatest. This leads to the following definition.

Definition 97 Relative and Absolute Extrema

Let z = f(x, y) be defined on a set S containing the point P = (xo, ¥o).

1. If there is an open disk D containing P such that f(xo, ¥o) > f(x,y)
for all (x,y) in D, then f has a relative maximum at P; if f(xo, yo) <
f(x,y) for all (x,y) in D, then f has a relative minimum at P.

2. If f(x0,¥0) > f(x,y) for all (x,y) in S, then f has an absolute max-
imum at P; if f(xo,¥0) < f(x,y) for all (x,y) in S, then f has an
absolute minimum at P.

3. If fhas a relative maximum or minimum at P, then f has a relative
extrema at P; if f has an absolute maximum or minimum at P, then
f has a absolute extrema at P.

If f has a relative or absolute maximum at P = (xo, y), it means every curve
on the surface of f through P will also have a relative or absolute maximum at P.
Recalling what we learned in Section 3.1, the slopes of the tangent lines to these
curves at P must be 0 or undefined. Since directional derivatives are computed
using f, and f,,, we are led to the following definition and theorem.

Definition 98 Critical Point

Let z = f(x,y) be continuous on an open set S. A critical point P =
(X0, ¥o) of fis a point in S such that

* fu(xo0,¥0) = 0and f,(x0,¥0) =0, or

* fx(xo, yo) and/or f,(xo, yo) is undefined.

Notes:
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Figure 12.27: The surface in Example 432
with its absolute minimum indicated.

L

2 2y

Figure 12.28: The surface in Example 433
with its absolute maximum indicated.
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Theorem 114 Critical Points and Relative Extrema

Let z = f(x,y) be defined on an open set S containing P = (xo, yo). If f
has a relative extrema at P, then P is a critical point of f.

Therefore, to find relative extrema, we find the critical points of f and de-
termine which correspond to relative maxima, relative minima, or neither. The
following examples demonstrate this process.

Example 432 Finding critical points and relative extrema
Let f(x,y) = x* + y?> — xy — x — 2. Find the relative extrema of f.

SOLUTION We start by computing the partial derivatives of f:
fix,y)=2x—y—1 and f(x,y) =2y —x.

Each is never undefined. A critical point occurs when f, and f, are simultaneously
0, leading us to solve the following system of linear equations:

2x—y—1= and —x+2y=0.

This solution to this system is x = 2/3, y = 1/3. (Check that at (2/3,1/3), both
frxandf, are0.)

The graphin Figure 12.27 shows falong with this critical point. Itis clear from
the graph that this is a relative minimum; further consideration of the function
shows that this is actually the absolute minimum.

Example 433 Finding critical points and relative extrema
Let f(x,y) = —v/x* + y? + 2. Find the relative extrema of f.

SOLUTION We start by computing the partial derivatives of f:

—X 7y

fX(X7 y) == \/TT)/Z and _fy()(7 y) = \/Tiyz

It is clear that f, = 0 when x = 0 and that f, = 0 wheny = 0. At (0,0), both
fxand f, are not 0, but rather undefined. The point (0, 0) is still a critical point,
though, because the partial derivatives are undefined.

The surface of fis graphed in Figure 12.28 along with the point (0, 0, 2). The
graph shows that this point is the absolute maximum of f.

In each of the previous two examples, we found a critical point of f and then
determined whether or not it was a relative (or absolute) maximum or minimum

Notes:
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by graphing. It would be nice to be able to determine whether a critical point
corresponded to a max or a min without a graph. Before we develop such a test,
we do one more example that sheds more light on the issues our test needs to
consider.

Example 434 Finding critical points and relative extrema
Let f(x,y) = x> — 3x — y? + 4y. Find the relative extrema of f.

SOLUTION Once again we start by finding the partial derivatives of f:
f(xy)=3¢%—-3 and  f(x,y) =2y +4.
Each is always defined. Setting each equal to 0 and solving for x and y, we find

Aloy) =0 = x=+1
fy(Xay) =0 =y = 2.

We have two critical points: (—1,2) and (1, 2). To determine if they correspond

to a relative maximum or minimum, we consider the graph of fin Figure 12.29. Figure 12.29: The surface in Example 434
The critical point (—1,2) clearly corresponds to a relative maximum. How- with both critical points marked.

ever, the critical point at (1, 2) is neither a maximum nor a minimum, displaying

a different, interesting characteristic.
If one walks parallel to the y-axis towards this critical point, then this point

becomes a relative maximum along this path. But if one walks towards this point

parallel to the x-axis, this point becomes a relative minimum along this path. A

point that seems to act as both a max and a min is a saddle point. A formal

definition follows.

Definition 99 Saddle Point

Let P = (xo,Y0) be in the domain of f where f, = Oand f, = 0 at
P. P is a saddle point of f if, for every open disk D containing P, there
are points (x1,y1) and (xz,y2) in D such that f(xo, ¥o) > f(x1,y1) and
f(xo0, ¥0) < fx2,y2).

At a saddle point, the instantaneous rate of change in all directions is 0 and
there are points nearby with z-values both less than and greater than the z-value
of the saddle point.

Before Example 434 we mentioned the need for a test to differentiate be-
tween relative maxima and minima. We now recognize that our test also needs

Notes:
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to account for saddle points. To do so, we consider the second partial derivatives
of f.

Recall that with single variable functions, such asy = f(x), if f(c) > 0, then
fis concave up atc, and if f/(c) = 0, then f has a relative minimum atx = c. (We
called this the Second Derivative Test.) Note that at a saddle point, it seems the
graph is “both” concave up and concave down, depending on which direction
you are considering.

It would be nice if the following were true:

fwandf,, >0 = relative minimum
fwandf,, <0 = relative maximum
fx and f,, have opposite signs = saddle point.

However, this is not the case. Functions f exist where f,, and f,, are both
positive but a saddle point still exists. In such a case, while the concavity in the
x-direction is up (i.e., fix > 0) and the concavity in the y-direction is also up (i.e.,
fyy > 0), the concavity switches somewhere in between the x- and y-directions.

To account for this, consider D = f,f,, — fufyx- Since f,, and f,, are equal
when continuous (refer back to Theorem 103), we can rewrite thisas D = ff,, —
fzxy. D can be used to test whether the concavity at a point changes depending on
direction. If D > 0, the concavity does not switch (i.e., at that point, the graph
is concave up or down in all directions). If D < 0, the concavity does switch. If
D = 0, our test fails to determine whether concavity switches or not. We state
the use of D in the following theorem.

Theorem 115 Second Derivative Test

Let z = f(x, y) be differentiable on an open set containing P = (xo, Yo),
and let

D = fux(x0, Yo)fyy (X0 Yo) _ﬁy(XO)yO)'
1. If D > 0and fix(xo,¥0) > 0, then Pis a relative minimum of f.
2. If D > 0 and fi(xo0, ¥0) < 0O, then P is a relative maximum of f.
3. If D < 0, then P is a saddle point of f.

4. If D = 0, the test is inconclusive.

We first practice using this test with the function in the previous example,
where we visually determined we had a relative maximum and a saddle point.

Notes:




Example 435 Using the Second Derivative Test
Letf(x,y) = x*—3x—y?+4yasin Example 434. Determine whether the function
has a relative minimum, maximum, or saddle point at each critical point.

SOLUTION We determined previously that the critical points of f are
(—1,2) and (1, 2). To use the Second Derivative Test, we must find the second
partial derivatives of f:

fx = 6x; fiw = -2 fy =0.

Thus D(x,y) = —12x.

At (—1,2): D(—1,2) = 12 > 0, and fx(—1,2) = —6. By the Second Deriva-
tive Test, f has a relative maximum at (—1, 2).

At (1,2): D(1,2) = —12 < 0. The Second Derivative Test states that f has a
saddle point at (1, 2).

The Second Derivative Test confirmed what we determined visually.

Example 436 Using the Second Derivative Test
Find the relative extrema of f(x,y) = X2y +y? + xy.

SOLUTION We start by finding the first and second partial derivatives of
f:
=2xy+y f,=x*+2y+x
fa=2y fyw=2
fo=2x+1 fyx = 2x+ 1.

We find the critical points by finding where f, and f, are simultaneously 0 (they
are both never undefined). Setting f, = 0, we have:

fi=0 = 2xy+y=0 = y(2x+1)=0.

This implies that for f, = 0, eithery =0or2x+ 1 = 0.
Assume y = 0 then consider f, = O:

fy=0

X +2y+x=0, and since y = 0, we have
X +x=0
x(x+1)=0.

Thus if y = 0, we have either x = 0 or x = —1, giving two critical points: (—1,0)
and (0,0).

Notes:

12.8 Extreme Values

719



Chapter 12 Functions of Several Variables

Figure 12.30: Graphing f from Example
436 and its relative extrema.
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Going back to f, now assume 2x+ 1 = 0, i.e., that x = —1/2, then consider
fy=0:

fy =0
X +2y+x=0, and since x = —1/2, we have
1/4+2y—1/2=0
y=1/8.

Thusif x = —1/2, y = 1/8 giving the critical point (—1/2,1/8).

With D = 4y — (2x+1)?, we apply the Second Derivative Test to each critical
point.

At (—1,0),D < 0,s0 (—1,0) is a saddle point.

At (0,0), D < 0, so (0,0) is also a saddle point.

At (—1/2,1/8),D > 0and fix > 0,s0 (—1/2,1/8) is a relative minimum.

Figure 12.30 shows a graph of f and the three critical points. Note how this
function does not vary much near the critical points — that is, visually it is diffi-
cult to determine whether a point is a saddle point or relative minimum (or even
a critical point at all!). This is one reason why the Second Derivative Test is so
important to have.

Constrained Optimization

When optimizing functions of one variable such as y = f(x), we made use
of Theorem 25, the Extreme Value Theorem, that said that over a closed inter-
val /, a continuous function has both a maximum and minimum value. To find
these maximum and minimum values, we evaluated f at all critical points in the
interval, as well as at the endpoints (the “boundary”) of the interval.

A similar theorem and procedure applies to functions of two variables. A
continuous function over a closed set also attains a maximum and minimum
value (see the following theorem). We can find these values by evaluating the
function at the critical values in the set and over the boundary of the set. After
formally stating this extreme value theorem, we give examples.

Theorem 116 Extreme Value Theorem

Letz = f(x, y) be a continuous function on a closed, bounded set S. Then
fhas a maximum and minimum value on S.

Example 437 Finding extrema on a closed set
Let f(x,y) = x* — y*> + 5 and let S be the triangle with vertices (—1, —2), (0, 1)
and (2, —2). Find the maximum and minimum values of fon S.

Notes:



SOLUTION It can help to see a graph of f along with the set S. In Figure
12.31(a) the triangle defining S is shown in the x-y plane in a dashed line. Above
it is the surface of f; we are only concerned with the portion of f enclosed by the
“triangle” on its surface.

We begin by finding the critical points of f. With fy = 2x and f, = —2y, we
find only one critical point, at (0, 0).

We now find the maximum and minimum values that f attains along the
boundary of §, that is, along the edges of the triangle. In Figure 12.31(b) we
see the triangle sketched in the plane with the equations of the lines forming its
edges labeled.

Start with the bottom edge, along the liney = —2. If yis —2, then on
the surface, we are considering points f(x, —2); that is, our function reduces to
flx,=2) =x* = (=2)2+ 5 = x> + 1 = fi(x). We want to maximize/minimize
fi(x) = x> + 1 on the interval [—1, 2]. To do so, we evaluate f; (x) at its critical
points and at the endpoints.

The critical points of f; are found by setting its derivative equal to 0:

fix)=0 =x=0.
Evaluating f; at this critical point, and at the endpoints of [—1, 1] gives:
fi(-1)=2 = f(-1,-2)=2

f1(0)=1 = flo,—-2)=1

f1(2)=5 = f(2,-2) =5.
Notice how evaluating f; at a point is the same as evaluating f at its correspond-
ing point.

We need to do this process twice more, for the other two edges of the tri-

angle.
Along the left edge, along the line y = 3x 4 1, we substitute 3x + 1 in for y

in f(x,y):

fx,y) =fx,3x+1) =x* — (3x+1)> + 5= —8x" — 6x + 4 = fr(x).
We want the maximum and minimum values of f, on the interval [—1, 0], so we
evaluate f, at its critical points and the endpoints of the interval. We find the
critical points:

fo(x)=—-16x—6=0 = x= —3/8.
Evaluate f, at its critical point and the endpoints of [—1,0]:
foi(-1) =2 =  f(-1,-2)=2
fr(—3/8) = 41/8 = 5.125 =  f(—3/8,-0.125) = 5.125
£(0)=1 = f(0,1) = 4.

Notes:

12.8 Extreme Values

(b)

Figure 12.31: Plotting the surface of f
along with the restricted domain S.
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Figure 12.32: The surface of f along with
important points along the boundary of S
and the interior.
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Finally, we evaluate falong the right edge of the triangle, wherey = —3/2x+
1.

Fx,y) = fx,—3/2x+ 1) = % — (=3/2x+ 1)> + 5 = —%xz +3x 44 =)
The critical points of f3(x) are:

fix)=0 = x=6/5=12.
We evaluate f; at this critical point and at the endpoints of the interval [0, 2]:

f3(0) =4 = f(0,1)=4
fs(12)=58 =  f(1.2,-0.8) =538
f3(2) =5 =  f(2,-2)=5.

One last point to test: the critical point of £, (0,0). We find f(0,0) = 5.

We have evaluated f at a total of 7 different places, all shown in Figure 12.32.
We checked each vertex of the triangle twice, as each showed up as the end-
point of an interval twice. Of all the z-values found, the maximum is 5.8, found
at (1.2, —0.8); the minimum is 1, found at (0, —2).

This portion of the text is entitled “Constrained Optimization” because we
want to optimize a function (i.e., find its maximum and/or minimum values)
subject to a constraint — some limit to what values the function can attain. In
the previous example, we constrained ourselves to considering a function only
within the boundary of a triangle. This was largely arbitrary; the function and
the boundary were chosen just as an example, with no real “meaning” behind
the function or the chosen constraint.

However, solving constrained optimization problems is a very important topic
in applied mathematics. The techniques developed here are the basis for solving
larger problems, where more than two variables are involved.

We illustrate the technique once more with a classic problem.

Example 438 Constrained Optimization
The U.S. Postal Service states that the girth+length of Standard Post Package
must not exceed 130”. Given a rectangular box, the “length” is the longest side,
and the “girth” is twice the width+height.

Given a rectangular box where the width and height are equal, what are the
dimensions of the box that give the maximum volume subject to the constraint
of the size of a Standard Post Package?

SOLUTION Let w, h and ¢ denote the width, height and length of a rect-
angular box; we assume here that w = h. The girth is then 2(w + h) = 4w. The

Notes:



volume of the box is V(w, ) = wh{ = w?{. We wish to maximize this volume
subject to the constraint 4w + ¢ < 130, or £ < 130 — 4w. (Common sense also
indicates that £ > 0, w > 0.)

We begin by finding the critical values of V. We find that V,, = 2w/ and
Vi = w?; these are simultaneously 0 only at (0, 0). This gives a volume of 0, so
we can ignore this critical point.

We now consider the volume along the constraint £ = 130 — 4w. Along this
line, we have:

V(wf) = V(w, 130 — 4w) = w?(130 — 4w) = 130w” — 4w® = V;(w).

The constraint is applicable on the w-interval [0, 32.5] as indicated in the figure.
Thus we want to maximize V; on [0, 32.5].
Finding the critical values of V3, we take the derivative and set it equal to 0:

VY () — - B 260
‘(W) =260w—12w?> =0 = w(260—12w)=0 = w=0,— ~21.67.

12

We found two critical values: when w = 0 and when w = 21.67. We again
ignore the w = 0 solution; the maximum volume, subject to the constraint,
comes at w = h = 21.67, { = 130 — 4(21.6) = 43.33. This gives a volume of
V(21.67,43.33) ~ 19, 408in>.

The volume function V(w, £) is shown in Figure 12.33 along with the con-
straint / = 130 — 4w. As done previously, the constraint is drawn dashed in
the x-y plane and also along the surface of the function. The point where the
volume is maximized is indicated.

It is hard to overemphasize the importance of optimization. In “the real
world,” we routinely seek to make something better. By expressing the some-
thing as a mathematical function, “making something better” means “optimize
some function.”

The techniques shown here are only the beginning of an incredibly important
field. Many functions that we seek to optimize are incredibly complex, making
the step of “find the gradient and set it equal to 0” highly nontrivial. Mastery
of the principles here are key to being able to tackle these more complicated
problems.

Notes:

12.8 Extreme Values

20
Figure 12.33: Graphing the volume of a

box with girth 4w and length ¢, subject to
a size constraint.

723



Exercises 12.8

Terms and Concepts

1. T/F: Theorem 114 states that if f has a critical point at P,
then f has a relative extrema at P.

2. T/F: A point P is a critical point of fif f, and f, are both 0 at
P.

3. T/F: A point P is a critical point of fif f or f, are undefined
atp.

4. Explain what it means to “solve a constrained optimization”
problem.

Problems

Exercises 5 — 14, find the critical points of the given function.
Use the Second Derivative Test to determine if each critical
point corresponds to a relative maximum, minimum, or sad-
dle point.

5. f(x,y) = 3x* +2y* — 8y + 4x
6. f(x,y) = x* 4+ 4x+y* — 9y + 3xy
7. f(x,y) = x* 4+ 3y* — 6y + 4xy

1 1
10. f(x,y) = S —x+ 2y  —ay

11. f(x,
12. f(x,

13. f(x,y) = /16 — (x —3)2 — )2
14. fix,y) = V¥ +y?

Exercises 15 — 18, find the absolute maximum and minimum
of the function subject to the given constraint.

15. f(x,y) = x* +y* +y + 1, constrained to the triangle with
vertices (0, 1), (—1,—1) and (1, —1).

16. f(x,y) = 5x — 7y, constrained to the region bounded by
y=x*andy = 1.

17. f(x,y) = x> 4+ 2x + y* + 2y, constrained to the region
bounded by the circle x> + > = 4.

18. f(x,y) = 3y — 2x%, constrained to the region bounded by
the parabola y = x* + x — 1 and the line y = x.



13: MULTIPLE INTEGRATION

13.1 Iterated Integrals and Area

In Chapter 12 we found that it was useful to differentiate functions of several
variables with respect to one variable, while treating all the other variables as
constants or coefficients. We can integrate functions of several variables in a
similar way. For instance, if we are told that fi(x,y) = 2xy, we can treat y as
staying constant and integrate to obtain f(x, y):

fx,y) = / filx,y) dx

= / 2xy dx

= X2y+ C.

Make a careful note about the constant of integration, C. This “constant” is
something with a derivative of 0 with respect to x, so it could be any expres-
sion that contains only constants and functions of y. For instance, if f(x,y) =
x2y +siny +y* + 17, then f,(x,y) = 2xy. To signify that Cis actually a function
of y, we write:

) = [ £09) b =y + ).
Using this process we can even evaluate definite integrals.

Example 439 Integrating functions of more than one variable

2y
Evaluate theintegral/ 2xy dx.
1

SOLUTION We find the indefinite integral as before, then apply the Fun-
damental Theorem of Calculus to evaluate the definite integral:

2y 2y
/ 2xy dx = X%y
1 1

= (2y)’y —2(1)y
=4y* —2y.
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We can also integrate with respect to y. In general,

h2(y)

hi(y)

~hy (y)
/ £, y) dx = f(x,y)

hi(y)

= f(ha(y),y) — f(h(y),v),

and
9:(x) g2(X
/ f,(x,y) dy = f(x,y) - fx,92(x)) — £(x,91(x)).

g1(x)

g1(x)

Note that when integrating with respect to x, the bounds are functions of y
(of the form x = hy(y) and x = h,(y)) and the final result is also a function of y.
When integrating with respect to y, the bounds are functions of x (of the form
y = g1(x) and y = g,(x)) and the final result is a function of x. Another example
will help us understand this.

Example 44 Integrating functions of more than one variable

X
Evaluate/ (5x°y > + 6y°) dy.
1

SOLUTION We consider x as staying constant and integrate with respect
toy:
X 53y~2  6y3 g
[otvieonw= (2204
1 -2 3
1
5
= (—2x3x_2 + 2x3> - ( =3+ 2)
9 5
=X —x—2.
2 2

Note how the bounds of the integral are from y = 1 to y = x and that the final
answer is a function of x.

In the previous example, we integrated a function with respect to y and
ended up with a function of x. We can integrate this as well. This process is
known as iterated integration, or multiple integration.

Example 441 Integrating an integral
2 X
Evaluate/ (/ (5x°y 2 + 6y%) dy> dx.
1 1
SOLUTION We follow a standard “order of operations” and perform the

operations inside parentheses first (which is the integral evaluated in Example

Notes:



440.)

2/ px - 2 (T53y-2 gy X
3 a2 _ 2
/1 (/1 (5x°y +6y)dy) dx—/1 ({ —+ 3H1> dx
5

Note how the bounds of x were x = 1 to x = 2 and the final result was a num-
ber.

The previous example showed how we could perform something called an
iterated integral; we do not yet know why we would be interested in doing so
nor what the result, such as the number 89/8, means. Before we investigate
these questions, we offer some definitions.

Definition 100 Iterated Integration

Iterated integration is the process of repeatedly integrating the results
of previous integrations. Integrating one integral is denoted as follows.

Let a, b, ¢ and d be numbers and let g1(x), g2(x), h1(y) and hy(y) be
functions of x and y, respectively. Then:

d  rhy(y) d ha(y)
[ eaxar= [ [ s on]) o
¢ Jhi(y) c ha(y)
b rga(x) b g2 (X)
2. / / flx,y) dy dx = / / f(x,y) dy | dx.
a Jgi(x) Ja g1(x)

Again make note of the bounds of these iterated integrals.
d  rha(y)
With / / f(x,y) dx dy, x varies from hy(y) to h,(y), whereas y varies from
c Jh(y)

c to d. That is, the bounds of x are curves, the curves x = h;(y) and x = hy(y),
whereas the bounds of y are constants,y = candy = d. Itis useful to remember
that when setting up and evaluating such iterated integrals, we integrate “from

Notes:

13.1

Iterated Integrals and Area
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y=g2(x)

R
—%

a b

Figure 13.1: Calculating the area of a
plane region R with an iterated integral.

/ x

Figure 13.2: Calculating the area of a
plane region R with an iterated integral.
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curve to curve, then from point to point.”
We now begin to investigate why we are interested in iterated integrals and
what they mean.

Area of a plane region

Consider the plane region R bounded by a < x < band g1(x) <y < g,(x),
shown in Figure 13.1. We learned in Section 7.1 that the area of R is given by

b
/ (92(x) — g1(x)) dx.

We can also view the expression (ga(x) — g1(x)) as

92(x) 92(x)
(920 —g1(x)) = / ldy = / dy,
g1(x) g1(x)

meaning we can express the area of R as an iterated integral:

b b 92(x) b rga(x)
area of R = / (92(x) — g1(x)) dx = / / dy | dx = / / dy dx.
a a g91(%) a Jgi(x)

In short: a certain iterated integral can be viewed as giving the area of a
plane region.

A region R could also be defined by ¢ < y < dand hi(y) < x < hy(x), as
shown in Figure 13.2. Using a process similar to that above, we have

d rhy(y)
the areaof R = / / dxdy.
c Jhi(y)

We state this formally in a theorem.

Notes:



Theorem 117 Area of a plane region

1. Let R be a plane region bounded by a < x < band g;(x) <y <
g2(x), where g; and g, are continuous functions on [a, b]. The area

AofRis
b rga(x)
A:/ / dy dx.
a Jgi(x)

2. Let R be a plane region bounded by c <y < dand hi(y) < x <
h,(y), where h; and h; are continuous functions on [c, d]. The area

AofRis
d rha(y)
A:/ / dx dy.
c Jh(y)

The following examples should help us understand this theorem.

Example 442 Area of a rectangle
Find the area A of the rectangle with corners (—1,1) and (3, 3), as shown in
Figure 13.3.

SOLUTION Multiple integration is obviously overkill in this situation, but
we proceed to establish its use.

The region R is bounded by x = —1, x = 3,y = 1 and y = 3. Choosing to
integrate with respect to y first, we have

3 03 3 3 3 3
A:/ / 1dydx:/ (y ) dx:/ 2dx:2x’ =38.
—-1J1 -1 1 -1 -1

We could also integrate with respect to x first, giving:

3,3 3 3 3 3
AZ// 1dxdy=/ (X’ )dy=/4dy=4y‘ = 8.
1 J-1 1 -1 1 1

Clearly there are simpler ways to find this area, but it is interesting to note
that this method works.

Example 443 Area of a triangle
Find the area A of the triangle with vertices at (1, 1), (3,1) and (5, 5), as shown
in Figure 13.4.

SOLUTION The triangle is bounded by the lines as shown in the figure.
Choosing to integrate with respect to x first gives that x is bounded by x = y

Notes:

13.1 Iterated Integrals and Area

¢

iN

t t t t X
-1 1 2 3

Figure 13.3: Calculating the area of a rect-
angle with an iterated integral in Example
442.

Figure 13.4: Calculating the area of a tri-
angle with iterated integrals in Example
443,
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tox = %, while y is bounded by y = 1 to y = 5. (Recall that since x-values

increase from left to right, the leftmost curve, x =y, is the lower bound and the
rightmost curve, x = (y + 5)/2, is the upper bound.) The area is

We can also find the area by integrating with respect to y first. In this situa-
tion, though, we have two functions that act as the lower bound for the region
R,y = 1and y = 2x — 5. This requires us to use two iterated integrals. Note
how the x-bounds are different for each integral:

3 X 5 X
A:/ / 1dy dx + / / 1 dy dx
11 3 Joax—s
3 X 5 X
[ ] o )
1 1 3

:/13(x—1)dx + /35(—X+5)dx

dx

2x—5

=2 + 2
=4,

As expected, we get the same answer both ways.

Example 444 Area of a plane region
, Find the area of the region enclosed by y = 2x and y = x?, as shown in Figure
4+ 13.5.
3 ot SOLUTION Once again we’ll find the area of the region using both or-
| 37 ders of integration.
R Using dy dx:
Vv
1 P 2 2 1 2 4
) / / 1dydx:/(2x—x2)dx:(x2—fx3) =
: : x 0o Je 0 3 o 3
1 2
Figure 13.5: Calculating the area of a
plane region with iterated integrals in Ex-
ample 444, Notes:
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Using dx dy:

4oV 4 2.5, 1,\[* 4
vaxdy = [ (Vi-y/2)dy= (57 - 7 ) | =5
0 Jy/2 0 3 4 o 3

Changing Order of Integration

In each of the previous examples, we have been given a region R and found
the bounds needed to find the area of R using both orders of integration. We
integrated using both orders of operation to demonstrate their equality.

We now approach the skill of describing a region using both orders of inte-
gration from a different perspective. Instead of starting with a region and cre-
ating iterated integrals, we will start with an iterated integral and rewrite it in
the other integration order. To do so, we’ll need to understand the region over
which we are integrating.

The simplest of all cases is when both integrals are bound by constants. The
region described by these bounds is a rectangle (see Example 442), and so:

b d d b
/ / 1dydx:/ / 1dxdy.
a Cc c Ja

When the inner integral’s bounds are not constants, it is generally very useful
to sketch the bounds to determine what the region we are integrating over looks
like. From the sketch we can then rewrite the integral with the other order of
integration.

Examples will help us develop this skill.

Example 445 Changing the order of integration

6 rx/3
Rewrite the iterated integral/ / 1 dy dx with the order of integration dx dy.
o Jo

SOLUTION We need to use the bounds of integration to determine the
region we are integrating over.

The bounds tell us that y is bounded by 0 and x/3; x is bounded by 0 and 6.
We plot these four curves: y = 0,y = x/3, x = 0 and x = 6 to find the region
described by the bounds. Figure 13.6 shows these curves, indicating that R is a
triangle.

To change the order of integration, we need to consider the curves that
bound the x-values. We see that the lower bound is x = 3y and the upper
bound is x = 6. The bounds on y are 0 to 2. Thus we can rewrite the integral as

2 16
/ / 1dxdy.
0 3y

Notes:

13.1 Iterated Integrals and Area

%
4*\

Figure 13.6: Sketching the region R de-
scribed by the iterated integral in Exam-
ple 445.
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\ /2 4

Figure 13.7: Drawing the region deter-
mined by the bounds of integration in Ex-
ample 446.
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Example 446 Changing the order of integration
4 r(y+4)/2
Change the order of integration of / / 1dxdy.
0 Jy2/4
SOLUTION We sketch the region described by the bounds to help us

change the integration order. x is bounded below and above (i.e., to the left and
right) by x = y?/4 and x = (y + 4)/2 respectively, and y is bounded between 0
and 4. Graphing the previous curves, we find the region R to be that shown in
Figure 13.7.

To change the order of integration, we need to establish curves that bound
y. The figure makes it clear that there are two lower bounds for y: y = 0 on
0<x<2andy =2x—40on2 < x < 4. Thus we need two double integrals.
The upper bound for each is y = 24/x. Thus we have

4 r(r+4)/2 2 2V 4 2yx
/ / 1dxdy:/ / 1dydx+/ / 1 dy dx.
0 y2/4 0 0 2 2x—A4

This section has introduced a new concept, the iterated integral. We devel-
oped one application for iterated integration: area between curves. However,
this is not new, for we already know how to find areas bounded by curves.

In the next section we apply iterated integration to solve problems we cur-
rently do not know how to handle.

Notes:



Exercises 13.1

Terms and Concepts

1. When integrating fi(x, y) with respect to x, the constant of
integration Cis really which: C(x) or C(y)? What does this
mean?

2. Integrating an integral is called

3. When evaluating an iterated integral, we integrate from
to , then from to

4. One understanding of an iterated integral is that

b rga(x)
/ / dy dx gives the
a Jgi(x)

Problems

of a plane region.

In Exercises 5 — 10, evaluate the integral and subsequent it-
erated integral.

5
5 (a) / (6x* + 4xy — 3y*) dy

2

-2 5
(b)/ /(6x2+4xy73y2) dy dx
-3 2
6. (a)/ (2xcosy + sinx) dx

0

w/2 ™
(b) / / (2xcosy + sinx) dx dy
0 0

7. (a)/(xzy—y—i-z)dy

1

2 X
(b) / / (X'y —y +2) dy dx
o J1
yZ
8. (a) / (x—y) dx
y
1 y2
(b) / / (x —y) dxdy
—1Jy
y
9. (a) / (cosxsiny) dx
0
Ty
(b) / / (cosxsiny) dx dy
0 0
x 1
2 X 1
o | () o

In Exercises 11 - 16, a graph of a planar region R is given. Give
the iterated integrals, with both orders of integration dy dx
and dx dy, that give the area of R. Evaluate one the iterated
integrals to find the area.

11.

12.

13.

14.

15.

2 3
-1
2 |
y
3 €1
2 €1
R
14
1 2 3 4
y
5 €1
a4 |
3 €1
2 €1
1 €1
1 2 3 4
y
6 €1
|>
4 + %=
2 €1
2 8 10
21
—4 |
—6 |
y
1 €1
J
=
0.5
R
B
4Y~
—0.5 0.5
_0.5 L




8 €1
6 €1

W

v
16. ol 3
2 R />
z
|
t t X
1 2

In Exercises 17 — 22, iterated integrals are given that compute
the area of a region R in the x-y plane. Sketch the region R,
and give the iterated integral(s) that give the area of R with
the opposite order of integration.

2 ra—x?
17./ / dy dx
—2J0
1 p5-5x°
18. // dy dx
0 5—5x
2 2'\/4—y2
19./ / dx dy
—2J0
3 v/ 9—x2
20./ / dy dx
—3J—1/9—x2
1,y 4y
21. / / dxdy+/ / dx dy
0 -y 1 y—2
1 p(1—x)/2
22./ / dy dx
—1J(x=1)/2



13.2 Double Integration and Volume

The definite integral of f over [a, b], fabf(x) dx, was introduced as “the signed
area under the curve.” We approximated the value of this area by first subdivid-
ing [a, b] into n subintervals, where the i ™" subinterval has length Ax;, and letting
¢; be any value in the it subinterval. We formed rectangles that approximated
part of the area under the curve with width Ax;, height f(c;), and hence with
area f(c;) Ax;. Summing up all rectangles gave an approximation of the definite
integral, and Theorem 38 stated that

b
x)dx= lim ¢i) Ax;

/a S HAX\HOZf( A,

connecting sums of rectangles to area under the curve.

We use a similar approach in this section to find volume under a surface.

Let R be a closed, bounded region in the x-y plane and let z = f(x,y) be
a continuous function defined on R. We wish to find the signed volume under
the surface of f over R. (We use the term “signed volume” to denote that space
above the x-y plane, under f, will have a positive volume; space above f and
under the x-y plane will have a “negative” volume, similar to the notion of signed
area used before.)

We start by partitioning R into n rectangular subregions as shown in Figure
13.8(a). For simplicity’s sake, we let all widths be Ax and all heights be Ay.
Note that the sum of the areas of the rectangles is not equal to the area of R,
but rather is a close approximation. Arbitrarily number the rectangles 1 through
n, and pick a point (x;,y;) in the i ™" subregion.

The volume of the rectangular solid whose base is the it subregion and
whose height is f(x;, y;) is V; = f(x;, yi) AxAy. Such a solid is shown in Figure
13.8(b). Note how this rectangular solid only approximates the true volume un-
der the surface; part of the solid is above the surface and part is below.

For each subregion R; used to approximate R, create the rectangular solid
with base area AxAy and height f(x;, y;). The sum of all rectangular solids is

> i, vi) AxAy.

i=1

This approximates the signed volume under f over R. As we have done before,
to get a better approximation we can use more rectangles to approximate the
region R.

In general, each rectangle could have a different width Ax; and height Ay,
giving the it rectangle an area AA; = Ax; Ay, and the i™ rectangular solid a

Notes:

13.2 Double Integration and Volume
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Figure 13.8: Developing a method for
finding signed volume under a surface.
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volume of f(x;, y;) AA;. Let | AA| denote the length of the longest diagonal of all

rectangles in the subdivision of R; | AA| — 0 means each rectangle’s width and

height are both approaching 0. If fis a continuous function, as AA shrinks (and
n

hence n — 00) the summation Zf(x,, yi) AA; approximates the signed volume

i=1
better and better. This leads to a definition.

Definition 101 Double Integral, Signed Volume

Let z = f(x,y) be a continuous function defined over a closed region R
in the x-y plane. The signed volume V under f over R is denoted by the

double integral
R

Alternate notations for the double integral are
//f(x7 y) dA = //f(x,y) dxdy = //f(x,y) dy dx.
R R R

The definition above does not state how to find the signed volume, though
the notation offers a hint. We need the next two theorems to evaluate double
integrals to find volume.

Theorem 118 Double Integrals and Signed Volume

Let z = f(x,y) be a continuous function defined over a closed region R
in the x-y plane. Then the signed volume V under fover R is

V= //Rf(x7 y) dA = \Al/iarfl)o iz::f(x,-,y,-)AAi.

1

This theorem states that we can find the exact signed volume using a limit
of sums. The partition of the region R is not specified, so any partitioning where
the diagonal of each rectangle shrinks to 0 results in the same answer.

This does not offer a very satisfying way of computing area, though. Our
experience has shown that evaluating the limits of sums can be tedious. We
seek a more direct method.

Recall Theorem 54 in Section 7.2. This stated that if A(x) gives the cross-

sectional area of a solid at x, then fabA(x) dx gave the volume of that solid over

Notes:




[a, b].

Consider Figure 13.9, where a surface z = f(x, y) is drawn over a region R.
Fixing a particular x value, we can consider the area under f over R where x has
that fixed value. That area can be found with a definite integral, namely

g2(x)
A = [ sy o
g1(x)

Remember that though the integrand contains x, we are viewing x as fixed.
Also note that the bounds of integration are functions of x: the bounds depend
on the value of x.

As A(x) is a cross-sectional area function, we can find the signed volume V
under f by integrating it:

b b 92 (x) b rg)(x)
V= / A(x) dx = / / flx,y) dy | dx = / / f(x,y) dy dx.
a a \Jax) a Jai

This gives a concrete method for finding signed volume under a surface. We
could do a similar procedure where we started with y fixed, resulting in a iterated
integral with the order of integration dx dy. The following theorem states that
both methods give the same result, which is the value of the double integral. It
is such an important theorem it has a name associated with it.

Theorem 119 Fubini’s Theorem

Let R be a closed, bounded region in the x-y plane and let z = f(x, y) be
a continuous function on R.

1. If Ris bounded by a < x < band g1(x) <y < g,(x), where g;
and g, are continuous functions on [a, b], then

J[rocvyan= | b / (()) f(x,) dy dx.

2. If Ris bounded by ¢ < y < dand hi(y) < x < hy(y), where hy
and h;, are continuous functions on [c, d], then

d rha(y)
//f(x, y) dA = / / f(x,y) dx dy.
R c hi(y)

Notes:

13.2 Double Integration and Volume

Figure 13.9: Finding volume under a sur-
face by sweeping out a cross—sectional
area.
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Note that once again the bounds of integration follow the “curve to curve,
point to point” pattern discussed in the previous section. In fact, one of the
main points of the previous section is developing the skill of describing a region
R with the bounds of an iterated integral. Once this skill is developed, we can
use double integrals to compute many quantities, not just signed volume under
a surface.

Example 447 Evaluating a double integral
Letf(x,y) = xy+e’. Find the signed volume under f on the region R, which is the

rectangle with corners (3,1) and (4, 2) pictured in Figure 13.10, using Fubini’s

10 Theorem and both orders of integration.

SOLUTION We wish to evaluate ffR (xy + ey) dA. As R is a rectangle,
the bounds are easily describedas3 < x < 4and1 <y < 2.

Using the order dy dx:

4 2
//(xy+ey) dA:/ / (xy + €”) dy dx
R 3 J1

4 1 2
= / [xy2 + ey} dx

3 2 1

Figure 13.10: Finding the signed volume 473 )
under a surface in Example 447. = / (ZX + e — e) dx
3

— <Zx2 + (e* — e)x> 2

21 2
:Z—i-e — e~ 9.92.

1

Now we check the validity of Fubini’s Theorem by using the order dx dy:

2 4
//(xy+ey) dA:/ / (xy +€) dx dy
R 1 3
2 (11 4
:/ ([xzy—i—xe”] )dy
1 2 3
277
= y+e”> dy
/G
7 2
(#7+¢)

21 5
:T—&—e — e~ 9.92.

1

Both orders of integration return the same result, as expected.

Notes:
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Example 448 Evaluating a double integral
Evaluate [ [, (3xy — x* — y? + 6) dA, where R is the triangle bounded by x = 0,
y =0and x/2 +y = 1, as shown in Figure 13.11.

SOLUTION While it is not specified which order we are to use, we will
evaluate the double integral using both orders to help drive home the point that

it does not matter which order we use.

Using the order dy dx: The bounds on y go from “curve to curve,” i.e., 0 <
y <1 — x/2, and the bounds on x go from “point to point,” i.e., 0 < x < 2.

2 p—f41
//(3xy—x2—y2—|—6)dA:// (3xy—x2—y2—|—6)dydx
R 0o Jo
2 —3+1
37, 13 ’
= —Xy' —Xy— = 6
/0 (2 y y 3)/ + 6y .

dx
2
11 11 17
:/ X - T —x— =) dx
o \12° T 3 3

=— =56

Now lets consider the order dx dy. Here x goes from “curve to curve,” 0 <
x < 2 — 2y, and y goes from “point to point,” 0 <y < 1:

1 22
//(3xy—x2—y2+6)dA:/ / (3xy—x2—y2—|—6)dxdy
R o Jo
1 2-2y
3, 1, 2
= Xy — X — 6
/0 <2xy 3x Xy~ + 6x .

dy
1732 28
/ <y3 — 22y +2y + ) dy
o \ 3 3

1
(8, 2, , 28
<3y 3y+y+3y0
17
- =58
3

We obtained the same result using both orders of integration.

Note how in these two examples that the bounds of integration depend only
on R; the bounds of integration have nothing to do with f(x, y). This is an impor-
tant concept, so we include it as a Key Idea.

Notes:

13.2 Double Integration and Volume

Figure 13.11: Finding the signed volume

under the surface in Example 448.
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Figure 13.12: R is the union of two
nonoverlapping regions, R1 and R..

X <

S

,1i'
'
[y

Figure 13.13: Finding the signed volume
under a surface in Example 449.

740

Key Idea 56 Double Integration Bounds

When evaluating [, f(x,y) dA using an iterated integral, the bounds of
integration depend only on R. The surface f does not determine the
bounds of integration.

Before doing another example, we give some properties of double integrals.
Each should make sense if we view them in the context of finding signed volume
under a surface, over a region.

Theorem 120 Properties of Double Integrals

Let fand g be continuous functions over a closed, bounded plane region
R, and let ¢ be a constant.

1. //Rcf(x,y) dA = C//Rf(x,y) dA.
-/ / (fx) = alx.y) a4 = | / ey daz [ / o(x,y) dA

3. Iff(x,y) > 0onR, then //f(x7 y) dA > 0.
R

N

4. If f(x,y) > g(x,y) on R, then //Rf(x, y) dA > //R g(x,y) dA.

5. Let R be the union of two nonoverlapping regions, R = Ry |JR>
(see Figure 13.12). Then

//f;f(x, y) dA = / le(x, y) dA + / sz(x#) dA.

Example 449 Evaluating a double integral
Let f(x,y) = sinxcosy and R be the triangle with vertices (—1,0), (1,0) and
(0,1) (see Figure 13.13). Evaluate the double integral [ [ f(x,y) dA.

SOLUTION If we attempt to integrate using an iterated integral with the
order dy dx, note how there are two upper bounds on R meaning we’ll need to
use two iterated integrals. We can split the triangle into to regions along the

Notes:



y-axis, then use Theorem 120, part 5.
Instead, let’s use the order dx dy. The curves bounding xarey — 1 < x <
1 — y; the bounds on y are 0 < y < 1. This gives us:

1 1—y
//f(x, y) dA :/ / sinx cosy dx dy
R 0 Jy—1
1 1—y
:/ (—cosxcosy)‘ dy
0 y—1
1
= / cos y( —cos(1—y) +cos(y — 1))dy.
0

Recall that the cosine function is an even function; that is, cosx = cos(—x).
Therefore, from the last integral above, we have cos(y — 1) = cos(1 — y). Thus
the integrand simplifies to 0, and we have

//Rﬂx,y)dA:/:Ody
=0.

It turns out that over R, there is just as much volume above the x-y plane as be-
low (look again at Figure 13.13), giving a final signed volume of 0.

Example 450 Evaluating a double integral
Evaluate [[,(4—y) dA, where Ris the region bounded by the parabolas y* = 4x
and x2 = 4y, graphed in Figure 13.14.

SOLUTION Graphing each curve can help us find their points of inter-
section; analytically, the second equation tells us that y = x2/4. Substituting
this value in for y in the first equation gives us x* /16 = 4x. Solving for x:

— = 4x
16
x* —64x=0
x(x* —64) =0
x=0, 4.

Thus we’ve found analytically what was easy to approximate graphically: the
regions intersect at (0, 0) and (4, 4), as shown in Figure 13.14.

We now choose an order of integration: dy dx or dx dy? Either order works;
since the integrand does not contain x, choosing dx dy might be simpler — at
least, the first integral is very simple.

Notes:

13.2 Double Integration and Volume

Figure 13.14: Finding the volume under
the surface in Example 450.
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1 2

Figure 13.15: Determining the region R
determined by the bounds of integration
in Example 451.

742

Thus we have the following “curve to curve, point to point” bounds: y? /4 <
x<2y,and0 <y <4

//R(4—y)dA=/04/y:f(4—y)dxdy
/04 (x(4—y)) ™ dy
/04 ((zf—yzz)(zt—y)) dy:/04 (§_y2_2y3/z+8yl/z) dy

y2/4
VB a4y . 16y3/2 4
16

3 5 3

0

176 -
= — =11.73.
15

The signed volume under the surface fis about 11.7 cubic units.

In the previous section we practiced changing the order of integration of a
given iterated integral, where the region R was not explicitly given. Changing
the bounds of an integral is more than just an test of understanding. Rather,
there are cases where integrating in one order is really hard, if not impossible,
whereas integrating with the other order is feasible.

Example 451 Changing the order of integration

3 3
Rewrite the iterated integral / / e dx dy with the order dy dx. Comment
0 Jy

on the feasibility to evaluate each integral.

SOLUTION Once again we make a sketch of the region over which we
are integrating to facilitate changing the order. The bounds on x are from x =y
to x = 3; the bounds on y are from y = 0 to y = 3. These curves are sketched
in Figure 13.15, enclosing the region R.

To change the bounds, note that the curves bounding y are y = 0 up to
y = x; the triangle is enclosed between x = 0 and x = 3. Thus the new
bounds of integrationare 0 < y < xand 0 < x < 3, giving the iterated in-

3 X )
tegral/ / e dydx.
o Jo

How easy is it to evaluate each iterated integral? Consider the order of in-
tegrating dx dy, as given in the original problem. The first indefinite integral we
need to evaluate is f e dx; we have stated before (see Section 5.5) that this
integral cannot be evaluated in terms of elementary functions. We are stuck.

Changing the order of integration makes a big difference here. In the second

Notes:



iterated integral, we are faced with f e dy; integrating with respect to y gives
us ye"‘2 + C, and the first definite integral evaluates to

x 2 2
/ e dy =xe ™.
0
3 X 5 -3 5
/ / e ™ dydx:/ (xe”‘)dx.
0o Jo 0

This last integral is easy to evaluate with substitution, giving a final answer of
%(1 —e79) &~ 0.5. Figure 13.16 shows the surface over R.

In short, evaluating one iterated integral is impossible; the other iterated in-
tegral is relatively simple.

Thus

Definition 22 defines the average value of a single—variable function f(x) on
the interval [a, b] as

1 b
average value of f(x) on [a,b] = b / f(x) dx;
J— a a
that is, it is the “area under f over an interval divided by the length of the inter-
val” We make an analogous statement here: the average value of z = f(x, y)
over a region R is the volume under f over R divided by the area of R.

Definition 102 The Average Value of fon R

Let z = f(x, y) be a continuous function defined over a closed region R
in the x-y plane. The average value of fon R is

/ /R flx,y) dA
[l

average value of fon R =

Example 452 Finding average value of a function over a region R

Find the average value of f(x, y) = 4 — y over the region R, which is bounded by
the parabolas y> = 4x and x> = 4y. Note: this is the same function and region
as used in Example 450.

SOLUTION In Example 450 we found

4 25
[[senaa= [ [ @y axay= 2.
R 0 Jy2/4

Notes:

13.2 Double Integration and Volume

~
/

Figure 13.16: Showing the surface f de-
fined in Example 451 over its region R.
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Figure 13.17: Finding the average value of
fin Example 452.

Figure 13.18: Showing how an iterated in-
tegral used to find area also finds a certain
volume.

744

We find the area of R by computing [ [, dA:

4 2y 16
//dA:// dxdy = —.
R o Jy/a 3

Dividing the volume under the surface by the area gives the average value:

176/15 11
== =22
16/3 5

average value of fon R =

While the surface, as shown in Figure 13.17, covers z-values fromz = 0toz = 4,
the “average” z-value on Ris 2.2.

The previous section introduced the iterated integral in the context of find-
ing the area of plane regions. This section has extended our understanding of
iterated integrals; now we see they can be used to find the signed volume under
a surface.

This new understanding allows us to revisit what we did in the previous sec-
tion. Given a region R in the plane, we computed ffR 1 dA; again, our under-
standing at the time was that we were finding the area of R. However, we can
now view the function z = 1 as a surface, a flat surface with constant z-value of
1. The double integral ffR 1 dA finds the volume, under z = 1, over R, as shown
in Figure 13.18. Basic geometry tells us that if the base of a general right cylinder
has area A, its volume is A - h, where h is the height. In our case, the height is
1. We were “actually” computing the volume of a solid, though we interpreted
the number as an area.

The next section extends our abilities to find “volumes under surfaces.” Cur-
rently, some integrals are hard to compute because either the region R we are
integrating over is hard to define with rectangular curves, or the integrand it-
self is hard to deal with. Some of these problems can be solved by converting
everything into polar coordinates.

Notes:



Exercises 13.2

Terms and Concepts

1. Anintegral can be interpreted as giving the signed area over
an interval; a double integral can be interpreted as giving
the signed over region.

2. Explain why the following statement is false: “Fu-

gz(X)
bini’'s Theorem states that / / (x,y) dy dx =

g1(x)
g2(y)
/ / fx,y) dx dy”
a Jai(y)

3. Explain why if f(x,y) > 0 over a region R, then
S f(x,y) dA > 0.

4. 1f [[ f(x,y) dA = [[ g(x,y) dA, does this imply f(x, y)
g(x,y)?

Problems

In Exercises 5 — 10, evaluate the given iterated integral. Also
rewrite the integral using the other order of integration.

2 1
/ / (5 + 3) dx dy
1 Jo1 \Y
/2 T
. / / (sinxcosy) dxdy
—n/2J0
4 p—x/2+42
) / / (3x* —y+2) dydx
0 0
3 3
. / / (Xy — xy*) dxdy
1 Jy
L Vi
[/
0 J—VI—y
9y ,
10. / / (xy*) dxdy
o Jy/3

In Exercises 11 — 18, set up the iterated integrals, in both or-
ders, that evaluate the given double integral for the described
region R. Evaluate one of the iterated integrals.

11. //xzy dA, where R is bounded by y = y/xand y = x.

R

v

[e)]

~N

o]

©

+y+2) dxdy

12. //xzy dA, where R is bounded by y = ¥/xand y = x°.

R

13. //x2 — y2 dA, where R is the rectangle with corners
R
(-1,-1),(1,-1),(1,1) and (—1,1).

14. //yex dA, where R is bounded by x = 0, x = y? and
R

y=1.

15. // (6 —3x—2y) dA, where Ris bounded by x =0,y = 0
R
and 3x + 2y = 6.

16. // e’ dA, where R is bounded by y = Inx and

R
1

e—1

y= (x—1).

17. // (x*y—x) dA, where Ris the half of the circle x*+y* = 9

R
in the first and second quadrants.
18. // (4 — 3y) dA, where Ris bounded by y = 0,y = x/e
R
andy = Inx.

In Exercises 19 — 22, state why it is difficult/impossible to in-
tegrate the iterated integral in the given order of integration.
Change the order of integration and evaluate the new iter-
ated integral.

4 2 5
19. / / e dxdy
o Jy/2
\/T/2 \/ /2 ,
20. / / cos (y*) dy dx
0 X
1 1
21, / /
o Jy
29, 2 xtan? y
141n y
In Exercises 23 — 26, find the average value of f over the re-

gion R. Notice how these functions and regions are related to
the iterated integrals given in Exercises 5 — 8.

X2—|—y2

23. fx,y) = X + 3; Risthe rectangle with opposite corners

(—=1,1)and (1,2).

24. f(x,y) = sinxcosy; Risboundedbyx = 0,x = m,

y=—n/2andy =7/2.

25. f(x,y) = 3¢ —y + 2
y=2—x/2andx = 0.

R is bounded by the linesy = 0,

26. f(x,y) = X’y —xy’; Risboundedbyy = x,y = 1and

X =3.
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w/2

(b)

Figure 13.19: Approximating a region R
with portions of sectors of circles.
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13.3 Double Integration with Polar Coordinates

We have used iterated integrals to evaluate double integrals, which give the
signed volume under a surface, z = f(x,y), over a region R of the x-y plane.
The integrand is simply f(x, y), and the bounds of the integrals are determined
by the region R.

Some regions R are easy to describe using rectangular coordinates — that is,
with equations of the form y = f(x), x = a, etc. However, some regions are
easier to handle if we represent their boundaries with polar equations of the
formr = £(0), 0 = o, etc.

The basic form of the double integral is [ f(x,y) dA. We interpret this in-
tegral as follows: over the region R, sum up lots of products of heights (given by
f(xi,y:)) and areas (given by AA;). That is, dA represents “a little bit of area.” In
rectangular coordinates, we can describe a small rectangle as having area dx dy
or dy dx — the area of a rectangle is simply length xwidth — a small change in x
times a small change in y. Thus we replace dA in the double integral with dx dy
or dy dx.

Now consider representing a region R with polar coordinates. Consider Fig-
ure 13.19(a). Let R be the region in the first quadrant bounded by the curve.
We can approximate this region using the natural shape of polar coordinates:
portions of sectors of circles. In the figure, one such region is shaded, shown
again in part (b) of the figure.

As the area of a sector of a circle with radius r, subtended by an angle 6, is
A= %rzﬂ, we can find the area of the shaded region. The whole sector has area
%r%AQ, whereas the smaller, unshaded sector has area %@AG. The area of the
shaded region is the difference of these areas:

r,+nr

Afy= RA0— AAG = (3 - ) (46) = (r — ) A6,

Note that (r, + r1)/2 is just the average of the two radii.

To approximate the region R, we use many such subregions; doing so shrinks
the difference r, — r; between radii to 0 and shrinks the change in angle Af also
to 0. We represent these infinitesimal changes in radius and angle as dr and d®,
respectively. Finally, as dris small, r, = ry, and so (r, 4+ r1)/2 = r;. Thus, when
dr and d@ are small,

AA; =~ ridrdb.

Taking a limit, where the number of subregions goes to infinity and both
r, —ryand A6 go to 0, we get

dA = rdrdo.

So to evaluate [, f(x,y) dA, replace dA with r dr df. Convert the function
z = f(x, y) to a function with polar coordinates with the substitutions x = rcos 6,

Notes:
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y = rsin 6. Finally, find bounds g;(#) < r < g,(#) and o < 6 < (3 that describe
R. This is the key principle of this section, so we restate it here as a Key Idea.

Key Idea 57 Evaluating Double Integrals with Polar Coordinates

Let R be a plane region bounded by the polar equations a < § < S and
g1(0) <r < gy(0). Then

B rg2(0)
/ flx,y) dA = / / f(rcos,rsin6) rdrdo.
R « g

1(0)

Examples will help us understand this Key Idea.

Example 453 Evaluating a double integral with polar coordinates
Find the signed volume under the plane z = 4 — x — 2y over the circle with
equation x*> + y?> = 1.

SOLUTION The bounds of the integral are determined solely by the re-
gion R over which we are integrating. In this case, it is a circle with equation
x> +y? = 1. We need to find polar bounds for this region. It may help to review
Section 9.4; the bounds for this circleare0 < r<1land 0 < 6 < 27.

We replace f(x, y) with f(rcos 6, rsin §). That means we make the following
substitutions:

4—x—-2y = 4—rcosf —2rsind.

Finally, we replace dA in the double integral with r dr df. This gives the final
iterated integral, which we evaluate:

27 1
//f(x,y) dA:/ / (4 — rcos6 — 2rsin§)r dr df
R 0 0
2T 1
= / (4r — r*(cos 6 — 2sin6)) dr do
o Jo
2T 1 1
= / (Zr2 r*(cos @ — 2sin 0)>
0 3

2 1 °
:/ (2—(c059—25in9)) do
0 3

27

do

<20 = sm9+2c059)>

0
= 12.566.

The surface and region R are shown in Figure 13.20.

Notes:

Double Integration with Polar Coordinates

Y

Figure 13.20: Evaluating a double integral
with polar coordinates in Example 453.
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24 Example 454 Evaluating a double integral with polar coordinates
Find the volume under the paraboloid z = 4 — (x — 2)? — y? over the region
1 bounded by the circles (x — 1)2 +y* = 1and (x — 2)2 + y* = 4.

X SOLUTION At first glance, this seems like a very hard volume to com-
pute as the region R (shown in Figure 13.21(a)) has a hole in it, cutting out a
strange portion of the surface, as shown in part (b) of the figure. However, by
describing R in terms of polar equations, the volume is not very difficult to com-
pute. It is straightforward to show that the circle (x — 1)2 +y? = 1 has polar
equation r = 2 cos 6, and that the circle (x — 2)2 + y? = 4 has polar equation
r = 4 cos 0. Each of these circles is traced out on the interval 0 < § < 7. The
bounds onrare2cosf < r < 4cos¥b.

z Replacing x with rcos € in the integrand, along with replacing y with rsin 0,

- prepares us to evaluate the double integral [ f(x, y) dA:

//Rf(x,y) dA — /07r /2“056 (4— (rcos 6 — 2)2 - (rsin9)2>rdrd9

cos

T 4 cos b
:/ / (—r +4r* cosb) drdb
0o J2

cos 6
do

1 4
= / <r4 + —r’cos 0>
0 4 3 2cos @

— /Oﬂ ([—i(zss cos* ) + 2(64 cos* 9)} -

(a)

4cos b

1 4
Figure 13.21: Showing the region R and [_4(16 cos* ) + 5(8 cos* 9)}) do

surface used in Example 454. ™ a4
= / — cos* 6 db.
o 3

To integrate cos®* 6, rewrite it as cos? 8 cos? § and employ the power-reducing
formula twice:

cos* @ = cos® f cos® 0
= %(1 + cos(26)) % (1 + cos(26))
= %(1 + 2 cos(26) + cos*(26))
1 1
=3 (1 +2cos(26) + > (1+ cos(49)))

3 1 1
=3 + > cos(26) + 3 cos(40).

Notes:
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Picking up from where we left off above, we have

T 44
:/ — cos* 6 df
O 3

[ (3 L cos(20) + ;cosme)) 6
0

3 \8 2
44 ('3 1 1 i
= — [ 26+ =sin(20) + — sin(46
3 <80+4sm( 0)+32 sin( )) i

11
= —m =~ 17.279.
2

While this example was not trivial, the double integral would have been much
harder to evaluate had we used rectangular coordinates.

Example 455 Evaluating a double integral with polar coordinates
1
Find the volume under the surface f(x,y) = ————— over the sector of the
X2 +y?+1

circle with radius a centered at the origin in the first quadrant, as shown in Figure
13.22.

SOLUTION The region R we are integrating over is a circle with radius
a, restricted to the first quadrant. Thus, in polar, the boundson Rare0 < r < g,
0 < 6 < 7/2. The integrand is rewritten in polar as
1 N 1 1
X2+y2+1 " rlcos2@+risin?0+1 r2+1

We find the volume as follows:

T/2  ra r

1(In I + 1|)‘u do
2 0

I
S~
<
N

/2 1
:/ ~In(a*+1) do
O 2

= (2 In(a® + 1)6‘)
7

In(a® +1).

w/2

[EEY

0

Figure 13.22 clearly shows that f shrinks to near 0 very quickly. Regardless, as a
grows, so does the volume, without bound.

Notes:

Double Integration with Polar Coordinates

0.5 y

Figure 13.22: The surface and region R
used in Example 455.

Note: Previous work has shown that
there is finite area under ﬁ over the
entire x-axis. However, Example 455
shows that there is infinite volume under

1 .
e over the entire x-y plane.
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(b)

Figure 13.23: Finding the volume of the
solid shown here from two perspectives.
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Example 456 Finding the volume of a sphere
Find the volume of a sphere with radius a.

SOLUTION The sphere of radius a, centered at the origin, has equation
x> +y?+ 2% = @?; solving for z, we have z = /a2 — x2 — y2. This gives the upper
half of a sphere. We wish to find the volume under this top half, then double it
to find the total volume.

The region we need to integrate over is the circle of radius a, centered at the
origin. The polar bounds for this equationare0 <r <a,0 < 0 < 2.

All together, the volume of a sphere with radius a is:

2T a
2//\/02—x2—y2dA:2/ / /a2 — (rcos 8)2 — (rsin 6)2r dr df
R 0 0
2T a
:2/ / rv/a? —r? drdé.
0 0

We can evaluate this inner integral with substitution. With u = a* — r?, du =
—2r dr. The new bounds of integration are u(0) = a? to u(a) = 0. Thus we

have:
2T 0
:/ / (—ul/z)dudﬁ
0 a?
2T
(39
O 3
2T
/ (203) do
O 3
2 2T
(30)
3
4

= —7a°.
3

Generally, the formula for the volume of a sphere with radius ris given as 4/37rr3;
we have justified this formula with our calculation.

0
do

a?

0

Example 457 Finding the volume of a solid

A sculptor wants to make a solid bronze cast of the solid shown in Figure 13.23,
where the base of the solid has boundary, in polar coordinates, r = cos(36),
and the top is defined by the plane z = 1 — x + 0.1y. Find the volume of the
solid.

SOLUTION From the outset, we should recognize that knowing how to
set up this problem is probably more important than knowing how to compute

Notes:



13.3 Double Integration with Polar Coordinates

the integrals. The iterated integral to come is not “hard” to evaluate, though it is
long, requiring lots of algebra. Once the proper iterated integral is determined,
one can use readily—available technology to help compute the final answer.

The region R that we are integrating over is bound by 0 < r < cos(36),
for 0 < 6 < 7 (note that this rose curve is traced out on the interval [0, 7], not
[0, 27]). This gives us our bounds of integration. The integrandisz = 1—x-+0.1y;
converting to polar, we have that the volume Vis:

m  pcos(30)
V= //f(X,y) dA = / / (1—rcosf +0.1rsin6)r dr dé.
R o Jo

Distributing the r, the inner integral is easy to evaluate, leading to
71 1 0.1
/ <2 cos?(36) — 3 cos®(36) cos 6 + 5 cos®(36) sin 0) de.
0

This integral takes time to compute by hand; it is rather long and cumbersome.
The powers of cosine need to be reduced, and products like cos(36) cos 6 need
to be turned to sums using the Product To Sum formulas in the back cover of
this text.

For instance, we rewrite 2 cos?(36) as (1 + cos(66)). We can also rewrite
1 cos®(36) cos 6 as:

! 1 11
3 cos’(30) cos 0 = 3 cos?(36) cos(36) cos § = gw

This last expression still needs simplification, but eventually all terms can be re-
duced to the form a cos(mé) or a sin(m@) for various values of a and m.

We forgo the algebra and recommend the reader employ technology, such
as WolframAlpha®, to compute the numeric answer. Such technology gives:

m  pcos(30) -
/ / (1—rcosf +0.1rsin6)rdrdf = " ~ 0.785u°.
o Jo

Since the units were not specified, we leave the result as almost 0.8 cubic units
(meters, feet, etc.) Should the artist want to scale the piece uniformly, so that
each rose petal had a length other than 1, she should keep in mind that scaling
by a factor of k scales the volume by a factor of k3.

We have used iterated integrals to find areas of plane regions and volumes
under surfaces. Just as a single integral can be used to compute much more than
“area under the curve,” iterated integrals can be used to compute much more
than we have thus far seen. The next two sections show two, among many,
applications of iterated integrals.

Notes:

(cos(46)+cos(26)).

751



Exercises 13.3

Terms and Concepts

1. When evaluating [[,f(x,y) dA using polar coordinates,
f(x,y) is replaced with and dA is replaced with

2. Why would one be interested in evaluating a double inte-
gral with polar coordinates?

Problems

In Exercises 3 — 10, a function f(x, y) is given and a region R of
the x-y plane is described. Set up and evaluate ffRf(x, y) dA
using polar coordinates.

3. f(x,y) = 3x — y + 4; Ris the region enclosed by the circle
X4y =1.

4. f(x,y) = 4x + 4y; R is the region enclosed by the circle
X+ y2 =4,

5. f(x,y) = 8 — y; Ris the region enclosed by the circles with
polar equations r = cos# and r = 3 cos 6.

6. f(x,y) = 4; Ris the region enclosed by the petal of the rose
curve r = sin(260) in the first quadrant.

7. f(x,y) = In (X + y?); Ris the annulus enclosed by the cir-
clesx®* +y* =1landx® + y* = 4.

8. flx,y)=1— x*> — y%; Ris the region enclosed by the circle
L4y =1

9. f(x,y) = x* — y% R'is the region enclosed by the circle
x*> + y* = 36 in the first and fourth quadrants.

10. f(x,y) = (x —y)/(x +y); Ris the reglon enclosed by the
linesy = x, y = 0 and the circle x¥* + y*> = 1 in the first
quadrant.

In Exercises 11 — 14, an iterated integral in rectangular coor-
dinates is given. Rewrite the integral using polar coordinates.
25— x2

11. / / VX2 + y?2 dy dx

25— xz

2y —x) dx dy

12. /_44/_()@(
13. //

S
[

Hint: draw the region of each integral carefully and see how
they all connect.

+y dx dy

x+5 dydx+/ /

x—|—5 dydx

x+5 dy dx+

In Exercises 15 — 16, special double integrals are presented
that are especially well suited for evaluation in polar coordi-
nates.

15. Consider //e‘<x2+y2) dA.
R

(a) Why is this integral difficult to evaluate in rectangular
coordinates, regardless of the region R?

(b) Let R be the region bounded by the circle of radius a
centered at the origin. Evaluate the double integral
using polar coordinates.

(c) Take the limit of your answer from (b), as a — .
What does this imply about the volume under the
2 2
surface of e~ )?
16. The surface of a right circular cone with height h and
base radius a can be described by the equation f(x,y) =

2
h —hy/ — + =, where the tip of the cone lies at (0,0, h)
and the circular base lies in the x-y plane, centered at the
origin.

Confirm that the volume of a right circular cone with

1
height h and base radius g is V = gwazh by evaluating

/ f(x,y) dA in polar coordinates.
R



13.4 Center of Mass

We have used iterated integrals to find areas of plane regions and signed vol-
umes under surfaces. A brief recap of these uses will be useful in this section as
we apply iterated integrals to compute the mass and center of mass of planar
regions.

To find the area of a planar region, we evaluated the double integral ffR dA.
That is, summing up the areas of lots of little subregions of R gave us the total
area. Informally, we think of ffR dA as meaning “sum up lots of little areas over
R”

To find the signed volume under a surface, we evaluated the double integral
JJof(x,y) dA. Recall that the “dA” is not just a “bookend” at the end of an in-
tegral; rather, it is multiplied by f(x, y). We regard f(x, y) as giving a height, and
dA still giving an area: f(x, y) dA gives a volume. Thus, informally, ffRf(x, y) dA
means “sum up lots of little volumes over R.”

We now extend these ideas to other contexts.

Mass and Weight

Consider a thin sheet of material with constant thickness and finite area.
Mathematicians (and physicists and engineers) call such a sheet a lamina. So
consider a lamina, as shown in Figure 13.24(a), with the shape of some planar
region R, as shown in part (b).

We can write a simple double integral that represents the mass of the lam-
ina: ffR dm, where “dm” means “a little mass.” That is, the double integral
states the total mass of the lamina can be found by “summing up lots of little
masses over R.”

To evaluate this double integral, partition R into n subregions as we have
done in the past. The i™" subregion has area AA;. A fundamental property of
mass is that “mass=densityxarea.” If the lamina has a constant density §, then
the mass of this it subregion is Am; = §AA,. That is, we can compute a small
amount of mass by multiplying a small amount of area by the density.

If density is variable, with density function § = §(x, y), then we can approx-
imate the mass of the i*" subregion of R by multiplying AA; by §(x;, y;), where
(x;,yi) is a point in that subregion. That is, for a small enough subregion of R,
the density across that region is almost constant.

The total mass M of the lamina is approximately the sum of approximate
masses of subregions:

M =~ i Am,- = Xn:é(x;,y;)AA;.
i=1 i=1

Notes:

13.4 Center of Mass

(a)

y=hf(x)

ol »
v =

®

(b)

Figure 13.24: lllustrating the concept of a
lamina.

Note: Mass and weight are different
measures. Since they are scalar multi-
ples of each other, it is often easy to
treat them as the same measure. In this
section we effectively treat them as the
same, as our technique for finding mass is
the same as for finding weight. The den-
sity functions used will simply have differ-
ent units.
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0.5

0.5 1

Figure 13.25: A region R representing a
lamina in Example 458.
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Taking the limit as the size of the subregions shrinks to 0 gives us the actual
mass; that is, integrating d(x, y) dA over R gives the mass of the lamina.

Definition 103 Mass of a Lamina with Vairable Density

Let 6(x, y) be a continuous density function of a lamina corresponding to
a plane region R. The mass M of the lamina is

massM://R dm://R(S(x,y)dA.

Example 458 Finding the mass of a lamina with constant density
Find the mass of a square lamina, with side length 1, with a density of 6 =
3gm/cm?.

SOLUTION We represent the lamina with a square region in the plane
as shown in Figure 13.25. As the density is constant, it does not matter where
we place the square.

Following Definition 103, the mass M of the lamina is

1 1 1 M
M://3dA://3dxdy:3// dx dy = 3gm.
R o Jo 0o Jo

This is all very straightforward; note that all we really did was find the area
of the lamina and multiply it by the constant density of 3gm/cm?.

Example 459 Finding the mass of a lamina with variable density

Find the mass of a square lamina, represented by the unit square with lower
lefthand corner at the origin (see Figure 13.25), with variable density §(x,y) =
(x +y + 2)gm/cm?.

SOLUTION The variable density §, in this example, is very uniform, giv-
ing a density of 3 in the center of the square and changing linearly. A graph
of d(x,y) can be seen in Figure 13.26; notice how “same amount” of density is
above z = 3 as below. We’ll comment on the significance of this momentarily.

The mass M is found by integrating d(x, y) over R. The order of integration

Notes:



is not important; we choose dx dy arbitrarily. Thus:

M= //x+y+2 dA = //x+y+2 dx dy
:/ (x+x(y+2))
o \2
1 5 )
= Sty dy
4G
_ (5,12
Y

= 3gm.

dy
0

0

It turns out that since since the density of the lamina is so uniformly distributed
“above and below” z = 3 that the mass of the lamina is the same as if it had a
constant density of 3.

Example 460 Finding the weight of a lamina with variable density

Find the weight of the lamina represented by the circle with radius 2ft, centered
at the origin, with density function 6(x,y) = (x* + y* + 1)Ib/ft>. Compare this
to the weight of the same lamina with density 5(x, y) = (21/x% + y2 + 1)Ib/ft?.

SOLUTION A direct application of Definition 103 states that the weight
of the lamina is ffR d(x,y) dA. Since our lamina is in the shape of a circle, it
makes sense to approach the double integral using polar coordinates.

The density function 6(x,y) = x* + y*> + 1 becomes §(r, ) = (rcos6)?
(rsin@)? 4+ 1 = r* + 1. Thecircle is bounded by 0 < r < 2and 0 < 4 < 27.

Thus the weight W is:
2
W= / / + 1)rdrdf

%)
/02ﬂ(6)d9

= 127 ~ 37.70lb.

do
0

Now compare this with the density function §(x,y) = 21/x% + y2 + 1. Con-
verting this to polar coordinates gives §(r, ) = 2/(rcos 0)2 + (rsin )2 +1 =

Notes:

13.4 Center of Mass

N

4
143

2 /x—\'y‘\'2

y

1
- 0.5
0.5 X
1

Figure 13.26: Graphing the density func-
tion in Example 459.
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756

2r 4+ 1. Thus the weight W is:

27 2
W:/ / (2r+V)rdrdo
o Jo

27 r3 1r2 2
:/0 (57 + 5 @0

27
22
-], (5) e
o 3
44
= ?ﬂ‘ =~ 46.08lb.

One would expect different density functions to return different weights, as we
have here. The density functions were chosen, though, to be similar: each gives
a density of 1 at the origin and a density of 5 at the outside edge of the circle,
as seen in Figure 13.27.

z

5[ .

—> N

Figure 13.27: Graphing the density functions in Example 460. In (a) is the density function
Jx,y) =X +y*+1;in(b)isd(x,y) = 24/ + y* + 1.

Notice how x2 + y?> + 1 < 24/x2 + y2 4 1 over the circle; this results in less
weight.

Plotting the density functions can be useful as our understanding of mass
can be related to our understanding of “volume under a surface.” We inter-
preted ffRf(x, y) dA as giving the volume under f over R; we can understand
JJz9(x,y) dA in the same way. The “volume” under § over R is actually mass;

Notes:



by compressing the “volume” under § onto the x-y plane, we get “more mass”
in some areas than others —i.e., areas of greater density.

Knowing the mass of a lamina is one of several important measures. Another
is the center of mass, which we discuss next.

Center of Mass

Consider a disk of radius 1 with uniform density. It is common knowledge
that the disk will balance on a point if the point is placed at the center of the
disk. What if the disk does not have a uniform density? Through trial-and-error,
we should still be able to find a spot on the disk at which the disk will balance
on a point. This balance point is referred to as the center of mass, or center of
gravity. It is though all the mass is “centered” there. In fact, if the disk has a
mass of 3kg, the disk will behave physically as though it were a point-mass of
3kg located at its center of mass. For instance, the disk will naturally spin with
an axis through its center of mass (which is why it is important to “balance” the
tires of your car: if they are “out of balance”, their center of mass will be outside
of the axle and it will shake terribly).

We find the center of mass based on the principle of a weighted average.
Consider a college class in which your homework average is 90%, your test av-
erage is 73%, and your final exam grade is an 85%. Experience tells us that our
final grade is not the average of these three grades: that is, it is not:

0.9+40.73 +0.85
3

~ 0.837 = 83.7%.

That is, you are probably not pulling a B in the course. Rather, your grades are
weighted. Let’s say the homework is worth 10% of the grade, tests are 60% and
the exam is 30%. Then your final grade is:

(0.1)(0.9) + (0.6)(0.73) + (0.3)(0.85) = 0.783 = 78.3%.

Each grade is multiplied by a weight.

In general, givenvalues x1, x5, . . ., x, and weights wy, ws, . . ., wp, the weighted

average of the n values is
n n
Z WiX; Z w;i.
i=1 i=1

In the grading example above, the sum of the weights 0.1, 0.6 and 0.3 is 1,
so we don’t see the division by the sum of weights in that instance.

How this relates to center of mass is given in the following theorem.

Notes:

13.4 Center of Mass
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° : y o
-1 0 1 2 3
(a)
X
—. 2 + O 4 X
-1 0 1 2

(b)

Figure 13.28: |Illustrating point masses
along a thin rod and the center of mass.
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Theorem 121 Center of Mass of Discrete Linear System

Let point masses m;, m,, ..., m, be distributed along the x-axis at loca-
tions x1, Xa, . .., X,, respectively. The center of mass x of the system is
located at

n n
X = E miX; E m;.
i=1 i=1

Example 461 Finding the center of mass of a discrete linear system

1. Point masses of 2gm are located at x = —1, x = 2 and x = 3 are con-
nected by a thin rod of negligible weight. Find the center of mass of the
system.

2. Point masses of 10gm, 2gm and 1gm are located at x = —1, x = 2 and
x = 3, respectively, are connected by a thin rod of negligible weight. Find
the center of mass of the system.

SOLUTION
1. Following Theorem 121, we compute the center of mass as:

2(-1)+2(2)+2(3) 4 _13
2+2+2 T3 T

Y:

So the system would balance on a point placed at x = 4/3, as illustrated
in Figure 13.28(a).

2. Again following Theorem 121, we find:

10(-1) +2(2) +1(3) -3 _ 0.23
10+2+1 13 T
Placing a large weight at the left hand side of the system moves the center

of mass left, as shown in Figure 13.28(b).

}:

In a discrete system (i.e., mass is located at individual points, not along a
continuum) we find the center of mass by dividing the mass into a moment of
the system. In general, a moment is a weighted measure of distance from a par-
ticular point or line. In the case described by Theorem 121, we are finding a
weighted measure of distances from the y-axis, so we refer to this as the mo-
ment about the y-axis, represented by M,. Letting M be the total mass of the
system, we have X = M, /M.

Notes:



We can extend the concept of the center of mass of discrete points along a
line to the center of mass of discrete points in the plane rather easily. To do so,
we define some terms then give a theorem.

Definition 104 Moments about the x- and y- Axes.

Let point masses m;, m,,...,m, be located at points (x1,y1),
(X2,¥2) - - -, (Xn, Vn), respectively, in the x-y plane.

n
1. The moment about the y-axis, M,, is M, = Z mix;.
i=1

n
2. The moment about the x-axis, M,, is M, = Z m;y;.
i=1

One can think that these definitions are “backwards” as M, sums up “x” dis-
tances. But remember, “x” distances are measurements of distance from the
y-axis, hence defining the moment about the y-axis.

We now define the center of mass of discrete points in the plane.

Theorem 122 Center of Mass of Discrete Planar System

Let point masses mj, m,...,m, be located at points (x1,y1),

n
(X2,¥2) - - -, (Xn, Vn), respectively, in the x-y plane, and let M = Z m.
i=1
The center of mass of the system is at (x,¥), where

M, M
X=-2 and y=—.
M M
Example 462 Finding the center of mass of a discrete planar system

Let point masses of 1kg, 2kg and 5kg be located at points (2,0), (1,1) and (3,1),
respectively, and are connected by thin rods of negligible weight. Find the center
of mass of the system.

SOLUTION We follow Theorem 122 and Definition 104 to find M, M,
and M,:

M=1+2+5=8kg.

Notes:

13.4 Center of Mass

Figure 13.29: lllustrating the center of
mass of a discrete planar system in Exam-
ple 462.
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n n
My = E my; M, = E miX;
i=1 i=1

=1(0) + 2(1) + 5(1) =1(2) +2(1) +5(3)
=7. = 19.

M, M 19 7
Thusthe centerof massis (X,y) = [ —, — | = [ =, = | = (2.375,0.875),
M M 88
illustrated in Figure 13.29.

We finally arrive at our true goal of this section: finding the center of mass of
a lamina with variable density. While the above measurement of center of mass
is interesting, it does not directly answer more realistic situations where we need
to find the center of mass of a contiguous region. However, understanding the
discrete case allows us to approximate the center of mass of a planar lamina;
using calculus, we can refine the approximation to an exact value.

We begin by representing a planar lamina with a region R in the x-y plane
with density function §(x,y). Partition R into n subdivisions, each with area
AA;. As done before, we can approximate the mass of the i subregion with
§(xi,yi) AA;, where (x;,y;) is a point inside the i*" subregion. We can approxi-
mate the moment of this subregion about the y-axis with x;0(x;, y;) AA; — that is,
by multiplying the approximate mass of the region by its approximate distance
from the y-axis. Similarly, we can approximate the moment about the x-axis
with y;d(x;, y;) AA;. By summing over all subregions, we have:

n
mass: M =~ Z 0(x;, i) AA;  (as seen before)

i=1

n
moment about the x-axis: M, ~ Z Vi0 (X;, i) AA;
i=1
n
moment about the y-axis: M, ~ Zx,-é(x,—, i) AA;
i=1

By taking limits, where size of each subregion shrinks to 0 in both the x and
y directions, we arrive at the double integrals given in the following theorem.

Notes:

760



13.4 Center of Mass

Theorem 123 Center of Mass of a Planar Lamina, Moments

Let a planar lamina be represented by a region R in the x-y plane with
density function §(x, y).

1. mass: M = // d(x,y) dA
R

2. moment about the x-axis: My, = // yo(x,y) dA
R

3. moment about the y-axis: M, = //x5(x, y) dA
R

4. The center of mass of the lamina is

= ()

We start our practice of finding centers of mass by revisiting some of the
lamina used previously in this section when finding mass. We will mostly just
set up the integrals needed to compute M, M, and M, and leave the details of
the integration to the reader.

Example 463 Finding the center of mass of a lamina 1
Find the center mass of a square lamina, with side length 1, with a density of
§ = 3gm/cm?. (Note: this is the lamina from Example 458.)

SOLUTION We represent the lamina with a square region in the plane 0.5 f
as shown in Figure 13.30 as done previously.
Following Theorem 123, we find M, M, and M,:

1 1 ;
M://3dA:/ / 3 dx dy = 3gm. 03 !
R 0 0

1,1 Figure 13.30: A region R representing a
M, = // 3ydA = / / 3ydxdy=3/2=15. lamina in Example 458.
R 0 Jo

1 41
My://3di:/ / 3xdxdy =3/2=15.
R o Jo

M, M,
M’ M

) = (1.5/3,1.5/3) = (0.5,0.5).

Thus the center of mass is (X,y) = (

Notes:
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This is what we should have expected: the center of mass of a square with con-
stant density is the center of the square.

Example 464 Finding the center of mass of a lamina

Find the center of mass of a square lamina, represented by the unit square
with lower lefthand corner at the origin (see Figure 13.30), with variable den-
sity (x,y) = (x + y + 2)gm/cm?. (Note: this is the lamina from Example 459.)

SOLUTION We follow Theorem 123, to find M, M, and M,:

1 1
M://(x+y+2)dA:/ /(x+y+2)dxdy:3gm.
J JR 0 0
1 1 19
MX://y(x—l—y+2)dA:/ / y(x+y+2)dxdy:5.
19
M, // x(x+y+2)d :// x(x+y+2) dxdy——z.
M

M 19 19
Thus the center of mass is (X, y) = ﬁy IV;() (36 36) ~ (0.528,0.528).

While the mass of this lamina is the same as the lamina in the previous example,
the greater density found with greater x and y values pulls the center of mass
from the center slightly towards the upper righthand corner.

Example 465 Finding the center of mass of a lamina

Find the center of mass of the lamina represented by the circle with radius 2ft,
centered at the origin, with density function 6(x, y) = (x* +y? +1)Ib/ft?. (Note:
this is one of the lamina used in Example 460.)

SOLUTION As done in Example 460, it is best to describe R using polar
coordinates. Thus when we compute M,, we will integrate not xJ(x,y) = x(x2 +
y? + 1), but rather (rcos6)d(rcos 6, rsin6) = (rcos6)(r> + 1). We compute
M, My and M,:

27 2
M = / / (P +1)rdrdf = 127 ~ 37.7Ib.

2T 2

M, = (rsin®)(r* 4+ 1)rdrdo = 0.
o Jo

M, = / (rcos 6)(r* 4+ 1)r dr df = 0.
o Jo

Notes:



Since R and the density of R are both symmetric about the x and y axes, it should
come as no big surprise that the moments about each axis is 0. Thus the center
of mass is (x,y) = (0,0).

Example 466 Finding the center of mass of a lamina

Find the center of mass of the lamina represented by the region R shown in Fig-
ure 13.31, half an annulus with outer radius 6 and inner radius 5, with constant
density 2lb/ft2.

SOLUTION Once again it will be useful to represent R in polar coor-
dinates. Using the description of R and/or the illustration, we see that R is
bounded by 1 < r < 2and0 < # < . As the lamina is symmetric about
the y-axis, we should expect M, = 0. We compute M, M, and M,:

™ 6
M = / / (2)rdr df = 117lb.
0o Js

T 6
364
M, = / / (rsin0)(2)rdrdd = EN 121.33.
o Js

m 6
M, = / / (rcos)(2)rdrdd = 0.
o Js

Thus the center of mass is (x,y) = (0,32%) ~ (0,3.51). The center of mass is

indicated in Figure 13.31; note how it lies outside of R!

This section has shown us another use for iterated integrals beyond finding
area or signed volume under the curve. While there are many uses for iterated
integrals, we give one more application in the following section: computing sur-
face area.

Notes:

13.4 Center of Mass

Figure 13.31: lllustrating the region R in

Example 466.
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Exercises 13.4

Terms and Concepts

1. Why is it easy to use “mass” and “weight” interchangeably,
even though they are different measures?

2. Given a point (x, y), the value of x is a measure of distance
from the -axis.

3. We can think of [f, dm as meaning “sum up lots of

4. What is a “discrete planar system?”

5. Why does M, use [[, yd(x,y) dAinstead of [ [, x3(x, y) dA;
that is, why do we use “y” and not “x”?

6. Describe a situation where the center of mass of a lamina
does not lie within the region of the lamina itself.

Problems

In Exercises 7 — 10, point masses are given along a line or in
the plane. Find the center of mass X or (x, y), as appropriate.
(All masses are in grams and distances are in cm.)

7. m=4atx=1, my=3atx=3;, m3=5atx=10

8. my=2atx=-3 m=2atx=—1;
ms=3atx=0; my=3atx=7

9. my =2at(-2,-2);
ms; =20at (0,4)

my, =2at(2,-2);

10. my =1lat(—1,-1); my;=2at(—1,1);
mz =2at(1,1); ms=1lat(l,—1)

In Exercises 11 — 18, find the mass/weight of the lamina de-
scribed by the region R in the plane and its density function

5(x,y)-

11. R is the rectangle with corners (1, —3), (1,2), (7
(7,-3); 6(x, y) = 5gm/cm?

,2) and

12. R is the rectangle with corners (1, —3), (1,2), (7,2) and
(7,-3); 0(x,y) = (x+y*)gm/cm’

13. R is the triangle with corners (—1,0), (1,0), and (0,1);
5(x,y) = 2lb/in?

14. R is the triangle with corners (0,0), (1,0), and (0,1);
5(x,y) = (x* +y* + 1)Ib/in?

15. Ris the circle centered at the origin with radius 2; d(x,y) =
(x +y + 4)kg/m?

16. R is the circle sector bounded by x* + y*> = 25 in the first
quadrant; 6(x,y) = (v/x2 + y2 + 1)kg/m?

17. Risthe annulus in the first and second quadrants bounded
by X* +y* = 9and x* + y* = 36; §(x,y) = 4lb/ft?

18. Risthe annulus in the first and second quadrants bounded
by x* +y* = 9and x* +y* = 36; 3(x,y) = /X% + y2Ib/ft?

In Exercises 19 — 26, find the center of mass of the lamina de-
scribed by the region R in the plane and its density function
5(x,y)-

Note: these are the same lamina as in Exercises 11 to 18.

19. R is the rectangle with corners (1, —3), (1,2), (7,2) and
(7,-3); 6(x, y) = 5gm/cm?

20. R is the rectangle with corners (1, —3), (1,2), (7
(7,-3); 6(x,y) = (x+ y*)gm/em’

21. R is the triangle with corners (—1,0), (1,0), and (0,1);
3(x,y) = 2lb/in?

22. R is the triangle with corners (0,0), (1,0), and (0,1);
3(x,y) = (x* +y* + 1)Ib/in?

,2) and

23. Risthe circle centered at the origin with radius 2; 6(x,y) =
(x +y+ 4)kg/m?

24. Ris the circle sector bounded by x> 4+ y* = 25 in the first
quadrant; 6(x,y) = (VX2 + y2 + 1)kg/m?

25. Risthe annulus in the first and second quadrants bounded
by x* 4+ y* = 9and x* 4+ y* = 36; §(x,y) = 4lb/ft?

26. Risthe annulus in the first and second quadrants bounded
by x2 4+ y? = 9and x* +y? = 36; 6(x,y) = VX + yZIb/ft?

The moment of inertia | is a measure of the tendency of a lam-
ina to resist rotating about an axis or continue to rotate about
an axis. I, is the moment of inertia about the x-axis, /y is the
moment of inertia about the x-axis, and /o is the moment of
inertia about the origin. These are computed as follows:

. IX://yde
R

o Iy://xzdm
R

. lo://(xz—i—yz)dm
R

In Exercises 27 — 30, a lamina corresponding to a planar re-
gion R is given with a mass of 16 units. For each, compute /,
Iy and /o.

27. Ris the 4 x 4 square with corners at (—2, —2) and (2, 2)
with density d(x,y) = 1.

28. Risthe 8 x 2 rectangle with corners at (—4, —1) and (4,1)
with density d(x,y) = 1.

29. Risthe 4 X 2 rectangle with corners at (—2, —1) and (2, 1)
with density d(x, y) = 2.

30. Risthe circle with radius 2 centered at the origin with den-
sity d(x,y) = 4/m.



13.5 Surface Area

In Section 7.4 we used definite integrals to compute the arc length of plane
curves of the form y = f(x). We later extended these ideas to compute the
arc length of plane curves defined by parametric or polar equations.

The natural extension of the concept of “arc length over an interva
faces is “surface area over a region.”

Consider the surface z = f(x, y) over a region R in the x-y plane, shown in
Figure 13.32(a). Because of the domed shape of the surface, the surface area will
be greater than that of the area of the region R. We can find this area using the
same basic technique we have used over and over: we’ll make an approximation,
then using limits, we’ll refine the approximation to the exact value.

As done to find the volume under a surface or the mass of a lamina, we
subdivide R into n subregions. Here we subdivide R into rectangles, as shown in
the figure. One such subregion is outlined in the figure, where the rectangle has
dimensions Ax; and Ay;, along with its corresponding region on the surface.

In part (b) of the figure, we zoom in on this portion of the surface. When Ax;
and Ay; are small, the function is approximated well by the tangent plane at any
point (x;, y;) in this subregion, which is graphed in part (b). In fact, the tangent
plane approximates the function so well that in this figure, it is virtually indis-
tinguishable from the surface itself! Therefore we can approximate the surface
area §; of this region of the surface with the area T; of the corresponding portion
of the tangent plane.

This portion of the tangent plane is a parallelogram, defined by sides 4 and
V, as shown. One of the applications of the cross product from Section 10.4 is
that the area of this parallelogram is || & x V' ||. Once we can determine & and v,
we can determine the area.

U is tangent to the surface in the direction of x, therefore, from Section 12.7,
is parallel to (1,0, f(x;, ¥)). The x-displacement of & is Ax;, so we know that
= Ax; (1,0, fc(xi,yi)). Similar logic shows that vV = Ay; (0, 1, f,(x;, ¥i)). Thus:

|ll

to sur-

i
u

surface area S; ~ area of T;
=[ux V]|
= HAXi <1a O7fX(Xiayi)> X Ayl <07 1afy(Xfayf)> H
= \/1 + fi(Xi, vi)? + £, (xi, i) 2 Axi Ay;.

Note that Ax;Ay; = AA,, the area of the ith subregion.
Summing up all n of the approximations to the surface area gives

n
surface area over R =~ Z \/1 + F (i, vi)? + £, (X, yi) 2 AA;.
i=1

Notes:

13.5 Surface Area

Ay;

(b)

Figure 13.32: Developing a method of
computing surface area.
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Chapter 13 Multiple Integration

Note: as done before, we think of
“[[, dS” as meaning “sum up lots of
little surface areas.”

The concept of surface area is defined
here, for while we already have a notion
of the area of a region in the plane, we
did not yet have a solid grasp of what “the
area of a surface in space” means.

Figure 13.33: Finding the area of a trian-
gle in space in Example 467.
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Once again take a limit as all of the Ax; and Ay; shrink to 0; this leads to a
double integral.

Definition 105 Surface Area

Let z = f(x,y) where f; and f, are continuous over a closed, bounded
region R. The surface area S over R is

]
- //R V1) + 5 (x. )2 d.

We test this definition by using it to compute surface areas of known sur-
faces. We start with a triangle.

Example 467 Finding the surface area of a plane over a triangle

Let f(x,y) = 4 — x — 2y, and let R be the region in the plane bounded by x = 0,
y =0andy = 2 — x/2, as shown in Figure 13.33. Find the surface area of f over
R.

SOLUTION We follow Definition 105. We start by noting that f,(x,y) =
—1and f,(x,y) = —2. To define R, we use bounds 0 < y < 2 — x/2 and
0 < x < 4. Therefore

s—[[ as

= /0: /:X/Z V1+ (=1)2+(=2)2dydx

:/0 \/é(z—g) dx
= 4/6.

Because the surface is a triangle, we can figure out the area using geometry.
Considering the base of the triangle to be the side in the x-y plane, we find the
length of the base to be v/20. We can find the height using our knowledge of
vectors: let U be the side in the x-z plane and let V be the side in the x-y plane.
The height is then || & — proj; U || = 41/6/5. Geometry states that the area is

thus
%~4\/6/S-\5:4\/§.

We affirm the validity of our formula.

Notes:



It is “common knowledge” that the surface area of a sphere of radius r is
47r?. We confirm this in the following example, which involves using our for-
mula with polar coordinates.

Example 468 The surface area of a sphere.
Find the surface area of the sphere with radius a centered at the origin, whose

top hemisphere has equation f(x,y) = \/a? — x> — y2.

SOLUTION We start by computing partial derivatives and find

[aZ —x2 — 2 and  fy(x,y) = /az_xz_yz'

As our function f only defines the top upper hemisphere of the sphere, we dou-
ble our surface area result to get the total area:

s=2 [\ aten + 5 oa
R
_2// thy dA.

The region R that we are integrating over is the circle, centered at the origin,
with radius a: x> + y? = a?. Because of this region, we are likely to have greater
success with our integration by converting to polar coordinates. Using the sub-

stitutions x = rcosf,y = rsinf, dA = r dr df and bounds 0 < f < 27 and
0 <r < a,we have:

2T a 2 2 2 cinl
r2cos? 6 + r?sin“ 0
S=2 1+ rdrdf
/0 /0 \/ a? —r2cos?f — r2sin’ 6
2T a rz
:2/ / ni+——5 2drd9
o Jo az—r
2T a a2
) /=2 drdo. (13.1)
0 0 a?—r

Apply substitution u = a® — r’and integrate the inner integral, giving

2T
:2/ a*do
0

= 4wa?.

fX(X7 y) =

Our work confirms our previous formula.

Notes:

13.5 Surface Area

Note: The inner integral in Equation

(13.1) is an improper integral, as the
a

. a? )

integrand of / rnl——; dr dois
o a2 —r

not defined at r = a. To properly

evaluate this integral, one must use the

techniques of Section 6.8.

The reason this need arises is that the
function f(x,y) = Va2 — x2 — y? fails the
requirements of Definition 105, as f, and
fy are not continuous on the boundary of
the circle x> + y* = a°.

The computation of the surface area is
still valid. The definition makes stronger
requirements than necessary in part to
avoid the use of improper integration, as
when f, and/or f, are not continuous, the
resulting improper integral may not con-
verge. Since the improper integral does
converge in this example, the surface area
is accurately computed.
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~ | -
\\\ ‘ ,////
~y =
Pl
/ T | \\\
x 9 ay

Figure 13.34: Finding the surface area of
a cone in Example 469.

Note: Note that once again f, and f, are
not continuous on the domain of f, as
both are undefined at (0,0). (A similar
problem occurred in the previous exam-
ple.) Once again the resulting improper
integral converges and the computation
of the surface area is valid.

Figure 13.35: Graphing the surface in Ex-
ample 470.
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Example 469 Finding the surface area of a cone
The general formula for a right cone with height h and base radius a is

h
f(x7y) :h_ E \/X2+y27
shown in Figure 13.34. Find the surface area of this cone.

SOLUTION We begin by computing partial derivatives.

xh h
filx,y) = ————=and y

ay/x2 + 2 q /x2+y2.
Since we are integrating over the circle x> + y?> = a?, we again use polar
coordinates. Using the standard substitutions, our integrand becomes

14 <hrcos@>2+ (hrsin@)2
a2 )

This may look intimidating at first, but there are lots of simple simplifications to
be done. It amazingly reduces to just

1+— \/az—f—h2

Our polar boundsare0 < 6 < 2w and0 < r < a. Thus

2T a 1
5:/ rf\/az—i—hzdrdQ
o Jo
1,1 ?
(e e
0 2 a o
2T
1
= Eavaz+h2d9
0
= mwav/a? + h?.

This matches the formula found in the back of this text.

do

Example 470 Finding surface area over a region
Find the area of the surface f(x,y) = x* — 3y + 3 over the region R bounded by
—x <y <x 0<x<4,as pictured in Figure 13.35.

SOLUTION It is straightforward to compute fi(x,y) = 2xand f,(x,y) =
—3. Thus the surface area is described by the double integral

/\/1+ (2x)2 3)2dA = /\/10+4x2dA

Notes:



As with integrals describing arc length, double integrals describing surface area
are in general hard to evaluate directly because of the square—root. This partic-
ular integral can be easily evaluated, though, with judicious choice of our order
of integration.

Integrating with order dx dy requires us to evaluate f v/10 + 4x2 dx. This can
be done, though it involves Integration By Parts and sinh™* x. Integrating with
order dy dx has as its first integral f v/10 + 4x2 dy, which is easy to evaluate: it
is simply y+/10 + 4x2 + C. So we proceed with the order dy dx; the bounds are
already given in the statement of the problem.

//\/10+4x2dA:/4/x 1/ 10 + 4x2 dy dx
R 0o J-

4 " N
:/ (yV/10 + 4x2)

dx
0

4
= / (2x1/10 + 4x?) dx.
0

Apply substitution with u = 10 + 4x%:

1 3/2
(6(10 + 4x%) ) i

1
3 (37V74 - 5V10) ~ 100.825u".

4

So while the region R over which we integrate has an area of 16u?, the surface
has a much greater area as its z-values change dramatically over R.

In practice, technology helps greatly in the evaluation of such integrals. High
powered computer algebra systems can compute integrals that are difficult, or
at least time consuming, by hand, and can at the least produce very accurate
approximations with numerical methods. In general, just knowing how to set up
the proper integrals brings one very close to being able to compute the needed
value. Most of the work is actually done in just describing the region R in terms
of polar or rectangular coordinates. Once this is done, technology can usually
provide a good answer.

Notes:

13.5 Surface Area
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Exercises 13.5

Terms and Concepts

1. “Surface area” is analogous to what previously studied con-
cept?

2. To approximate the area of a small portion of a surface, we
computed the area of its plane.

3. We interpret // dS as “sum up lots of little
R

”

4. Why is it important to know how to set up a double inte-
gral to compute surface area, even if the resulting integral
is hard to evaluate?

5. Why doz = f(x,y) and z = g(x,y) = f(x,y) + h, for some
real number h, have the same surface area over a region
R?

6. Letz = f(x,y) and z = g(x,y) = 2f(x,y). Why is the sur-
face area of g over a region R not twice the surface area of
fover R?

Problems

In Exercises 7 — 10, set up the iterated integral that computes
the surface area of the given surface over the region R.

7. f(x,y) = sinxcosy; R is the rectangle with bounds 0 <
x<2m, 0<y<2m.

8. fix,y) = Ris the circle x* + y* = 9.

x2+y2+1;

9. f(x,y) = x> —y*;, Ris the rectangle with opposite corners
(=1,—1)and (1,1).

1
10. f(x,y) = ———; Risthe rectangle bounded by
eX

+1
—5<x<5and0<y<1.




In Exercises 11 — 19, find the area of the given surface over
the region R.

11.

12.

13.
14.

15.

16.

f(x,¥) = 3x — 7y + 2; Ris the rectangle with opposite cor-
ners (—1,0) and (1, 3).

f(x,y) = 2x+ 2y + 2; R is the triangle with corners (0, 0),
(1,0) and (0,1).

flx,y) = X+ y2 + 10; R is the circle x> 4+ y2 = 16.

f(x,y) = —2x + 4y* 4 7 over R, the triangle bounded by
y=-—xy=x0<y<L

f(x,y) = x* + y over R, the triangle bounded by y = 2x,
y=0andx = 2.

f(x,y) = 2x*/% 4 2% over R, the rectangle with opposite
corners (0,0) and (1,1).

17.

18.

19.

f(x,y) = 10 — 24/x% + y2 over R, the circle x* + y* = 25.
(This is the cone with height 10 and base radius 5; be sure
to compare you result with the known formula.)

Find the surface area of the sphere with radius 5 by dou-
bling the surface area of f(x,y) = /25 — x2 — y? over R,
the circle x> + y*> = 25. (Be sure to compare you result
with the known formula.)

Find the surface area of the ellipse formed by restricting
the plane f(x,y) = cx + dy + h to the region R, the circle
x> +y* = 1, where ¢, d and h are some constants. Your
answer should be given in terms of ¢ and d; why does the
value of h not matter?
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—5 2
X
(a)
z
y
5
4
X
(b)

Figure 13.36: Finding the volume be-
tween the planes given in Example 13.36.
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13.6 Volume Between Surfaces and Triple Integration
We learned in Section 13.2 how to compute the signed volume V under a surface

z = f(x,y) overaregionR: V = ffRf(x, y) dA. It follows naturally that if f(x, y) >
g(x,y) on R, then the volume between f(x, y) and g(x,y) on R is

v=[[ sy aa- [[atevyan= [[ (ix) -ate) an

Theorem 124 Volume Between Surfaces

Let fand g be continuous functions on a closed, bounded region R, where
f(x,y) > g(x,y) for all (x,y) in R. The volume V between f and g over R

’ V://R (fix,y) — g(x,y)) dA.

Example 471 Finding volume between surfaces

Find the volume of the space region bounded by the planes z = 3x 4+ y — 4 and
z = 8 —3x—2yinthe 1% octant. In Figure 13.36(a) the planes are drawn; in (b),
only the defined region is given.

SOLUTION We need to determine the region R over which we will inte-
grate. To do so, we need to determine where the planes intersect. They have
common z-values when 3x + y — 4 = 8 — 3x — 2y. Applying a little algebra, we
have:

3x+y—4=8—-3x—-2y
6x +3y =12
2x+y=4

The planes intersect along the line 2x+y = 4. Therefore the region R is bounded
byx =0,y = 0,and y = 4 — 2x; we can convert these bounds to integration
bounds of 0 < x < 2,0 <y <4 — 2x. Thus

V://(8—3x—2y—(3x+y—4)) dA
ZR 4—2x

:// (12 — 6x — 3y) dy dx
0 0

= 16u5.

The volume between the surfaces is 16 cubic units.

Notes:



13.6 Volume Between Surfaces and Triple Integration

In the preceding example, we found the volume by evaluating the integral

2 4—2x
/ / (8—3x—2y— (3x+y—4)) dydx.
0 0

Note how we can rewrite the integrand as an integral, much as we did in Section

13.1:
8—3x—2y

8—3x—2y—(3x+y—4):/ dz.
3x+y—4

Thus we can rewrite the double integral that finds volume as

2 4—2x 2 4—2x 8—3x—2y
/ / (8—3x—2y—(3x—|—y—4)) dydx = / / (/ dz) dy dx.
o Jo o Jo 3x+y—4

This no longer looks like a “double integral,” but more like a “triple integral.”
Just as our first introduction to double integrals was in the context of finding the
area of a plane region, our introduction into triple integrals will be in the context
of finding the volume of a space region.

To formally find the volume of a closed, bounded region D in space, such as
the one shown in Figure 13.37(a), we start with an approximation. Break D into
n rectangular solids; the solids near the boundary of D will either not include
portions of D or include extra space. In Figure 13.37(b), we zoom in on a portion
of the boundary of D to show a rectangular solid that contains space not in D;
as this is an approximation of the volume, this is acceptable and this error will
be reduced as we shrink the size of our solids.

The volume AV; of the it solid D; is AV, = Ax;Ay;Az;, where Ax;, Ay;
and Az; give the dimensions of the rectangular solid in the x, y and z directions,
respectively. By summing up the volumes of all n solids, we get an approximation
of the volume V of D:

n n
V& Z AV, = Z Ax; Ay Az;.
i=1 i=1

Let | AD| represent the length of the longest diagonal of rectangular solids
in the subdivision of D. As | AD| — 0, the volume of each solid goes to 0, as do
each of Ax;, Ay; and Az;, for all i. Our calculus experience tells us that taking
a limit as | AD| — 0 turns our approximation of V into an exact calculation of
V. Before we state this result in a theorem, we use a definition to define some
terms.

Notes:

X2 2 Y

(a)

(b)

Figure 13.37: Approximating the volume
of a region D in space.
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Definition 106 Triple Integrals, Iterated Integration (Part )

Let D be a closed, bounded region in space. Let a and b be real numbers, let g;(x) and g,(x) be
continuous functions of x, and let f1(x, y) and f,(x, y) be continuous functions of x and y.

1. The volume V of D is denoted by a triple integral,

- [ff

b rga(x)  pfa(xy)
/ / dz dy dx is evaluated as
g1(

2. The iterated integral/
a x) Jfi(xy)
b rga(x)  pha(xy) b rga(x) f2(x,y)
/ / / dzdydx:/ / / dz | dydx.
a Jai(x) Jfilxy) a Jagi(x) fi(x.y)

Evaluating the above iterated integral is triple integration.

Our informal understanding of the notation [[ [, dV'is “sum up lots of little
volumes over D,” analogous to our understanding of [, dAand [[, dm.
We now state the major theorem of this section.

Theorem 125 Triple Integration (Part 1)

Let D be a closed, bounded region in space and let AD be any subdivision of D into n rectangular
solids, where the i™ subregion D; has dimensions Ax; x Ay; x Az; and volume AV,

1. The volume Vof Dis

V= dv= i AV = i Axi Ay, A
JJ[ = dim >4 tim > xaan

2. If Dis defined as the region bounded by the planes x = a and x = b, the cylinders y = g(x)
and y = g»(x), and the surfaces z = fi(x,y) and z = fo(x,y), where a < b, g1(x) < ga(x)
andfl(x7 y) SfZ(X7 y) on Dr then

92(x)  ph(xy)
/// av = / / / dz dy dx.
a1(x)  Jfi(xy)

3. Vcan be determined using iterated integration with other orders of integration (there are 6
total), as long as D is defined by the region enclosed by a pair of planes, a pair of cylinders,
and a pair of surfaces.

Notes:
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We evaluated the area of a plane region R by iterated integration, where
the bounds were “from curve to curve, then from point to point.” Theorem 125
allows us to find the volume of a space region with an iterated integral with
bounds “from surface to surface, then from curve to curve, then from point to
point.” In the iterated integral

b rg(x)  rh(xy)
/ / / dz dy dx,
a Jai(x) Jfi(xy)

the bounds a < x < band g;(x) <y < g,(x) define a region R in the x, y plane
over which the region D exists in space. However, these bounds are also defining
surfaces in space; x = ais a plane and y = g1 (x) is a cylinder. The combination
of these 6 surfaces enclose, and define, D.

Examples will help us understand triple integration, including integrating
with various orders of integration.

Example 472 Finding the volume of a space region with triple integration
Find the volume of the space region in the 1% octant bounded by the plane
z = 2 —y/3 — 2x/3, shown in Figure 13.38(a), using the order of integration
dz dy dx. Set up the triple integrals that give the volume in the other 5 orders of
integration.

SOLUTION Starting with the order of integration dz dy dx, we need to
first find bounds on z. The region D is bounded below by the plane z = 0 (be-
cause we are restricted to the first octant) and above by z = 2 — y/3 — 2x/3;
0<z<2-—y/3—2x/3.

To find the bounds on y and x, we “collapse” the region onto the x, y plane,
giving the triangle shown in Figure 13.38(b). (We know the equation of the line
y = 6 — 2x in two ways. First, by settingz = 0, we have0 =2 —y/3 — 2x/3 =
y = 6 — 2x. Secondly, we know this is going to be a straight line between the
points (3,0) and (0, 6) in the x, y plane.)

We define that region R, in the integration order of dy dx, with bounds 0 <

Notes:

Figure 13.38: The region D used in Exam-
ple 472 in (a); in (b), the region found by
collapsing D onto the x, y plane.
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y <6 —2xand 0 < x < 3. Thus the volume V of the region D is:

ol
D
3 p6—2x p2—1iy—2x
:/ / / dzdy dz
o Jo 0
3 6—2x 2—%y—%x
:// / dz | dydz
o Jo 0
360 g1y 2y
SV
o Jo
3 6—2x 1 2
:/ / <2 ——y— x) dy dz.
o Jo 3 3

 dy dz
From this step on, we are evaluating a double integral as done many times be-
fore. We skip these steps and give the final volume,

0

= 6u’.
The order dz dx dy:

Now consider the volume using the order of integration dz dx dy. The bounds
on z are the same as before, 0 < z < 2—y/3—2x/3. Collapsing the space region
on the x, y plane as shown in Figure 13.38(b), we now describe this triangle with
the order of integration dx dy. This gives bounds0 < x < 3—y/2and0 <y < 6.
Thus the volume is given by the triple integral

6 3—%y 2—%y—§x
V= / / / dz dx dy.
0 0 0

The order: dx dy dz:

Following our “surface to surface...” strategy, we need to determine the
x-surfaces that bound our space region. To do so, approach the region “from
behind,” in the direction of increasing x. The first surface we hit as we enter the
region is the y, z plane, defined by x = 0. We come out of the region at the
plane z = 2 — y/3 — 2x/3; solving for x, we have x = 3 — y/2 — 3z/2. Thus the
boundsonxare: 0 < x <3 —y/2 —3z/2.

Now collapse the space region onto the y, z plane, as shown in Figure 13.39(a).
(Again, we find the equation of the line z = 2 —y/3 by setting x = 0 in the equa-
tionx = 3 —y/2 —3z/2.) We need to find bounds on this region with the order

Notes:
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dy dz. The curves that bound y are y = 0 and y = 6 — 3z; the points that bound
zare 0 and 2. Thus the triple integral giving volume is:

0<x<3-y/2-3z/2 2 6-3z p3—y/2-32/2
0<y<6-32 = / / / dx dy dz.
OSZSZ 0 0 0

The order: dx dz dy:

The x-bounds are the same as the order above. We now consider the triangle
in Figure 13.39(a) and describe it with the order dzdy: 0 < z < 2 — y/3 and
0 <y < 6. Thus the volume is given by:

0<x<3-—y/2—3z/2 6 r2-y/3 p3—y/2—32)2
0<z<2-y/3 = / / / dx dz dy.
Ogygs 0 0 0

The order: dy dz dx:

We now need to determine the y-surfaces that determine our region. Ap-
proaching the space region from “behind” and moving in the direction of in-
creasing y, we first enter the region at y = 0, and exit along the plane z =
2 —y/3 — 2x/3. Solving for y, this plane has equation y = 6 — 2x — 3z. Thus y
has bounds0 <y < 6 — 2x — 3z.

Now collapse the region onto the x, z plane, as shown in Figure 13.39(b). The
curves bounding this triangle are z = 0 and z = 2 — 2x/3; x is bounded by the
points x = 0 to x = 3. Thus the triple integral giving volume is:

0<y<6-—-—2x—3z

3 p2—-2x/3 p6—2x—3z
0<z<2-2x/3 = / / / dy dz dx.
0 S X S 3 0 0 0

The order: dy dx dz:

The y-bounds are the same as in the order above. We now determine the
bounds of the triangle in Figure 13.39(b) using the order dy dx dz. x is bounded
by x = 0 and x = 3 — 2z/3; z is bounded between z = 0 and z = 2. This leads
to the triple integral:

0<y<6-2x—3z 2 3-22/3 6—2x—3z
0<x<3-2z/3 = / / / dy dx dz.
0<z<2 o Jo 0

Notes:

(b)

Figure 13.39: Theregion Din Example 472
is collapsed onto the y, z plane in (a); in
(b), the region is collapsed onto the x, z
plane.
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Figure 13.40: Finding the projections of
the curve of intersection in Example 473.
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This problem was long, but hopefully useful, demonstrating how to deter-
mine bounds with every order of integration to describe the region D. In prac-
tice, we only need 1, but being able to do them all gives us flexibility to choose
the order that suits us best.

In the previous example, we collapsed the surface into the x-y, x-z, and y-z
planes as we determined the “curve to curve, point to point” bounds of integra-
tion. Since the surface was a plane, this collapsing, or projecting, was simple:
the projection of the boundaries of a plane onto a coordinate plane is just a line.

The following example shows us how to do this when dealing with more
complicated surfaces and curves.

Example 473 Finding the projection of a curve in space onto the coordi-
nate planes

Consider the surfaces z = 3 — x2 — y? and z = 2y, as shown in Figure 13.40(a).
The curve of their intersection is shown, along with the projection of this curve
into the coordinate planes, shown dashed. Find the equations of the projections
into the coordinate planes.

SOLUTION The two surfaces arez = 3 — x> — y? and z = 2y. To find
where they intersect, it is natural to set them equal to each other: 3 —x?> —y? =
2y. This is an implicit function of x and y that gives all points (x,y) in the x, y
plane where the z values of the two surfaces are equal.

We can rewrite this implicit function by completing the square:

3-X—y'=2y = Y++xX=3 = (y+1P+x =4

Thus in the x, y plane the projection of the intersection is a circle with radius 2,
centered at (0, —1).

To project onto the x, z plane, we do a similar procedure: find the x and z
values where the y values on the surface are the same. We start by solving the
equation of each surface for y. In this particular case, it works well to actually
solve for y?:
z=3-x*—y> = Y =3-x2-z
z=2y = y?=27%/4A

Thus we have (after again completing the square):

z+2)?% X
3-xX*—z=2/4 e+27 — =1
z=2/ 16 +4 ,

and ellipse centered at (0, —2) in the x, z with a major axis of length 8 and a
minor axis of length 4.

Notes:
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Finally, to project the curve of intersection into the y, z plane, we solve equa-
tion for x. Since z = 2y is a cylinder that lacks the variable x, it becomes our
equation of the projection in the y, z plane.

All three projections are shown in Figure 13.40(b).

Example 474 Finding the volume of a space region with triple integration
Set up the triple integrals that find the volume of the space region D bounded
by the surfaces x> + y?> = 1,z = 0 and z = —y, as shown in Figure 13.41(a),
with the orders of integration dz dy dx, dy dx dz and dx dz dy.

SOLUTION The order dz dy dx:

The region D is bounded below by the plane z = 0 and above by the plane
z = —y. The cylinder x* + y? = 1 does not offer any bounds in the z-direction,
as that surface is parallel to the z-axis. Thus 0 <z < —y.

Collapsing the region into the x, y plane, we get part of the circle with equa-
tion x> 4+ y* = 1 as shown in Figure 13.41(b). As a function of x, this half circle
has equation y = —v/1 — x2. Thus y is bounded below by —v/1 — x2 and above
byy = 0: —v/1 —x2 <y < 0. The x bounds of the half circle are —1 < x < 1.
All together, the bounds of integration and triple integral are as follows:

0<z< —y

1 0 —y
—-V1-x2<y<0 = / / / dz dy dx.
—1<x<1 —1J—v1-x2J0

We evaluate this triple integral:

1 40 —y 1
/ / / dz dy dx = (—v) dyadx
-1J-v1-x2Jo —-1J—v1-x2

/1
/

I
\,_\
=

—~
=

|

>
N)
S—
53

With the order dy dx dz:

Notes:

1
X

(b)

Figure 13.41: Theregion Din Example 474
is shown in (a); in (b), it is collapsed onto
the x, y plane.
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(b)

Figure 13.42: The region D in Example
474 is shown collapsed onto the x, z plane
in (a); in (b), it is collapsed onto the y, z
plane.
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The region is bounded “below” in the y-direction by the surface x> + y*> =
1=y = —+/1— x? and “above” by the surface y = —z. Thus the y bounds are
—V1-x2<y< -z

Collapsing the region onto the x, z plane gives the region shown in Figure
13.42(a); this half circle has equation x* + z2 = 1. (We find this curve by solving
each surface for y?, then setting them equal to each other. We have y? = 1 — x?
andy = —z = y? = 2. Thusx*4+2> = 1.) Itisbounded below by x = —/1 — 22
and above by x = v/1 — 22, where z is bounded by 0 < z < 1. All together, we
have:

VIR <y< -z R
—V1-Z2<x<V1-2 = // / dy dx dz.
0<z<1 0 JvizJ-viee
With the order dx dz dy:

D is bounded below by the surface x = —4/1 — y2 and above by /1 — y2.
We then collapse the region onto the y, z plane and get the triangle shown in

Figure 13.42(b). (The hypotenuse is the line z = —y, just as the plane.) Thus z is
bounded by 0 < z < —yandyis bounded by —1 < y < 0. This gives:

0<z< —y
-1<y<o0

—V/1I-y2<x<\/1-y? 0 oy V1R
= / / / dx dz dy.
-1Jo —/1—y?

The following theorem states two things that should make “common sense”
to us. First, using the triple integral to find volume of a region D should always
return a positive number; we are computing volume here, not signed volume.
Secondly, to compute the volume of a “complicated” region, we could break
it up into subregions and compute the volumes of each subregion separately,
summing them later to find the total volume.

Notes:
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Theorem 126 Properties of Triple Integrals

Let D be a closed, bounded region in space, and let D; and D, be non-
overlapping regions such that D = D; | D5.

[ =0
= ff e I e I

We use this latter property in the next example.

Example 475 Finding the volume of a space region with triple integration
Find the volume of the space region D bounded by the coordinate planes, z =
1—x/2andz = 1—y/4, as shown in Figure 13.43(a). Set up the triple integrals
that find the volume of D in all 6 orders of integration.

SOLUTION Following the bounds—determining strategy of “surface to
surface, curve to curve, and point to point,” we can see that the most difficult
orders of integration are the two in which we integrate with respect to z first,
for there are two “upper” surfaces that bound D in the z-direction. So we start
by noting that we have

1 1
nggl—ix and nggl—zy.

We now collapse the region D onto the x, y axis, as shown in Figure 13.43(b).
The boundary of D, the line from (0,0, 1) to (2, 4,0), is shown in part (b) of the
figure as a dashed line; it has equation y = 2x. (We can recognize this in two
ways: one, in collapsing the line from (0,0, 1) to (2,4, 0) onto the x, y plane,
we simply ignore the z-values, meaning the line now goes from (0, 0) to (2, 4).
Secondly, the two surfaces meet wherez = 1 — x/2 isequaltoz = 1 — y/4:
thusl—x/2=1—-y/4=y=2x)
We use the second property of Theorem 126 to state that

= JIL o 1],

where D; and D, are the space regions above the plane regions R; and R, re-
spectively. Thus we can say

AV R AV

Notes:

(b)

Figure 13.43: Theregion Din Example 475
is shown in (a); in (b), it is collapsed onto
the x, y plane.
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All that is left is to determine bounds of R; and R,, depending on whether we
are integrating with order dx dy or dy dx. We give the final integrals here, leaving
it to the reader to confirm these results.

dz dy dx:
0<z<1-—x/2 0<z<1-y/4
0<y<2x x<y<4
0<x<2 0<x<2
2 p2x p1—x/2 2 4 pl—y/a
/// dv = / / / dzdydx + / / / dz dy dx
z D o Jo Jo o Jax Jo
1 dz dx dy:
0<z<1—x/2 0<z<1-y/4
y/2<x<2 0<x<y/2
0<y<4 0<y<4
\2\ 4 2 1—x/2 4 ry/2 pl—y/4
iy /// dv = / / / dzdxdy + / / / dz dx dy
2 D o Jy/2Jo o Jo 0
L4
(a) The remaining four orders of integration do not require a sum of triple in-
tegrals. In Figure 13.44 we show D collapsed onto the other two coordinate
1 planes. Using these graphs, we give the final orders of integration here, again
leaving it to the reader to confirm these results.
dy dx dz:
] 0<y<4—-4z 1 p2-2z pd—4z
> 0<x<2-2z :// / dy dx dz
) 47y 0<z<1 0 7o 0
La dy dz dx:
(b) 0<y<4—-14z 2 p1—x/2 A—4z
Figure 13.44: The region D in Example 0<z=<1 7X/2 = /0 /0 /0 dy dx dz
475 is shown collapsed onto the x, z plane 0<x=<2
in (a); in (b), it is collapsed onto the y, z
plane.
Notes:
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dx dy dz:

0<x<2-2z

=~ =~ 1 4—4z 2—-2z
0<y<4—-4z :>// / dx dy dz
OSZSI 0 0 0

dx dz dy: T

0<x<2-2 4 pl—y/4 p2-2z
0<z<1-y/4 :>// / dx dz dy
0§y§4 0 0 0

We give one more example of finding the volume of a space region.

Example 476 Finding the volume of a space region

Set up a triple integral that gives the volume of the space region D bounded by
z=2x*>+2andz =6 — 2x> — y?. These surfaces are plotted in Figure 13.45(a)
and (b), respectively; the region D is shown in part (c) of the figure.

SOLUTION The main point of this example is this: integrating with re- z
spect to z first is rather straightforward; integrating with respect to x first is not.

The order dz dy dx: 5
The bounds on z are clearly 2x*> 4+ 2 < z < 6 — 2x*> — y2. Collapsing D onto

the x, y plane gives the ellipse shown in Figure 13.45(c). The equation of this
ellipse is found by setting the two surfaces equal to each other:

-2
2 -2
20 4+2=6-2°—y* = 4x2—|—y2:4 = X2+yZ:1' \47 3>y

2
X
We can describe this ellipse with the bounds (b)
Va4 —-4x2 <y<+4—-4x2 and —-1<x<1. %
Thus we find volume as
2 +2<z2<6-2¢ -y VA=l 6—2C—y /".u“s\
—V4 —4x2 <y <4 — 4x2 :>/ / dz dydx . z \
—1<x<1 —1J—va=aa Jac 42 N
The order dy dz dx:
Notes: (c)

Figure 13.45: The region D is bounded
by the surfaces shown in (a) and (b); D is
shown in (c).
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z
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(b)

Figure 13.46: Theregion Din Example 476
is collapsed onto the x, z plane in (a); in
(b), it is collapsed onto the y, z plane.
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Integrating with respect to y is not too difficult. Since the surface z = 2x*> +2
is a cylinder whose directrix is the y-axis, it does not create a border for y. The
paraboloid z = 6 — 2x2 — y? does; solving for y, we get the bounds

—V6—-2x2 —z7<y<46—2x2 -2z

Collapsing D onto the x, z axes gives the region shown in Figure 13.46(a); the
lower curve is the from the cylinder, with equation z = 2x?> 4+ 2. The upper
curve is from the paraboloid; with y = 0, the curve is z = 6 — 2x%. Thus bounds
onzare2x?+2 < z < 6—2x?%; the bounds on xare —1 < x < 1. Thus we have:

—V6—2x2 —z2<y<+6—2x2 -2

1 p6=2¢ V6-20—2
morzsiss o é/ / / dy dz dx.
-1<x<1 “1Jaer2 J 22—
The order dx dz dy:

This order takes more effort as D must be split into two subregions. The
two surfaces create two sets of upper/lower bounds in terms of x; the cylinder

creates bounds
—Vz/2—-1<x<y/z/2 -1
for region D, and the paraboloid creates bounds
—V3-y22-22/2<x<\/3-y*/2-22)2

for region D,.

Collapsing D onto the y, z axes gives the regions shown in Figure 13.46(b).
We find the equation of the curve z = 4 — y? /2 by noting that the equation of
the ellipse seen in Figure 13.45(c) has equation

Xy /a=1 = x=/1-y*/4

Substitute this expression for x in either surface equation, z = 6 — 2x%> — y? or
z = 2x%2 + 2. In both cases, we find

1
z=4— 2y~
Zy
Region Ry, corresponding to Dy, has bounds
2<z<4—y*/2, —2<y<2
and region R,, corresponding to D,, has bounds

4—y*/2<z<6-y*, -2<y<2

Notes:
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Thus the volume of D is given by:
4—y*/2 z/2 1 26—y’ \/3—y2/2—22/2
/ / / dxdzdy + / / / dx dzdy.
V721 —2Ja—y2/2 ) —\/3-y2/2-22/2

If all one wanted to do in Example 476 was find the volume of the region D,
one would have likely stopped at the first integration setup (with order dz dy dx)
and computed the volume from there. However, we included the other two
methods 1) to show that it could be done, “messy” or not, and 2) because some-
times we “have” to use a less desirable order of integration in order to actually
integrate.

Triple Integration and Functions of Three Variables

There are uses for triple integration beyond merely finding volume, just as
there are uses for integration beyond “area under the curve.” These uses start
with understanding how to integrate functions of three variables, which is effec-
tively no different than integrating functions of two variables. This leads us to a
definition, followed by an example.

Definition 107 Iterated Integration, (Part Il)

Let D be a closed, bounded region in space, over which g;(x), g2(x),
fi(x,y), f2(x,y) and h(x, y, z) are all continuous, and let a and b be real
numbers.

920 pfa(xy)
The iterated integral / / / h(x,y, z) dz dy dx is evaluated as
a Jgi(x) Jhaxy)

b rga(x)  prhalx, y) 92(x) f2(x,y)
/ / / h(x,y,z)dzdydx = / / / h(x,y,z) dz | dydx.
a Jai(x) Jfiloy) 91(%) fi(xy)

Example 477 Evaluating a triple integral of a function of three variables
2x+3y
Evaluate / / / (xy + 2xz) dz dy dx.
x2
SOLUTION We evaluate this integral according to Definition 107.
Notes:
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o1 X 2x+-3y
/ / / (xy + 2xz) dz dy dx
0 Jx2 Jx2—y

2x+-3y
/ / (/ (xy + 2x2) dz) dy dx
2x+3y
/ / xyz + xz ) dy dx

( (2x 4 3y) + x(2x + 3y)? — (xy(x2 —y) +x(x* — y)2)> dy dx
(-

X 43y + 4% + 14x%y + 12xy ) dy dx.

//

We continue as we have in the past, showing fewer steps.

1
7 7
/ <— —x —8x®— Zx° + 15)(4) dx
A 2 2

281
—— ~ 0.836.
336

We now know how to evaluate a triple integral of a function of three vari-
ables; we do not yet understand what it means. We build up this understanding
in a way very similar to how we have understood integration and double inte-
gration.

Let h(x,y,z) a continuous function of three variables, defined over some
space region D. We can partition D into n rectangular—solid subregions, each
with dimensions Ax; x Ay; x Az;. Let (x;,y;,z;) be some point in the i™" sub-
region, and consider the product h(x;, y;, z;) Ax;Ay;Az;. 1t is the product of a
function value (that’s the h(x;,y;,z;) part) and a small volume AV; (that’s the
Ax;Ay;Az; part). One of the simplest understanding of this type of product is
when h describes the density of an object; then h x volume = mass.

We can sum up all n products over D. Again letting | AD| represent the length
of the longest diagonal of the n rectangular solids in the partition, we can take
the limit of the sums of products as | AD| — 0. That is, we can find

n n

S= lim h(x,,y,,z,)AV, = lim h(xi, yi, z;)) Ax; Ay; Az;.
‘AD‘—)O |AD|—0 Py

While this limit has lots of interpretations depending on the function h, in
the case where h describes density, S is the total mass of the object described
by the region D.

Notes:
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We now use the above limit to define the triple integral, give a theorem that
relates triple integrals to iterated iteration, followed by the application of triple
integrals to find the centers of mass of solid objects.

Definition 108 Triple Integral

Letw = h(x, y, z) be a continuous function over a closed, bounded space
region D, and let AD be any partition of D into n rectangular solids with
volume V;. The triple integral of h over D is

n

/// h(x,y,z) dV = lim h(x;,yi,z;)) AV;.
D |AD|—0 ey

The following theorem assures us that the above limit exists for continuous
functions h and gives us a method of evaluating the limit.

Theorem 127 Triple Integration (Part Il)

Let w = h(x, y, z) be a continuous function over a closed, bounded space
region D, and let AD be any partition of D into n rectangular solids with
volume V.

1. Thelimit lim h(xi, yi, z;) AV; exists.
|AD|—0 ey
2. If D is defined as the region bounded by the planes x = a and
x = b, the cylinders y = g1(x) and y = g2(x), and the surfaces
z = fi(x,y) and z = fo(x,y), where a < b, g1(x) < ga2(x) and
fix,¥) < fa(x,y) on D, then

b rg(x)  pfa(xy)
/// h(x,y,z) dV = / / / h(x,y,z) dz dy dx.
D a Jgi(x) Jfi(xy)

We now apply triple integration to find the centers of mass of solid objects.

Mass and Center of Mass
One may wish to review Section 13.4 for a reminder of the relevant terms
and concepts.

Notes:
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y

Figure 13.47: Finding the center of mass
of this solid in Example 478.

788

Definition 109 Mass, Center of Mass of Solids

Let a solid be represented by a region D in space with variable density
function d(x, y, 2).

1. The mass of the objectis M = /// dm = /// o(x,y,z) dv.
D D

2. The moment about the x,y plane is M, = /// 26(x,y,2) dV.
D

3. The moment about the x,z plane is M,, = /// yo(x,y,z) dV.
D

4. The moment about the y,z plane is M, = /// x0(x,y,z) dV.
D

5. The center of mass of the object is

Example 478 Finding the center of mass of a solid

Find the mass, and center of mass, of the solid represented by the space region
bounded by the coordinate planes and z = 2 — y/3 — 2x/3, shown in Figure
13.47, with constant density d(x, y, z) = 3gm/cm?. (Note: this space region was

used in Example 472.)

SOLUTION

and 0 < x < 3. We find the mass of the object:

The evaluation of the triple integral is done in Example 472, so we skipped those

M= ///5(x,y,z) dv
D
3 p6—2x p2—y/3—2x/3
:/ / / (3) dz dy dx
o Jo 0
3 p6—2x p2—y/3—2x/3
= 3/ / / dz dy dx
o Jo 0
3(6)

= 18gm.

Notes:

We apply Definition 109. In Example 472, we found bounds
for the order of integration dzdy dxtobe 0 < z < 2—y/3—-2x/3,0 < y < 6—2x



13.6 Volume Between Surfaces and Triple Integration

steps above. Note how the mass of an object with constant density is simply
“density xvolume.”
We now find the moments about the planes.

My, — / / / 32V
D
3 p6—2x p2—y/3—2x/3
:// / (32) dz dy dx
o Jo 0
3 6-20 4 ,
:// ~(2x+y—16) dydx
o Jo 6
3
4
:/ —f(x—3)3dx
0 9

We omit the steps of integrating to find the other moments.

Myzz///DEEde

The center of mass is

(272 27 9 _
(x,7,2) = (18718, 18) = (0.75,1.5,0.5).

Example 479 Finding the center of mass of a solid

Find the center of mass of the solid represented by the region bounded by the
planes z = 0 and z = —y and the cylinder x2 + y? = 1, shown in Figure 13.48,
with density function §(x, y,z) = 10 + x> + 5y — 5z. (Note: this space region
was used in Example 474.)

SOLUTION As we start, consider the density function. It is symmetric
about the y, z plane, and the farther one moves from this plane, the denser the
object is. The symmetry indicates that x should be 0.

As one moves away from the origin in the y or z directions, the object be-
comes less dense, though there is more volume in these regions.

Though none of the integrals needed to compute the center of mass are
particularly hard, they do require a number of steps. We emphasize here the

Notes:

X

Figure 13.48: Finding the center of mass
of this solid in Example 479.
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importance of knowing how to set up the proper integrals; in complex situations
we can appeal to technology for a good approximation, if not the exact answer.
We use the order of integration dz dy dx, using the bounds found in Example
474. (As these are the same for all four triple integrals, we explicitly show the
bounds only for M.)

M:///D(10+x2+5y—5z) dv

1 0 —y
:/ / / (10 + x* + 5y — 52) dV
—-1J—v1-x Jo

64 157
= — — —— ~ 3.855.

5 16
Myz:///x(10+x2+5y752) dv
D

=0.

sz:///y 10 + x* 4 5y — 5z) dV
D

6lm
=2—- — =~ —1.99.

48
Mxy:///z(lo—i—xz—i—Sy—Sz) av
D

61lr 10
= — — — =~ 0.885.
96 9

Note how M,, = 0, as expected. The center of mass is

o ~1.99 0.885
(x,9.2) = 0. s gec 3855 ) © (0, —0.516,0.230).

As stated before, there are many uses for triple integration beyond finding
volume. When h(x,y, z) describes a rate of change function over some space

region D, then /// h(x,y,z) dV gives the total change over D. Our one specific

example of this wasDcomputing mass; a density function is simply a “rate of mass
change per volume” function. Integrating density gives total mass.

While knowing how to integrate is important, it is arguably much more im-
portant to know how to set up integrals. It takes skill to create a formula that de-
scribes a desired quantity; modern technology is very useful in evaluating these
formulas quickly and accurately.

Notes:



Exercises 13.6

Terms and Concepts

1. The strategy for establishing bounds for triple integrals

is to , to and
to V

2. Give an informal interpretation of what ”/// av”
D

means.
3. Give two uses of triple integration.

4. If an object has a constant density § and a volume V, what
is its mass?

Problems

In Exercises 5 — 8, two surfaces f1(x, y) and f>(x, y) and a re-
gion R in the x, y plane are given. Set up and evaluate the
double integral that finds the volume between these surfaces
over R.

5. filx,y) =8 — X — V%, H(x,y) = 2x +;
R is the square with corners (—1, —1) and (1, 1).

6. filx,y) =X + ¥, fa(x,y) = —x* —y%
R is the square with corners (0,0) and (2, 3).

7. fi(x,y) = sinxcosy, fo(x,y) = cosxsiny + 2;
R is the triangle with corners (0, 0), (7, 0) and (m, 7).

8. filx,y) =2 + 2 +3,fs(x,y) =6 — X — y;
Ris the circle x* + y* = 1.

In Exercises 9 — 16, a domain D is described by its bounding
surfaces, along with a graph. Set up the triple integrals that
give the volume of D in all 6 orders of integration, and find
the volume of D by evaluating the indicated triple integral.

9. Dis bounded by the coordinate planes and

z=2-—2x/3-2y.

Evaluate the triple integral with order dz dy dx.
z

2
3

10. Dis bounded by the planesy =0,y =2,x=1,z=0and
z=(3—-x)/2.

Evaluate the triple integral with order dx dy dz.

11. Dis bounded by the planesx = 0,x =2,z = —y and by
z=y*/2.

Evaluate the triple integral with the order dy dz dx.




12. Dis bounded by the planesz =0,y = 9, x = 0 and by 14. Dis bounded by the plane z = 2y and by y = 4 — x°.

2=y — 9.

Evaluate the triple integral with the order dz dy dx.
Do not evaluate any triple integral.

15. Dis bounded by the coordinate planes and by
y=1—x’andy=1-27%
13. Dis bounded by the planesx =2,y =1,z = 0and
z=2x-+4y — 4.

Do not evaluate any triple integral. Which order is easier to
evaluate: dz dy dx or dy dz dx? Explain why.

Evaluate the triple integral with the order dx dy dz.

z=2x+4y — 4




16. D is bounded by the coordinate planes and by
z=1-y/3andz=1—x.

Evaluate the triple integral with order dx dy dz.

z

In Exercises 17 — 20, evaluate the triple integral.

/2 T T
17. / / / (cosxsinysinz) dz dy dx
—x/2J0 Jo

1 X X+y
18. / / / (x+y+2) dzdydx
0 0 0
™ 1 z
19. / / / (sin(yz)) dx dy dz
0 0 0
2 X3 y2 X2 2
y+yx
20. /7r /X [yz (ZW> dz dy dx

In Exercises 21 - 24, find the center of mass of the solid repre-
sented by the indicated space region D with density function

5(X7 Y, Z)'

21. Dis bounded by the coordinate planes and
z=2-2x/3-2; &(x,y,2) = 10gm/cm>.
(Note: this is the same region as used in Exercise 9.)

22. Dis bounded by the planesy =0,y =2,x =1,z = 0and
z=(3-x)/2; 6&(x,y,z) = 2gm/cm®.
(Note: this is the same region as used in Exercise 10.)

23. Dis bounded by the planesx =2,y =1,z=0and
z=2+4y— 4 d(x,y,z) = xX*Ib/in®.
(Note: this is the same region as used in Exercise 13.)

24. Dis bounded by the planez = 2yand by y = 4 — x*.
3(x,y,z) = y*Ib/in’.
(Note: this is the same region as used in Exercise 14.)






A: SOLUTIONS TO SELECTED PROBLEMS

Chapter 9

Section 9.1

11.

13.
15.

17.
19.

21.

23.

25.

27.

29.

31.

. When defining the conics as the intersections of a plane and a

double napped cone, degenerate conics are created when the

plane intersects the tips of the cones (usually taken as the origin).

Nondegenerate conics are formed when this plane does not
contain the origin.

. Hyperbola

. With a horizontal transverse axis, the x? term has a positive

coefficient; with a vertical transverse axis, the y? term has a
positive coefficient.

Ly=Sx+1)? -1

2
Gl 42— 1 fociat (1, £1/8.75); e = V/B.75/3 & 0.99

1/4
=2 | (=3 _
T y16 =1

v-0% _4

(x+1)?
9 25

2 2
P A—
3+5_1

(U

2
2y
X T = 1
(yfs)z _ <X71)2 =1
4 9 -
y
2 €1
—5 5
[ -2+ e [} [}
—4 |
—6 |

(o3’ =3 _
3. - =1

WSy

39.

Nl

=1

4. (y—22-% =1

43.  (a) Solveforcine = c/a: c = ae. Thus a’e* = a? — b?, and

b? = a*> — a%€?. The result follows.
(b) Mercury: x*/(0.387)2 4 y2/(0.3787)2 = 1
Earth: x2 4 y2/(0.99986)? = 1
Mars: x2/(1.524)% + y?/(1.517)? = 1
(c) Mercury: (x — 0.08)2/(0.387)2 +y?/(0.3787)> = 1
Earth: (x — 0.0167)% + y?/(0.99986)2 = 1
Mars: (x — 0.1423)2/(1.524)2 +y2/(1.517)2 = 1
Section 9.2

1.7

3. rectangular

y
} . X
5 10
5.
-5 4
y
2 < >
7.
1 €1
} . X
1 2
y
8 €1
6 €1
9.
4
. . } > X
—10 -5 5 10



15.

17.

19.

21.
23.
25.
27.
29.
31.

—10 |

(a) Traces a circle of radius 1 counterclockwise once.

(b) Traces a circle of radius 1 counterclockwise over 6 times.

(c) Traces a circle of radius 1 clockwise infinite times.

(d) Traces an arc of a circle of radius 1, from an angle of -1
radians to 1 radian, twice.

XZ_y2:1
y = x3/2

y:x3—3
Vot =1
x=1-—2y?

x? + y? = r?; circle centered at (0, 0) with radius r.

33.

35.

37.

=n? _ (y=K?
b2

p = 1; hyperbola centered at (h, k) with
horizontal transverse axis and asymptotes with slope b/a. The
parametric equations only give half of the hyperbola. When
a > 0, the right half; when a < 0, the left half.
x=Int,y=t Att=1,x=0,y = 1.

y' =ée;whenx=0,y = 1.
x=1/(4t?),y =1/(2t). Att =1,x=1/4,y = 1/2.
y =1/(2y/x); whenx = 1/4,y' = 1.

39, t=-1,2
41. t=7/6,7/2,57/6
43. t=2
45. t=...0, 2m, 4m, ...
47. x =50t,y = —16t2 + 64t
49. x = 2cost, y = —2sint; other answers possible
51. x =cost+ 1,y = 3sint 4 3; other answers possible
53. x = *+sect+2,y= \/§tan t — 3; other answers possible
Section 9.3
1. F
3. F
5. (a) Z=2t

11.

13.
15.
17.
19.

21.

23.

25.

27.

29.

31.

33.
35.

(b) Tangentline: y = 2(x — 1) + 1; normal line:
y=-1/2(x—1)+1

dy _ 2t41
(@ dx T 2t—1

(b) Tangentline: y = 3x + 2; normal line:y = —1/3x + 2

dy _
(@) 4 =csct

(b) t = m/4: Tangent line: y = v/2(x — v/2) + 1; normal line:
y=—-1/V2(x—v2)+1

dy ___ costsin(2t)+sin t cos(2t)
(@ dx — —sintsin(2t)+2 cos t cos(2t)
(b) Tangentline: y = x — v/2; normal line: y = —x — /2
t=20
t=-1/2

The graph does not have a horizontal tangent line.

The solution is non-trivial; use identities sin(2t) = 2sintcost and
cos(2t) = cos? t — sin? t to rewrite

g’ (t) = 2sint(2cos? t — sin? t). On [0, 27], sin t = O when

t =0,7,2m, and 2 cos? t — sin? t = 0 when

t =tan~1(v/2), 7 £tan"1(v/2), 27 — tan~1(V/2).

. d)
to = 0; lim¢—o E): =0.

: d)
to = 1; limy_q d% = o0.

dzy
o2 = 2; always concave up
Ay _ 4. .
@ = ~ @3 concave up on (—00,1/2); concave down on
(1/2,00).

2
57 = — cot? t; concave up on (—o0, 0); concave down on
(0,00)
d®y _ 4(13+3cos(4t)) . . .
i = (cos t43cos(30)7 obtained with a computer algebra system;

concave up on ( — tan~(v/2/2), tan~1(+/2/2)), concave down
on (—7/2,—tan"%(v/2/2)) U (tan~1(v/2/2),7/2)

L=6n

L=234



37. L = 2.4416 (actual value: L = 2.42211)
39. L & 4.19216 (actual value: L = 4.18308)

41. The answer is 167 for both (of course), but the integrals are
different. 19.

43. SA = 8.50101 (actual value SA = 8.02851

Section 9.4
—1
1. Answers will vary. y
3.7
‘ )
7. A=P(2.5,7/4)and P(—2.5,57/4); y

B = P(—1,57/6) and P(1, 117 /6);
C = P(3,4n/3) and P(—3,7/3);
D = P(1.5,27/3) and P(—1.5,57/3);

9. A= (v2,V2) 2 |
B=(v2,—V2)
€ = P(\/5,—0.46) -

D = P(+/5,2.68)

y
2
11, 1 2. ‘ :
-8 -6 —a
t T X
1 2

27.

> <

)

N
|
~ ~
- < t
x

29.
15. > -
ol
2l
4l
, 31 X2+ (y+2)2 =4
33. y=2/5x+7/5
2+ 35. y=4
2 2 _
17. 37. xX*+y- =4
+ X 39. 0:7{'/4
2 2
41. r = 5secl

-2 43. r=cosf/sin’ 0




45.
47.
49.
51.
53.

55.

r=+7
P(v/3/2,7/6), P(0,7/2), P(—\/3/2,57/6)
P(0,0) = P(0,7/2), P(v/2,7/4)

P(V2/2,7/12), P(—\/2/2,57/12), P(\/2/2, 3 /4)

For all points, r = 1; 6 =

7/12, 57/12, 7w /12, 117 /12, 137 /12, 177/12, 197/12, 237/12.

Answers will vary. If m and n do not have any common factors,

then an interval of 2nm is needed to sketch the entire graph.

Section 9.5

1. Usingx = rcosf and y = rsin 6, we can write x = f(6) cos 0,

y = f(0) sin 6.
3. (a) % = —cotf
(b) tangentline: y = —(x — v/2/2) + /2/2; normal line:
y=x
dy _ cos §(1+42sin 6)
5. (@) dx  cos? O—sin 0(1+sin 6)
(b) tangent line: x = 3v/3/4; normal line: y = 3/4
dy __ fcosf+sind
7. (@) dx cosn‘)—ﬁs;n(-)
(b) tangentline:y = —2/7x + 7/2; normal line:
y=m/2x+m/2
9 dy __ 4sin(t) cos(4t)+-sin(4t) cos(t)
. (@) dx — 4cos(t) cos(4t) —sin(t) sin(4t)
(b) tangentline: y = 5v/3(x + v/3/4) — 3/4; normal line:
y=—1/5V3(x+/3/4) —3/4
11. horizontal: 0 = 7/2,37/2;
vertical: 6 = 0, w, 27
13. horizontal: # = tan—1(1/+/5), 7/2, m —tan~1(1//5), 7 +
tan~1(1/+/5), 37/2, 2 — tan"1(1/+/5);
vertical: § = 0, tan—1(y/5), m — tan=1(\/5), 7, 7 +
tan=1(v/5), 27 — tan~1(/5)
15. Inpolar: 0 =0 2 0=
In rectangular: y = 0
17. area=4m
19. area=m7/12
21. area=7 — 3+/3/2
23. area=7 + 3\/§
/3 1 T/6 1 1
25. area= / = sin%(36) d — / Zcos?(30) df = — +
w/12 w/12 2 12 24
5m/12 q /2 q
27. area :/ Z(1—cos )2 df + Z(3cos0)? df =
0 2 57/12
1
Zaw—vﬁfvi—z)zams
29. 4w
31. L = 2.2592; (actual value L = 2.22748)
33. SA = 1l6rm
35. SA=32r1/5
37. SA = 36rm
Chapter 10

Section 10.1

9.
11.
13.

15.

17.

19.
21.

23.

25.

27.

29.

right hand
curve (a parabola); surface (a cylinder)
a hyperboloid of two sheets

|| AB || = V/&; || BC|| = V/17; || AC|| = V/11. Yes, itis a right
triangle as || AB ||2 + || AC||?> = || BC||?.

Center at (4, —1,0); radius = 3
Interior of a sphere with radius 1 centered at the origin.

The first octant of space; all points (x, y, z) where each of x, y and
z are positive. (Analogous to the first quadrant in the plane.)

N
&_,>>_ N ey
X1 \
"\
4
2
‘\\—2 ﬁz\\‘
]y
—2
V2 =x
z:(/x2+y2)zzx2+y2
2
2 Z
a) x=y" + —
(a) y 5
2 2
b 2+ +L =1
9 4




29. The force on each chain is 100lb.
31. The force on each chain is 50lb.
33. 0 = 5.71°; the weight is lifted 0.005 ft (about 1/16th of an inch).

31 35. 0 = 84.29°; the weight is lifted 9 ft.

Section 10.3
1. Scalar
3. By considering the sign of the dot product of the two vectors. If
the dot product is positive, the angle is acute; if the dot product is
Section 10.2 negative, the angle is obtuse.
) 5. =22
1. Answers will vary.
7. 3

3. Avector with magnitude 1.
9. not defined

5. It stretches the vector by a factor of 2, and points it in the

opposite direction. 11. Answers will vary.

13. 6 =0.3218 ~ 18.43°
15. 6 = 7/4 = 45°

7. PG = (—4,8) = —4i+ 4]

9. PQ=(2,2,0) =2/ +2
L. L. 17. Answers will vary; two possible answers are (—7, 4) and (14, —8).
11.  (a) 44+vV=(3,2,1);0—vV=(—1,0,-3); ) )
7l — 2V = <7r — V2, m =2, -7 — 2ﬂ> 19. ?:s;versg\;wll vary; two possible answers are (1,0, —1) and

(c) X=(-1,0,-3). 21. projyi =(—1/2,3/2).

v 23. projyii = (—1/2,—1/2).
i 25. projyi = (1,2,3).
i+ 27. G = (—1/2,3/2) + (3/2,1/2).

/ 29. G =(—1/2,-1/2) + (—5/2,5/2).
13. X 31 U= (1,2,3) + (0,3, —2).

v Q
A 33. 1.96lb
35. 141.42ft-lb
37. 500ft-Ib
39. 500ft-Ib

Sketch of i — V shifted for clarity.
Section 10.4

1. vector

3. “Perpendicular” is one answer.

15.

23.
25.
27.

5. Torque
N 7. Uxv={(11,1,-17)
‘; 9. UxVvV= <4-77 —36, —44)
11. 4 x vV =(0,0,0)
13. ixk= 7]'
17. @]l = V17, || V]| = V3, || i+ 7| = V14, || i — V|| = V26 15. Answers will vary.
19. |G| =7,|7| =35 ||G+7| =42 ||G— 7| =28 17. 5
21. U= (3/+/30,7/1/30) 19. 0
0= (1/3,-2/3,2/3) 21. V14
i = (cos 50°,5in50°) A (0.643, 0.766). 3.3
25. 5v/2/2
27. 1
HUH:\/sinzﬂcoszw—f—sinzﬂsinzap—&-coszﬂ 9. 7
= \/sin2 (cos? ¢ + sin? ) + cos? 31. 2
— \/sin? 0 + cos? 0 33 j:% (1,1,-2)

=1 35. (0,41,0)



37.
39.
41.

87.5ft-Ib
200/3 = 66.67ft-Ib

With & = (u1, uz,u3) and V = (v1, v2, v3), we have

11.

13.

Answers may vary;
Standard form: —7(x —2) +2(y — 1)+ (z—2) =0
general form: —7x + 2y 4z = —10

Answers may vary;

U- (U xV)={u,uz,u3) - ({u2vs — usvz, —(u1vs — u3v1), u1v2 — Uzv1)) Standard form: 2(x — 1) — (y — 1) = 0

= u1(uzvs — uzvz) — u2(u1vs — uzva) + u3(urvy — Uzv1)

=0.

Section 10.5

1.
3.
5.

11.

13.

15.
17.
19.
21.
23.
25.
27.
29.

31.

A point on the line and the direction of the line.
parallel, skew

vector: £(t) = (2, —4,1) +t(9,2,5)
parametric: x =2+ 9t,y = —4 4 2t,z=1+ 5t
symmetric: (x —2)/9=(y+4)/2=(z—1)/5

. Answers can vary: vector: £(t) = (2,1,5) + t (5, -3, —1)

parametric: x =2+4+5t,y=1—-3t,z=5—1t
symmetric: (x —2)/5=—(y—1)/3=—(z—5)

. Answers can vary; here the direction is given by dy x 32: vector:

£(t) = (0,1,2) 4+ t(—10,43,9)
parametric: x = —10t,y =1+ 43t,z =2 + 9t
symmetric: —x/10 = (y — 1)/43 = (z—2)/9

Answers can vary; here the direction is given by t71 X 32: vector:
ot) =(7,2,-1) +t(1,-1,2)
parametric: x =7+t y=2—t,z= -1+ 2t
symmetricc x —7=2—y=(z+1)/2
vector: £(t) = (1,1) +t(2,3)

parametric: x =14 2t,y =1+ 3t
symmetric: (x —1)/2 = (y —1)/3

parallel

intersecting; ¢1(3) = ¢2(4) = (9, —5,13)
skew

same

V/41/3

5v/2/2

3/V2

Siqce lioth P and Q are on the line, P_é is parallel to d. Thus
PQ x d = 0, giving a distance of 0.

The distance formula cannot be used because since c71 and 32 are
parallel, Cis 0 and we cannot divide by || 0 ]|.

Since 31 and 32 are parallel, Pl—PE lies in the plane formed by the
two lines. Thus Pl_Pz’ X 32 is orthogonal to this plane, and

= (;%7; X (72) X ds is parallel to the plane, but still orthogonal
to both 31 and 32. We desire the length of the projection of Pl_P;
onto ¢, which is what the formula provides.

Section 10.6

1.

A point in the plane and a normal vector (i.e., a direction
orthogonal to the plane).

. Answers will vary.
. Answers will vary.

. Standard form: 3(x —2) — (y—3)+7(z—4) =0

general form: 3x —y + 7z = 31

. Answers may vary;

Standard form: 8(x — 1) +4(y —2) —4(z—3) =0
general form: 8x +4y — 4z =4

15.

17.

19.

21.

23.

25.

27.

29.

31

general form: 2x —y =1

Answers may vary;
Standard form: 2(x —2) — (y+6) —4(z—1) =0
general form: 2x —y — 4z =6

Answers may vary;

Standard form: (x —5)+ (y—7)+(z—3) =0
general form: x +y 4+ 2z =15

Answers may vary;

Standard form: 3(x +4) +8(y —7) —10(z—2) =0
general form: 3x + 8y — 10z = 24

Answers may vary:

x = 14t
=4 y=-—1-10t
z=2-8t
(_3’_7)_5)

No point of intersection; the plane and line are parallel.
5/7
1/V/3

If P is any point in the plane, and Q is also in the plane, then PQ
lies parallel to the plane and is orthogonal to 7, the normal vector.
Thus i - PQ = 0, giving the distance as 0.

Chapter 11

Section 11.1

1.

3.

parametric equations
displacement

y

0.5

—0.5




13.

15.

17.
19.
21.

23.

25.

27.

<

|| F(t) || = v/25cos? t + 9sin? t.
[|7(t) || = Vcos? t + 2 + 4.

Answers may vary; three solutions are
F(t) = (3sint + 5,3 cost + 5),

r(t) = (—3cost+ 5,3sint + 5) and
F(t) = (3cost + 5,—3sint + 5).

Answers may vary, though most direct solutions are
r(t) = (—3cost+ 3,2sint — 2),

r(t) = (3cost+3,—2sint — 2) and

F(t) = (3sint+ 3,2cost — 2).

Answers may vary, though most direct solutions are
Ft) = (t,—1/2(t — 1) +5),

F(t) = (t+1,-1/2t +5),

F(t) = (—2t+1,t+5) and

r(t) = (2t +1,—t+5).

Answers may vary, though most direct solution is
r(t) = (3 cos(4nt), 3 sin(4nt), 3t).

29.
31.

(1,1)
(1,2,7)

Section 11.2

11.
13.

15.

17.

19.
21.
23.
25.
27.
29.

31
33.
35.
37.
39.
41.

component

It is difficult to identify the points on the graphs of F(t) and 7/ (t)
that correspond to each other.

(¢%,0)

(2t,1,0)

(0,00)

7/(t) = (—1/t%,5/(3t + 1)2,sec? t)

7(t) = (2t,1) - (sint, 2t + 5) + (2 + 1,t — 1) - {cost,2) =
(2 4+ 1) cost + 2tsint + 4t + 3

2
/L)
- 1 > X
2 4 6

FI(t) = (2t + 1,2t — 1)

(1)

/'\/ o x
2 4

7/ (t) = (2t,3t> — 1)

o) = (2,0) +t(3,1)

o) = (=3,0,7) + £ (0,—3,1)
t=0

—2 +

r(t) is not smooth at t = 37 /4 + nm, where n is an integer
Both derivatives return (5t*, 4> — 32, 31?).

Both derivatives return

(2t — et —1,cost — 3t%, (> 4 2t)e' — (t — 1) cost — sint).
(tan~1t,tant) 4+ C

(4,—4)

f(t) ={(In|t+ 1|+ 1,—In|cost| + 2)

F(t) = (—cost+1,t —sint, et —t—1)

107w

V(- e

Section 11.3

1.

Velocity is a vector, indicating an objects direction of travel and its
rate of distance change (i.e., its speed). Speed is a scalar.



11.

13.

15.

17.

19.

21.

23.

25.

27.

29.
31.
33.

The average velocity is found by dividing the displacement by the
time traveled — it is a vector. The average speed is found by
dividing the distance traveled by the time traveled — it is a scalar.

One example is traveling at a constant speed s in a circle, ending
at the starting position. Since the displacement is 0, the average

velocity is 0, hence || 0 || = 0. But traveling at constant speed s
means the average speed is also s > 0.
v(t) = (2,5,0),d(t) = (0,0,0)
V(t) = (—sint,cost), d(t) = (—cost, —sint)
V(t) = (1,cost), d(t) = (0, —sint)
y
15 ¥(r/4

14 /—

0.5 +
RGO )
05 1 15
v(t) = 2t +1, -2t +2),d(t) = (2,-2)
y
27 v(m/4)
S ———
2 4 6
—2\} a(r/4)
—4 1
—6 |
—8 1
V() || = vV4t> + 1.

Minatt = 0; Maxat t = +1.

| v(t) || = 5.

Speed is constant, so there is no difference between min/max
|| V(t) || = | sect|vtan? t + sec? t.

min: t = 0; max: t = 7/4

| V(e) | = 13.

speed is constant, so there is no difference between min/max
1V(t) | = /422 + 1+ 82/(1 - 82).

min: t = 0; max: there is no max; speed approaches oo as
t— +1

(a) (1) =(1,1);72(1) = (1,1)

(b) 71(1) = (1,2); || "a(1) || = v/5; 1 (1) = (0,2)
V(1) = (2,4); || %2(1) | = 2V/5; @2(1) = (2,12)

(a) 71(2) = (6,4);12(2) = (6,4)

(b) 71(2) = (3,2); ]| "1(2) || = V13; @1(2) = (0,0)
%(2) = (6,4); || %2(2) || = 2V13; 32(2) = (0,0)

W(t) = (2t +1,3t +
v(t) =

Displacement: (0, 0, 67); distance traveled: 2v/137 & 22.65ft;
average velocity: (0,0, 3); average speed: v/13 = 3.61ft/s

+2),7(t) = (£ +t+5,3t2/2 + 2t — 2)

(sint, cost), F(t) = (1 — cost,sint)

37.

39.

41.

. Displacement: (0

,0); distance traveled: 27 & 6.28ft; average

velocity: (0, 0); average speed: 1ft/s

At t-values of sin=%(9/30)/(47) 4+ n/2 ~ 0.024 + n/2 seconds,
where n is an integer.

(a) Holding the crossbow at an angle of 0.013 radians,
= 0.745° will hit the target 0.4s later. (Another solution
exists, with an angle of 89°, landing 18.75s later, but this is
impractical.)

(b

In the .4 seconds the arrow travels, a deer, traveling at
20mph or 29.33ft/s, can travel 11.7ft. So she needs to lead
the deer by 11.7ft.

The position function is 7(t) = (220¢t, —16¢? + 1000). The
y-component is 0 when t = 7 9; 7(7.9) = (1739.25,0), meaning
the box will travel about 1740ft horizontally before it lands.

Section 11.4

1.
3.

11.

13.

15.

17.

19.

21.

23.

25.

27.

1
T(t) and N(t).

(¢ at 2t—1
(t) = <\/20t2 at+1" /202 —4t+1

T tsint
T(t) — _cos
() Vcos? tsin? t

simplified as just (— cos t, sint) as V/cos? tsin® t # cos tsint, but
rather | cos tsint|.) T(/4) = (—v/2/2,7/2/2)

1) = (4/V17,1/V17)

(— cos t,sint). (Be careful; this cannot be

£(t) = (2,0) + t(4/V/17,1/+/17); in parametric form,
[ x = 2+4t/V17
4 7{ y = t/V17
(t) = (v2/3, \[/4>+t< V2/2,4/2/2); in parametric form,
_{ = V2/4—-2t/2
N = V2/4+V2t)2

—sint,cost); N(t) = (—cost, —sint)

sin t 2cost
\/4 cos? t+4sin? t \/4 cos? t+sin? t
2cost sin t
\/4 cos? t+sin2 t \/4 cos? t+4sin? t
e

sure to show work

N(t)
(a) B
(b) N(r/4) = (-5//34,-3//34)
(a) Be sure to show work
o 10~ (35 )

T(t) = % (2, cost, —sint); N(t) = (0, —sint, — cos t)

T(t) = \/ﬁ (—asint,acost, b); N(t) = (— cost, —sint,0)
— 4t _ 16t
ar = mandaN_ 4 1148

Att=0,ar =0andany = 2;

Att=1,ar = 4/v/5anday = 2//5.

At t = 0, all acceleration comes in the form of changing the
direction of velocity and not the speed; att = 1, more
acceleration comes in changing the speed than in changing
direction.

ar =0anday =2

Att=0,ar = 0andany = 2;

Att=m/2,ar =0andan = 2.

The object moves at constant speed, so all acceleration comes
from changing direction, hence ar = 0. d(t) is always parallel to
N(t), but twice as long, hence ay = 2.



29. ar =0anday = a
Att=0,ar =0andany = q;
Att =m/2,ar =0anday = a.
The object moves at constant speed, meaning that ar is always 0.
The object “rises” along the z-axis at a constant rate, so all
acceleration comes in the form of changing direction circling the
z-axis. The greater the radius of this circle the greater the
acceleration, hence ay = a.

Section 11.5

1. time and/or distance

3. Answers may include lines, circles, helixes

5 K

7. s=3t,so7(s) = (2s/3,s/3,—2s/3)

9. s =/13t,s0 F(s) = (3cos(s/v/13), 3sin(s/v/13), 25//13)

1. k=—1%__
" (1+(32—1)2)%/2

k(0) =0, K(1/2) = 1713% ~ 2.74.

_ | cos x| .
13. = ——7
H (1—0—sir\2 x)3/2
k(0) =1,k(n/2) =0
15. K — |2 cos t cos(2t)+4 sin tsin(2t)] .

’

(4 cos? (2t) +sin? t)3/2
k(0) =1/4,k(n/4) =8

|62 42|

17 k= —1o0+2[ .
a (a2 (32-1)2)%/?’

k(0) =2, K(5) = ﬁ\j@ ~ 0.0004
19. Kk =0;

k(0) =0,k(1) =0
21 k=

#(0) = 3/13, (n/2) = 3/13

. )
23. maximized atx = + e

25. maximizedatt = 1/4

27. radius of curvature is 5v/5/4.

29. radius of curvature is 9.

31. ¥+ (y—1/2)2 =1/4,0rc(t) = (1/2cost,1/2sint + 1/2)
33. x> + (y+8)2 =81,0r&(t) = (9cost,9sint — 8)

Chapter 12

Section 12.1

Answers will vary.
topographical

surface

Nounowoe

domain: R?
range: z > 2
9. domain: R?
range: R
11. domain: R?
range:0<z<1

13. domain: {(x,y) | X2 4+ y?> < 9}, i.e., the domain is the circle and
interior of a circle centered at the origin with radius 3.
range: 0 <z<3

15. Level curves are linesy = (3/2)x — ¢/2.
y

17. Level curves are parabolas x = y? + c.

y
4

19. Level curves are circles, centered at (1/c, —1/c) with radius
2/c2 — 1. When ¢ = 0, the level curve is the liney = x.

2 2
21. Level curves are ellipses of the form ’c% + cZyﬁ =1,ie,a=c
and b = ¢/2.

—4 1

23. domain: x + 2y — 4z # 0; the set of points in R3 NOT in the
domain form a plane through the origin.
range: R

25. domain: z > x> — y?; the set of points in R3 above (and
including) the hyperbolic paraboloid z = x2 — 2.
range: [0, co)

27. The level surfaces are spheres, centered at the origin, with radius

V.



29.

31.

1)

2
The level surfaces are paraboloids of the form z = X? + y?; the
larger c, the “wider” the paraboloid.

The level curves for each surface are similar; for z = /x2 + 4y2

2 2
the level curves are ellipses of the form % +- 62”7
and b = ¢/2; whereas forz = x% + 4y? the level curves are

ellipses of the form % + cy/—z4 =1,i.e,a=+/cand b = \/c/2.
The first set of ellipses are spaced evenly apart, meaning the

function grows at a constant rate; the second set of ellipses are
more closely spaced together as ¢ grows, meaning the function

grows faster and faster as c increases.

The function z = 1/x2 + 4y2? can be rewritten as 22 = x*> + 4y?,
an elliptic cone; the function z = x2 + 4y? is a paraboloid, each
matching the description above.

Section 12.2

11.
13.
15.

17.

19.

Answers will vary.

Answers will vary.
One possible answer: {(x,y)[x* +y? < 1}

Answers will vary.

One possible answer: {(x,y)|x*> +y? < 1}
Answers will vary.

interior point: (1, 3)

boundary point: (3, 3)

Sis aclosed set

Sis bounded

Answers will vary.

interior point: none

boundary point: (0, —1)

Sis a closed set, consisting only of boundary points
Sis bounded

D = {(x,y) |y # 2x}; Dis an open set.
D= {(x,y) |y > x*}; Dis an open set.
(a) Alongy = 0, the limitis 1.
(b) Along x = 0, the limit is —1.
Since the above limits are not equal, the limit does not exist.
mx(1 —m)
m2x + 1 '
(b) Along x = 0, the limitis —1.
Since the above limits are not equal, the limit does not exist.

(a) Alongy = mx, the limit is

(a) Alongy = 2, the limit is:

x+y—-3 . x-—1
m = lim
=12 ¥ —1 x—1x2 — 1
= i
x—=1x+1
=1/2.
(b) Alongy = x + 1, the limit is:
Xx+y-3 2(x — 1)
m = |im
(y)—(12) x2 =1 x—1 x2 —1
= lim
x—1x4+1
=1.

Since the limits along the lines y = 2 and y = x + 1 differ, the
overall limit does not exist.

Section 12.3

=1,ie,a=c

1. Aconstantis a number that is added or subtracted in an
expression; a coefficient is a number that is being multiplied by a
nonconstant function.

3.

5. foZXy_llfy:XZ+2
f(1,2) =3,£(1,2) =3

7. fx = —sinxsiny, f, = cosxcosy
fu(m/3,7/3) = =3/4,f,(7/3,7/3) =1/4

9. fi=2y+6x,f,=x*+4
fxx =2y+ S;fyy =0
froy = 2%, fyx = 2x

11 fi=1/y.fy = —x/y?
fix =0, fyy = 2X/y3
fxy = _1/y2:fyx = _1/)’2
13. fo = 2+ f, = 2y
foo =27 faxed Y £ = 200+ 4 a2’
fxy = 4Xyexz+y2:fyx = 4Xyexz+y2
15. fy = cosxcosy, fy = —sinxsiny
fix = —sinxcosy, fyy = —sinxcosy
fxy = —sinycosx, fyx = —sinycosx
17. fi = —5y3sin(5xy3), fy = —15xy? sin(5xy®)
froo = —25y5 cos(5xy?),
= —225x%y* cos(5xy3) — 30xy sin(5xy3
vy
fry = —75xy° cos(5xy3) — 15y2 sin(5xy3),
y
x = —75xy° cos(5xy3) — 15y? sin(5xy>
¥
2
19. _ 2y , 4Axy
F \/4xy2+1 fy = Va2 41
2.2
fxx = 3;fyy Lya +
\/4xy2+1 Vaxy2+1 \/4Xy +1
_ 4y _ 4y
Fo N /4xy2 Y \/ axy2+1’ P \ /4xy2 Y \/ dxy?+1
— 2x _ 2y
2 fo= ~grpie b = ~wnioe
Fo = 82 _ 2 Fry = 8y? _ 2
- (x2+y2+1) (P22 T 2y +1)3 T (@2 +1)?
8xy
fuy (x2+y +1)3’fy" T 4y t1)3
23. fy=6xf, =0
fxx =6, fyy =0
fxy =0, fyx =0
25 fx= 4xy Jy=
|
fxx = 4X2y’fyy - Zr;);
1 1
fxy = —W,fyx = Ty
27. f(x,y) = xsiny + x + C, where C s any constant.
29. f(x,y) = 3x%y — 4xy? + 2y + C, where Cis any constant.
31. fx — 2X€’2y732,fy — 2)(26,2y73z,]cZ — _3X262y73z
fyz — 76X262y_31 fzy — 76X282V_3Z
33. fx = %,fy 7y3 /fz = 7yzzz

f — _6bx f — _6bx
yz 7327y = 38,2

Section 12.4

1.
3.
5.
7.
9.

T
T
dz = (siny + 2x)dx + (xcos y)dy

dz = 5dx — 7dy
dz:\/TTy x+2 dy,W|thdx—fOOSanddy—.1. At

(3,7), dz = 3/4(—0. 05) " 1/8(.1) = —0.025, s0
£(2.95,7.1) ~ —0.025 + 4 = 3.975.



11.

13.

15.

17.
19.

21.

dz = (2xy — y?)dx + (x* — 2xy)dy, with dx = 0.04 and
dy = 0.06. At (2,3), dz = 3(0.04) + (—8)(0.06) = —0.36, s0
f(2.04,3.06) ~ —0.36 — 6 = —6.36.

The total differential of volume is dV = 4ndr + wdh. The
coefficient of dr is greater than the coefficient of dh, so the
volume is more sensitive to changes in the radius.

Using trigonometry, £ = xtan 6, so d¢ = tan 8dx + x sec? 6d#.
With # = 85° and x = 30, we have d¢ = 11.43dx + 3949.38d6.
The measured length of the wall is much more sensitive to errors
in @ than in x. While it can be difficult to compare sensitivities
between measuring feet and measuring degrees (it is somewhat
like “comparing apples to oranges”), here the coefficients are so
different that the result is clear: a small error in degree has a
much greater impact than a small error in distance.

dw = 2xyz3 dx + x?23 dy + 3x%yz% dz
dx = 0.05,dy = —0.1. dz = 9(.05) + (—2)(—0.1) = 0.65. So
£(3.5,0.9) & 7 + 0.65 = 7.65.

dx =0.5,dy =0.1,dz = —0.2.
dw = 2(0.5) + (—3)(0.1) + 3.7(—0.2) = —0.04, so
f(2.5,4.1,4.8) =~ —1 — 0.04 = —1.04.

Section 12.5

1.

11.

13.
15.
17.

19.

21.

23.

25.

© gt

Because the parametric equations describe a level curve, z is
constant for all t. Therefore % =0.

dx of
and By

F
(a) % =3(2t) +4(2) =6t +8.
(b) Att=1, % =14
(a) % = 5(—2sint) + 2(cost) = —10sint + 2 cost
(b) Att=rm/4, % = —4/2.
(a) % = 2x(cos t) + 4y(3 cost).
(b) Att=m/4,x=+/2/2,y=3v2/2,and £ = 19.
t = —4/3; this corresponds to a minimum
t = tan~1(1/5) + nm, where n is an integer

We find that
dz

dt
Thus % = 0 whent = mnor 7n + 7/2, where n is any integer.

= 38costsint.

(a) % = 2xy(1) +x2(2) = 2xy + 2x%;

2 = 2xy(—1) + x2(4) = —2xy + 4x2

(b) Withs=1,t=1,x=1andy = 2.Thus% = 6and
2 =9
ot
(a) % = 2x(cos t) + 2y(sint) = 2xcost + 2ysint;
% = 2x(—ssint) + 2y(scost) = —2xssint + 2ys cos t
(b) Withs=2,t=m/4,x=+2andy = /2. Thus 92 = 4
and % =0
fx = 2xtany, f, = x> sec? y;
dy  2tany

dx  xsecly

_ (x+y)(0 = (2 9
B (x+y?)?

f = V@) = 4 y)(@),
g (x+y2)? ’
dy  2x(x+y?) — (2 +y)
& x4y —2y(2 +y)

fx

’

Section 12.6

1.

11.
13.

15.

17.

19.

21.

23.

25.

27.

A partial derivative is essentially a special case of a directional
derivative; it is the directional derivative in the direction of x or y,
i.e., (1,0) or (0,1).

u=(0,1)
maximal, or greatest

Vi= (=2 +y* +y,—x + 2y +x)

_ -2 -2
Vf - < (X2+y211)2 ’ (x2+y211)2 >
Vi=(2x—y—7,4y — x)

Vi={=2xy+y*+y,—x* + 2xy + x); Vf(2,1) = (—2,2). Be
sure to change all directions to unit vectors.

(a) 2/5 (i = (3/5,4/5))
(b) —2v/5 (i = (-1/v/5,-2V5))

—2 —2
Vf= <(x2+y211)2’ (Xeryzi/H)z >; Vf(1,1) = (-2/9,-2/9). Be
sure to change all directions to unit vectors.

(a) 0(F = (1/v2,-1/v2))

(b) 2v2/9 (@ = (-1/v2,-1/V2))
V= (2x—y— 7,4y — x); Vf(4,1) = (0, 0).

(a) O

(b) O

Vi={-2y+y2+y,—x*+ 2xy + x)
(@) Vf(2,1) = (-2,2)
(b) || VA2, 1) [| =] (-2,2) || = V8
(C) <27_2>
(d) (1/v2,1/v2)

Vi = (@t @it
(@) VA(1,1) =(-2/9,-2/9).
(b) I VAL D) [l =1 (~2/9,-2/9) || = 2v2/9
(c) (2/9,2/9)
(d) (1/v2,-1/V2)
Vi=(2x—y—7,4y — x)

(a) Vf(4,1) = (0,0)
(b) O

(c) (0,0)

]

All directions give a directional derivative of 0.

(a

VE(x,y,2) = (6xz> + 4y, 4x, 9x*2> — 62)
(b) 113/4/3

(@) VF(x,y,z) = (2xy?,2y(x* — 2%), —2y%z)
(b) O

Section 12.7

1.

Answers will vary. The displacement of the vector is one unit in
the x-direction and 3 units in the z-direction, with no change in y.
Thus along a line parallel to V, the change in z is 3 times the
change in x —i.e., a “slope” of 3. Specifically, the line in the x-z
plane parallel to z has a slope of 3.



3.7
x=2+4t
5. (a) 4&(t) = y=3
z= —48 — 12t
x=2
(b) £,(t) = y=3+t
7= —48 — 40t
x=2+1t//10
(c) £z(t) =14 y=3+3t/V10
7= —48 — 664/2/5t
x=4+t
7. @ Lt)y=< y=2
z=2+3t
x=4
(b) £(t) = y=2+t
z=2-75t
x=4+t/\2
© Gt)=3 y=2+t/v2
z=2— \/§t
x=2—12t
9. l3(t) ={ y=3—40t
z=—48—t
x=4+3t
11. Lz(t) = y=2-—5t
z=2-—1t
13. (1.425,1.085, —48.078), (2.575,4.915, —47.952)
15. (5.014,0.31,1.662) and (2.986,3.690, 2.338)
17. —12(x —2) —40(y —3) — (z+48) =0
19. 3(x —4) — 5(y — 2) — (z — 2) = 0 (Note that this tangent plane
is the same as the original function, a plane.)
21. VF=(x/4,y/2,2/8);atP, VF = (1/4,4/2/2,/6/8)
x=1+t/4
(a) Lz() =< y=+v2+2t)2
z=1+/6+/6t/8
(b) F(x—1)+2(y—v2) + Y (z—V6) =0.
23. VF=(y? — 22, 2xy, —2xz); at P, VF = (0,4,4)
x=2
(@) Lz(t)y=< y=1+4t
z=-—-1+4t
(b) 4(y—1)+4(z+1)=0.
Section 12.8
1. F;itisthe “other way around.”
3.7
5. One critical point at (—4, 2); fix = 1 and D = 4, so this point
corresponds to a relative minimum.
7. One critical point at (6, —3); D = —4, so this point corresponds
to a saddle point.
9. Two critical points: at (0, —1); fix = 2 and D = —12, so this point
corresponds to a saddle point;
at (0,1), fix = 2 and D = 12, so this corresponds to a relative
minimum.
11. One critical point at (0,0). D = —12x%y?, so at (0,0), D = 0 and

the test is inconclusive. (Some elementary thought shows that it
is the absolute minimum.)

13.

15.

17.

One critical point: fy = O when x = 3; f, = O wheny = 0, so one
critical point at (3, 0), which is a relative maximum, where

2
_ V2 —16 _ 16
S = (16— (x—3)2—y2)3/2 andD = (16— (x—3)2—y2)2 "

Both f, and f, are undefined along the circle (x — 3)2 + y? = 16;
at any point along this curve, f(x, y) = 0, the absolute minimum
of the function.

The triangle is bound by the linesy = —1,y = 2x + 1 and
y=—2x+1.

Along y = —1, there is a critical point at (0, —1).

Along y = 2x + 1, there is a critical point at (—3/5, —1/5).
Alongy = —2x + 1, there is a critical point at (3/5, —1/5).

The function f has one critical point, irrespective of the constraint,
at (0,—1/2).

Checking the value of f at these four points, along with the three
vertices of the triangle, we find the absolute maximum is at

(0,1, 3) and the absolute minimum is at (0, —1/2,3/4).

The region has no “corners” or “vertices,” just a smooth edge.
To find critical points along the circle x2 4 y? = 4, we solve for y2:
y?> = 4 — x?. We can go further and state y = +/4 — x2.

We can rewrite f as

) =x4+2x+ (B8—x)+VE—x2 =2x+4+4— X2 (We
will return and use —v/4 — x2 later.) Solving f/(x) = 0, we get
x=V2=y= ﬁ.f’(x) is also undefined at x = £2, where
y =0.

Usingy = —v/4 — x2, we rewrite f(x, y) as

f(x) = 2x + 4 — /4 — x%. Solving f/(x) = 0, we get
x=-V2,y=-v2.

The function fitself has a critical point at (—1, —1).

Checking the value of fat (—1, —1), (v/2,v2), (—v/2, —V/2),
(2,0) and (—2,0), we find the absolute maximum is at (2, 0, 8)
and the absolute minimum is at (—1, —1, —2).

Chapter 13

Section 13.1

11.

13.

15.

C(y), meaning that instead of being just a constant, like the
number 5, it is a function of y, which acts like a constant when
taking derivatives with respect to x.

curve to curve, then from point to point
(a) 18x% + 42x — 117
(b) —108
(@) x*/2 —x®>+2x—3/2
(b) 23/15
(a) siny

(b) m/2

4 1 1 4
// dydxand/ / dx dy.
1 J-2 —2J1

area of R = 9u?

4 7—x
/ / dy dx. The order dx dy needs two iterated integrals as
2 x—1

x is bounded above by two different functions. This gives:

3 y+1 5 77—y
/ / dx dy + / / dx dy.
1 J2 3 J2

area of R = 4u?

V4
dx dy

1 VX 1 8
/ / dy dx and/ /
o Jx 0 Jy?

area of R = 7/15u?



17.

19.

21.

R
X
-2 2
4 4—y
areaofR:/ / dx dy
0 —/4—y
y
2 y
R
t X
2
/16 +y /4 =1
2 |
4 rr/4—x2 /4
areaofR:/ / dy dx
0 —/4—x2/4
y

2 px+f2
area of R = / / dy dx
—1 XZ

Section 13.2

11. —

13.

volume

The double integral gives the signed volume under the surface.

Since the surface is always positive, it is always above the x-y
plane and hence produces only “positive” volume.

1 2 X
6;/ / (— + 3) dy dx
-1J1 \Y
2 4—2y
112/3,-/ / (3% —y +2) dxdy
0 0

11—
16/5; / / (x+y+2) dydx
—1J0

1 v 1 vy
:/ / xzydydx:/ / X2y dx dy.
0 Jx? 0 Jy?
1 p1 1 p1
O:/ / xz—yzdydx:/ / x> — y? dx dy.
—1J-1 —1J-1

15.

17.

19.

21.

23.

25.

2 3-3/%
6:/ / (6 —3x—2y)dydx =
o Jo

3 pr2-2/3y
/ / (6 — 3x — 2y) dx dy.
o Jo
3 V9—x2
0:/ / (x3y—x)dydx:

/ /ﬂ x3y—x) dx dy.

Integrating e with respect to x is not possible in terms of

elementary functions. // e dydx =e* — 1.

1
2
Integrating/ Ziy dx gives tan~1(1/y) — 7/4; integrating
x2 +y?
1(1/y) is hard.

//0X2+ 2dyd)(_InZ

average valueof f=6/2 =3

average value of f = % =28/3

Section 13.3

1.

w

v

N

©o

11.

13.

f(rcos@,rsin), rdrdo

/ (3rcos 6 — rsin@ + 4)rdrdf = 4w

3 cos 0
/ (8 —rsin@)rdrdf = 16w

2
cos
Zﬂ/ (In(r?))rdrdd = 27 (In16 — 3/2)
2

/ r cos? 0 — 12 sin® G)rdrdt‘)—
6
/ r* cos( (26))rdrdo =0

w/2J0

/2

&
)
J
L
I
I

5
/ drd@- 1257/3
w/2J0

©/4 VB
/ / (rcosf + rsin@)rdrdf = 16v/2/3
0 0

15. (a) This is impossible to integrate with rectangular coordinates
as e~ 0®+7) does not have an antiderivative in terms of
elementary functions.

2T a
2
(b) / / re” drdf = 7(l—e™ 7).
o Jo
2
(c) lim m(1—e~?) = m. Thisimplies that there is a finite
a— o0
2 2
volume under the surface e~ *"+¥°) over the entire x-y
plane.
Section 13.4
1. Because they are scalar multiples of each other.

“little masses”

My measures the moment about the x-axis, meaning we need to
measure distance from the x-axis. Such measurements are
measures in the y-direction.

X =5.25
*x¥) =(0,3)



11. M = 150gm;
13. M=2b
15. M = 167 =~ 50.27kg
17. M = 547 = 169.65lb
19. M = 150gm; M, = 600; Mx = —75; (x,y) = (4, —0.5)
21. M =2lb; My = 0; My = 2/3; (x,y) = (0,1/3)
23. M = 167 =~ 50.27kg; My = 4m; My = 4m; (X,y) = (1/4,1/4)
25. M = 547 =~ 169.65lb; M, = 0; My = 504; (X,y) = (0,2.97)
27. Iy =64/3;1, = 64/3; 1o = 128/3
29. Iy =16/3;1, = 64/3;1o = 80/3
Section 13.5
1. arclength
3. surface areas
5. Intuitively, adding h to f only shifts f up (i.e., parallel to the z-axis)
and does not change its shape. Therefore it will not change the
surface area over R.
Analytically, fx = gx and fy, = gy; therefore, the surface area of
each is computed with identical double integrals.
27 27
7. SA:/ / /1 4+ cos? xcos? y + sin2 xsin? y dx dy
o Jo
1,1
9. SA:/ / V14 4x2 + 4y dxdy
—1J-1
3 p1
11. SA= / / V1494 49dxdy = 6Vv59 =~ 46.09
0o J-1
13. This is easier in polar:
27 4
SA = / / rV/1+ 4r2 cos? t + 42 sin? t dr df
o Jo
2T 4
:/ / 1+ 4r2 drdf
o Jo
= g(GS\/GS —1) ~ 273.87
15.
SA*/ \/1+1+4x2dydx
- / (2xv/2 + 4x?) dx
0
26
= ?ﬁ ~ 12.26
17. Thisis easier in polar:
27 4 2 2t ar2 2 t
SA_/ / r? cos? t + 4r? sin drdo
Tr2sin?t+r2costt
27
= / / /5 dr dé
o Jo
= 257v5 ~ 175.62
19. Integrating in polar is easiest considering R:

2T 1
SA:/ / r/1+c2+d?drdf
o Jo

27r1
_ i 2 2
/0 2(\/1+c +d)dy
=7v1+c?+d2.

The value of h does not matter as it only shifts the plane vertically
(i.e., parallel to the z-axis). Different values of h do not create
different ellipses in the plane.

Section 13.6

1.

11.

13.

surface to surface, curve to curve and point to point

Answers can vary. From this section we used triple integration to
find the volume of a solid region, the mass of a solid, and the
center of mass of a solid.

V=1 [t (8—x —y* — (2x+)) dxdy = 88/3

V=[5 J5 (cosxsiny+2—sinxcosy) dydx = w2 — ~ 6.728

1—x/3 p2—2x/3-=2y
dz dy dx: / / / dz dy dx

1 p3—3y pr2—2x/3-2
dz dx dy: / / dz dy dx
o Jo 0
3 r2—2x/3 1—x/3—2z/2
dy dz dx: / / / dy dz dx
o Jo 0
2 3—-3z/2 1—x/3—2z/2
dy dx dz: / / dy dx dz
o Jo 0
1 2—2y p3-—3y—3z/2
dx dz dy: / / / dx dz dy
o Jo 0
2 pl—z/2 p3-—3y—3z/2
dx dy dz: / / dx dy dz
o Jo 0
3 1—x/3 2—2x/3—2y
= / / dzdydx = 1.
o Jo 0
2 0 —y
dz dy dx: / / / dz dy dx
0 J—2Jy2)2
0 2 —y
dz dx dy: / / dz dx dy
—2Jo Jy2)2
2 2 —z
dy dz dx: / / / dy dz dx
o Jo J—v2z
2 2 —z
dy dx dz: / / dy dx dz
o Jo J—v2z
0 —y 2
dx dz dy: / / dx dz dy
—2Jy2/2 Jo
2 -z 2
dx dy dz: / / dx dy dz
0o J—v2zJo

<
|
O\N
ﬁ
~—
S 4
N
<
N
=3
|
N
Ry
w

2 p1 2x4-4y—4
dz dy dx: / / dz dy dx
0o Ji—x/2Jo
1 2 24y —4
dz dx dy: / / dz dy dx
o Ja2—2yJo
2 X 1
dy dz dx: / / / dy dz dx
o Jo Jz/a—x/2+1
4 2 1
dy dx dz: / / / dy dx dz
0 Jz/2Jz/4—x/2+41
1 by p2
dx dz dy: / / / dx dz dy
o Jo Jz/2—2y+2
4 1 2
dx dy dz: / / / dx dy dz
0 Jz/aJz/2—2y+2
4 el 2y—z/2—2
V:/ / / dxdydz =4/3.
o Jz/aJo



15.

dz dy dx:

dz dx dy:

dy dz dx:

dy dx dz:

dx dz dy:

dx dy dz:

— T — S —

1

1

1

1

1

1

Nc\c\%c\u\

122
/-
\/ﬁ/
0

1—

1—x 1 1 p1-22
/ dydzdx+/// dy dz dx
0 o Jx Jo
1-7 1,1 1=
dydxdz+/// dy dx dz
0 o Jz Jo
\/ﬁ/
0

Z

L

3

3

2

3

3

dz dy dx

dz dy dx

dx dz dy

dx dy dz

17.

19.

21.

23.

Answers will vary. Neither order is particularly “hard.” The order
dz dy dx requires integrating a square root, so powers can be
messy; the order dy dz dx requires two triple integrals, but each
uses only polynomials.

8
T

M =10, My, = 15/2, My, = 5/2, My, = 5;
(x,y,2) = (3/4,1/4,1/2)

M = 16/5, My, = 16/3, My, = 104/45, My, = 32/9;
(%,7,2) = (5/3,13/18,10/9) ~ (1.67,0.72,1.11)






Index

1,383

Absolute Convergence Theorem, 431
absolute maximum, 121

absolute minimum, 121

Absolute Value Theorem, 387
acceleration, 71, 618

Alternating Harmonic Series, 403, 428, 441

Alternating Series Test

for series, 425
ay, 636, 646
analytic function, 459
angle of elevation, 623
antiderivative, 185
arc length, 357, 499, 523, 615, 640
arc length parameter, 640, 642
asymptote

horizontal, 46

vertical, 44
ar, 636, 646
average rate of change, 603
average value of a function, 743
average value of function, 229

Binomial Series, 460
Bisection Method, 39
boundary point, 658
bounded sequence, 389
convergence, 390
bounded set, 658

center of mass, 757-759, 761, 788

Chain Rule, 94
multivariable, 689, 691
notation, 100

circle of curvature, 645

closed, 658

closed disk, 658

concave down, 142

concave up, 142

concavity, 142, 496
inflection point, 143
test for, 143

conic sections, 469
degenerate, 469
ellipse, 473
hyperbola, 476
parabola, 470

Constant Multiple Rule
of derivatives, 78
of integration, 189
of series, 403

constrained optimization, 720
continuous function, 34, 664
properties, 37, 665
vector—valued, 606
contour lines, 653
convergence
absolute, 429, 431
Alternating Series Test, 425
conditional, 429
Direct Comparison Test, 413
for integration, 327
Integral Test, 410
interval of, 436
Limit Comparison Test, 414
for integration, 329
nth—term test, 406
of geometric series, 398
of improper int., 322, 327, 329
of monotonic sequences, 393
of p-series, 399
of power series, 435
of sequence, 385, 390
of series, 395
radius of, 436
Ratio Comparison Test, 419
Root Comparison Test, 422
critical number, 123
critical point, 123, 715-717
cross product
and derivatives, 611
applications, 574
area of parallelogram, 575
torque, 577
volume of parallelepiped, 576
definition, 570
properties, 572,573
curvature, 642
and motion, 646
equations for, 644
of circle, 644, 645
radius of, 645
curve
parametrically defined, 483
rectangular equation, 483
smooth, 489
curve sketching, 149
cusp, 489
cycloid, 601
cylinder, 532

decreasing function, 134



finding intervals, 135
strictly, 134
definite integral, 196
and substitution, 262
properties, 197
derivative
acceleration, 72
as a function, 62
at a point, 58
basic rules, 76
Chain Rule, 94, 100, 689, 691
Constant Multiple Rule, 78
Constant Rule, 76
differential, 179
directional, 696, 698, 699, 702
exponential functions, 100
First Deriv. Test, 137
Generalized Power Rule, 95
higher order, 79
interpretation, 80
hyperbolic funct., 306
implicit, 103, 693
interpretation, 69
inverse function, 114
inverse hyper., 309
inverse trig., 117
Mean Value Theorem, 130
mixed partial, 672
motion, 72
multivariable differentiability, 681, 686
normal line, 59
notation, 62, 79
parametric equations, 493
partial, 668, 676
Power Rule, 76, 89, 108
power series, 439
Product Rule, 83
Quotient Rule, 86
Second Deriv. Test, 146
Sum/Difference Rule, 78
tangent line, 58
trigonometric functions, 87
vector—valued functions, 607, 608, 611
velocity, 72
differentiable, 58, 681, 686
differential, 179
notation, 179
Direct Comparison Test
for integration, 327
for series, 413
directional derivative, 696, 698, 699, 702
directrix, 470, 532
Disk Method, 342
displacement, 223, 602, 615
distance
between lines, 587
between point and line, 587
between point and plane, 595
between points in space, 530
traveled, 626

divergence

Alternating Series Test, 425

Direct Comparison Test, 413

for integration, 327
Integral Test, 410
Limit Comparison Test, 414
for integration, 329

nth—term test, 406

of geometric series, 398

of improper int., 322, 327, 329

of p-series, 399

of sequence, 385

of series, 395

Ratio Comparison Test, 419

Root Comparison Test, 422
dot product

and derivatives, 611

definition, 557

properties, 558, 559
double integral, 736, 737

in polar, 747

properties, 740

eccentricity, 475, 479
elementary function, 233
ellipse
definition, 473
eccentricity, 475
parametric equations, 489
reflective property, 476
standard equation, 474
extrema
absolute, 121, 715
and First Deriv. Test, 137
and Second Deriv. Test, 146
finding, 124
relative, 122, 715, 716
Extreme Value Theorem, 122, 720
extreme values, 121

factorial, 383

First Derivative Test, 137

fluid pressure/force, 375, 377

focus, 470, 473, 476

Fubini’s Theorem, 737

function
of three variables, 655
of two variables, 651
vector-valued, 599

Fundamental Theorem of Calculus, 221, 222
and Chain Rule, 225

Gabriel’s Horn, 363
Generalized Power Rule, 95
geometric series, 397, 398
gradient, 698, 699, 702, 712
and level curves, 699
and level surfaces, 712

Harmonic Series, 403
Head To Tail Rule, 547



Hooke’s Law, 368
hyperbola
definition, 476
eccentricity, 479
parametric equations, 489
reflective property, 479
standard equation, 477
hyperbolic function
definition, 303
derivatives, 306
identities, 306
integrals, 306
inverse, 307
derivative, 309
integration, 309
logarithmic def., 308

implicit differentiation, 103, 693
improper integration, 322, 325
increasing function, 134
finding intervals, 135
strictly, 134
indefinite integral, 185
indeterminate form, 2, 45, 316, 317
inflection point, 143
initial point, 543
initial value problem, 190
Integral Test, 410
integration
arc length, 357
area, 196, 728, 729
area between curves, 226, 334
average value, 229
by parts, 266
by substitution, 249
definite, 196
and substitution, 262
properties, 197
Riemann Sums, 217
displacement, 223
distance traveled, 626
double, 736
fluid force, 375, 377
Fun. Thm. of Calc., 221, 222
general application technique, 333
hyperbolic funct., 306
improper, 322, 325, 327, 329
indefinite, 185
inverse hyper., 309
iterated, 727
Mean Value Theorem, 227
multiple, 727
notation, 186, 196, 222, 727
numerical, 233
Left/Right Hand Rule, 233, 240
Simpson’s Rule, 238, 240, 241
Trapezoidal Rule, 236, 240, 241
of multivariable functions, 725
of power series, 439
of trig. functions, 255

of trig. powers, 276, 281
of vector—valued functions, 613
partial fraction decomp., 296
Power Rule, 190
Sum/Difference Rule, 190
surface area, 361, 501, 524
trig. subst., 287
triple, 774, 785, 787
volume
cross-sectional area, 341
Disk Method, 342
Shell Method, 349, 353
Washer Method, 344, 353
work, 365

interior point, 658
Intermediate Value Theorem, 39
interval of convergence, 436

iterated integration, 727, 736, 737, 774, 785, 787

changing order, 731
properties, 740, 781

'Hopital’s Rule, 313, 315

lamina, 753

Left Hand Rule, 204, 209, 212, 233
Left/Right Hand Rule, 240

level
level
limit

curves, 653, 699
surface, 656, 712

Absolute Value Theorem, 387

at infinity, 46

definition, 10

difference quotient, 6

does not exist, 4, 29

indeterminate form, 2, 45, 316, 317
L'Hépital’s Rule, 313, 315

left handed, 27

of infinity, 43

of multivariable function, 659, 660, 666
of sequence, 385

of vector—valued functions, 605
one sided, 27

properties, 16, 660
pseudo-definition, 2

right handed, 27

Squeeze Theorem, 20

Limit Comparison Test

for integration, 329
for series, 414

lines, 580

distances between, 587
equations for, 582
intersecting, 583
parallel, 583

skew, 583

logarithmic differentiation, 110

Maclaurin Polynomial, see Taylor Polynomial

definition, 447

Maclaurin Series, see Taylor Series

definition, 457



magnitude of vector, 543
mass, 753, 754, 788

center of, 757
maximum

absolute, 121, 715

and First Deriv. Test, 137

and Second Deriv. Test, 146

relative/local, 122, 715, 718
Mean Value Theorem

of differentiation, 130

of integration, 227
Midpoint Rule, 204, 209, 212
minimum

absolute, 121, 715

and First Deriv. Test, 137, 146

relative/local, 122, 715, 718
moment, 759, 761, 788
monotonic sequence, 390

multiple integration, see iterated integration

multivariable function, 651, 655
continuity, 664—-666, 682, 687
differentiability, 681, 682, 686, 687
domain, 651, 655
level curves, 653
level surface, 656
limit, 659, 660, 666
range, 651, 655

Newton’s Method, 158
norm, 543
normal line, 59, 493, 708
normal vector, 590
nth—term test, 406
numerical integration, 233
Left/Right Hand Rule, 233, 240
Simpson’s Rule, 238, 240
error bounds, 241
Trapezoidal Rule, 236, 240
error bounds, 241

open, 658
open ball, 666
open disk, 658
optimization, 171
constrained, 720
orthogonal, 561, 708
decomposition, 565
orthogonal decomposition of vectors, 565
orthogonal projection, 563
osculating circle, 645

p-series, 399
parabola
definition, 470
general equation, 471
reflective property, 473
parallel vectors, 551
Parallelogram Law, 547
parametric equations
arc length, 499
concavity, 496

deﬁnitiog, 483

finding 2%, 497

finding %, 493

normal line, 493

surface area, 501

tangent line, 493
partial derivative, 668, 676

high order, 676

meaning, 670

mixed, 672

second derivative, 672

total differential, 680, 686
perpendicular, see orthogonal
planes

coordinate plane, 531

distance between point and plane, 595

equations of, 591
introduction, 531
normal vector, 590
tangent, 711
point of inflection, 143
polar
coordinates, 503
function
arc length, 523
gallery of graphs, 510
surface area, 524
functions, 506
area, 519
area between curves, 521
finding %, 516
graphing, 506
polar coordinates, 503
plotting points, 503
Power Rule
differentiation, 76, 83, 89, 108
integration, 190
power series, 434
algebra of, 462
convergence, 435
derivatives and integrals, 439
projectile motion, 623, 624, 637

quadric surface
definition, 535
ellipsoid, 538
elliptic cone, 537
elliptic paraboloid, 537
gallery, 537-539
hyperbolic paraboloid, 539
hyperboloid of one sheet, 538
hyperboloid of two sheets, 539
sphere, 538
trace, 536

Quotient Rule, 86

R, 543

radius of convergence, 436
radius of curvature, 645
Ratio Comparison Test



for series, 419 smooth, 610

rearrangements of series, 430, 431 smooth curve, 489
related rates, 164 speed, 618
Riemann Sum, 204, 208, 211 sphere, 530
and definite integral, 217 Squeeze Theorem, 20
Right Hand Rule, 204, 209, 212, 233 Sum/Difference Rule
right hand rule of derivatives, 78
of Cartesian coordinates, 529 of integration, 190
Rolle’s Theorem, 130 of series, 403
Root Comparison Test summation
for series, 422 notation, 205
properties, 207
saddle point, 717, 718 surface area, 766
Second Derivative Test, 146, 718 solid of revolution, 361, 501, 524
sensitivity analysis, 685 surface of revolution, 534, 535
sequence
Absolute Value Theorem, 387 tangent line, 58, 493, 516, 609
positive, 413 directional, 705
sequences tangent plane, 711
boundedness, 389 Taylor Polynomial
convergent, 385, 390, 393 definition, 447
definition, 383 Taylor’s Theorem, 450
divergent, 385 Taylor Series
limit, 385 common series, 462

definition, 457
equality with generating function, 459
Taylor’s Theorem, 450
telescoping series, 400, 401
terminal point, 543
total differential, 680, 686
sensitivity analysis, 685
total signed area, 196
trace, 536
Trapezoidal Rule, 236, 240
error bounds, 241
triple integral, 774, 785, 787
properties, 781

limit properties, 388
monotonic, 390

series
absolute convergence, 429
Absolute Convergence Theorem, 431
alternating, 424

Approximation Theorem, 427

Alternating Series Test, 425
Binomial, 460
conditional convergence, 429
convergent, 395
definition, 395
Direct Comparison Test, 413

divergent, 395 unbounded sequence, 389

geometric, 397, 398 unbounded set, 658

!ntegral Test, 410 unit normal vector
interval of convergence, 436 ay, 636

Limit Comparison Test, 414 and acceleration, 635, 636
Maclaurin, 457 and curvature, 646

th

n""—term test, 406 definition, 633

p-series, 399 in R?, 635

partial sums, 395 unit tangent vector

power, 43'4, 435 ' and acceleration, 635, 636
derivatives and integrals, 439 and curvature, 642, 646

properties, 403 ar, 636

radius of convergence, 436 definition, 631

Ratio Comparison Test, 419 in R?, 635

rearrangements, 430, 431
Root Comparison Test, 422

unit vector, 549
properties, 551

Taylor, 457 standard unit vector, 553
telescoping, 400, 401 unit normal vector, 633
Shell Method, 349, 353 unit tangent vector, 631
signed area, 196
signed volume, 736, 737 vector—valued function
Simpson’s Rule, 238, 240 algebra of, 600

error bounds, 241 arc length, 615



average rate of change, 603
continuity, 606
definition, 599
derivatives, 607, 608, 611
describing motion, 618
displacement, 602
distance traveled, 626
graphing, 599
integration, 613
limits, 605
of constant length, 613, 622, 623, 632
projectile motion, 623, 624
smooth, 610
tangent line, 609

vectors, 543
algebra of, 546
algebraic properties, 549
component form, 544
cross product, 570, 572, 573
definition, 543
dot product, 557-559
Head To Tail Rule, 547
magnitude, 543
norm, 543
normal vector, 590
orthogonal, 561
orthogonal decomposition, 565
orthogonal projection, 563
parallel, 551
Parallelogram Law, 547
resultant, 547
standard unit vector, 553
unit vector, 549, 551
zero vector, 547

velocity, 71, 618

volume, 736, 737, 772

Washer Method, 344, 353
work, 365, 567



Differentiation Rules

d d d 1 d
1. —(ex)=c 10. — (@*) =Ina-d* 19. — (sin7lx) = —— 28. — (sechx) = —sechxtanhx
dx( ) dx( ) dx( ) V1—x2 dx( )
d d 1 d -1 d
2. —(utv)=du £V 11. — (Inx) = = 20. — (cos™ix) = —— 29. — (cschx) = — csch x coth x
dx dx X dx V1—x2 dx
d d 1 1 d -1 d
3. —(w-v)=uw' +dv 12 — (log,x) = — - = 21, — (escix) = 30. — (cothx) = — csch? x
dx( ) + dx( €aX) Ina x dx( ) x|vx* —1 dx( )
r— d d 1 d 1
4, g fuy_w-ow 45 9 (sinx) = cosx 22, — (sec™lx) = ——— 31, — (cosh™lx) = ———
dx \v v2 dx dx [x|[vx? — 1 dx x2—1
d o d _ d, 1 d 1
. — = 14. — (cosx) = —sinx 23, — (tan” "x) = —— 32. — (sinh™ " x) = ——
5. = (ulv) = (v)v = (cosx) o () = g () = e
d d d, -1 d . -1
. — = 15. — (cscx) = — cscxcotx 24, — (cot” " x) = —— 33. — (sech™ " x) = —
6 dx (©=0 dx ( ) dx ( ) 1+ x2 dx ( ) xV1 — x2
d d d _ d ., —1
e =1 16. — (secx) = secxtanx 25. — (coshx) = sinhx 34, — (csch™ " x) = ———
72w = (secx) = (cosh) o (ST = s
d d d 1
8. % (™) =mx"1 17. o (tanx) = sec? x 26. o (sinh x) = coshx 35. o (tanhflx) =12
d . d 5 d 5 d _ 1
L= = 18. — (cotx) = —csc 27. — (tanhx) = sech 36. — (coth =
9 dx () =e dx (cotx) X dx ( %) x dx ( X) 1—x2
Integration Rules
1 X
1. c-f(x dx:c/ X) dx 11. tanxdx = —In|cosx| + C 22. /7dx:sin’1 (7) Cc
[ e £ | cosx| —— )t
1 1 (v
2. /f(x +g(x)dx = 12. secxdx =In|secx 4 tanx| + C 23. /701 = Zsec (& c
) £g(x) | =t 1)+
/f(X) dX:l:/g(X) dx 13. CSCXdX=7|n|CSCX+C0tX| +C 24. /coshxdx:sinhx+c

3. /OdX:C
14.

/cotxdx:lnlsinx|+c 25. /sinhxdx:coshx+C
4. /1dX:X+C )
15. /sec xdx =tanx +C 26. /tanhxdx:ln(coshx)+C
1
5. /x"dx:—x"“—&-c,n;é—l 5
n+1 16. /csc xdx=—cotx+C 27. /cothxdx:ln\sinhx|+c
n# -1
1
6. /e"dx:e"+c 17. /secxtanxdx:secx-ﬁ-c 28. /7dx:|n x4+ —a?|+cC
— e+ v |
1 1
Xdx = — - d* 18. cscx cotx dx = — csc C —_— _dx = 2 2
7. /a dx —dtC / x cot x dx X+ 29. /mdx Injx+vVx2+a?| +C
1 1 1
3. /7dx:ln|x|+C 19. /coszxdx:fx-q—fsln(Zx)—i—C 30. /;dx:lln atx +c
X 2 4 a? — x? 2 |a—x
2 4 xvVa? — x? a a+ Va2 —x?
. 1 1. —1(* 1 1 X
10. sinxdx = —cosx + C 21 - dx=—tan - +C 32. /7dxzfln — ___|l+c
X +a a a XV + a? a la+Vx+ad




The Unit Circle

Common Trigonometric Identities

Pythagorean Identities
sinx+cos’x =1
tan?x 4+ 1 = sec’x

1+ cot? x = csc? x

Sum to Product Formulas

. . . x+
smx+smy25|n<

. . . X
sinx —siny = 25|n(

X+
COSX +cosy = 2cos(

N N
N <
<
(@] 0O
o o
[%,] (%]

Cofunction Identities

LT

sin{ — —x) = cosx
2
™ .

cos | = —x) =sinx
2

T
tan (— —x) = cotx
2

X X+y X
cosx—cosy:—25|n( 5 )cos( 5

Product to Sum Formulas

1
sinxsiny = E(cos(x —y) — cos(x + y))

COSXCOosy =

NP -

sinxcosy =

(cos(x —y) + cos(x +y))

(sin(x+y) +sin(x — y))

Definitions of the Trigonometric Functions

Unit Circle Definition

Double Angle Formulas

T
csc (5 —x) = secx sin2x = 2sinxcos x
T cos 2x = cos? x — sin® x
sec (— —x) = cscx
2 =2cos’x—1
Vs
cot(z—x):tanx —=1—2sin?x
2tanx
tan2x = ————
1—tan“x
Power—Reducing Formulas Even/Odd Identities
sin? x — 1 —cos2x sin(—x) = —sinx
2 cos(—x) = cosx
2. 14cos2x
cos x = 7 tan(—x) = —tanx
tanx — L €08 2X csc(—x) = —cscx
1+ cos2x sec(—x) = secx
cot(—x) = —cotx

Angle Sum/Difference Formulas
sin(x £ y) = sinxcosy & cosxsiny

cos(x +y) = cosxcosy F sinxsiny
tanx £ tany

tan(xty) = ——
( 2 1 Ftanxtany

y
A
V2 X, .
TZ) () sinf =y cosf = x
|
2, %) V| 0 1
| \ cscld ==  secl =
< ‘ > X y
X
tand =7 coth=7%
X y
(1,0) — x
Y
Right Triangle Definition
. 0] H
s sinf = q csch = —
(#:-4) g ©
©
o A H
%) 2. cosf = — sec = —
o H A
0} A
Adjacent tand = — cotf = —
A (6}



Areas and Volumes

Triangles
h=asin0
Area = %bh

Law of Cosines:

¢ =a*+b?>—2abcosh

Parallelograms
Area = bh

Trapezoids

Area = 2(a+ b)h

Circles

Area = 7r?

Circumference = 27rr

Sectors of Circles

6 in radians
Area = 161
s=rf

s
>

____

o
o
Q

-
o
(%)

Right Circular Cone
Volume = 27r?h

Surface Area =

V2 + h? + wr?

Right Circular Cylinder

Volume = 7r?h

Surface Area =
2xrh + 27r?

Sphere
Volume = $7r°

Surface Area =472

General Cone
Area of Base = A

Volume = 1Ah

General Right Cylinder

Area of Base = A

Volume = Ah

>




Algebra

Factors and Zeros of Polynomials
Let p(x) = apX" + ap_1X""1 + - - - + a1x + ag be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a solution of
the equation p(x) = 0. Furthermore, (x — a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imaginary, a real

polynomial of odd degree must have at least one real zero.

Quadratic Formula
If p(x) = ax* + bx + ¢, and 0 < b? — 4ac, then the real zeros of p are x = (—b + /b? — 4ac)/2a

Special Factors

X —a®>=(x—a)(x+a) X —a>=(x—a)(®+ax+a*)
X +a®= (x+a)(x* — ax + a?) X —a* = (® —a*) (¥ + a?)
(X+ y)n =x" + nxn—1y+ ”("le)Xn—ZyZ 4o+ ann—l +y

(X _ y)n — X" — nx"_ly—i— "("le)Xn—ZyZ — et ann—l Fy
Binomial Theorem

(x+y)* =X+ 2y +y? (x—y)? = x> — 2xy + y?
(x+y)>P=x+3C%y+3xy> + )3 (x—y)P =x -3y +3x2 -3

(X+ y)4 — X4 +4X3y+ 6X2y2 +4Xy3 +y4 (X _ y)4 — X4 _ 4X3y+ 6X2y2 _ 4Xy3 + y4

Rational Zero Theorem
If p(x) = apx" + a,—1X""1 4 - -+ + a1x + ag has integer coefficients, then every rational zero of p is of the form x = r/s,
where ris a factor of ag and s is a factor of a,,.

Factoring by Grouping
acx® + adx? + bex + bd = ax?(¢s + d) + b(cx + d) = (ax® + b)(cx + d)

Arithmetic Operations

ad + bc a+b a b

ab+ac=a(b+c)

(Z)_(a)<d>zzg @:1 _a_ _a

(E) \b/ \¢ c bc b b
d c
g b\ _ab a—b b-a ab+ac_b+c
c)] ¢ c—d d-c N
Exponents and Radicals
=1 a#0 (ab)*=cb" =0V Ja=a'l? % =7 Va=a'/"

X X 1 n
(E) _T am = gm/n a X = o vab = y/av/b (@) = a¥ \"/g = \H/E



Additional Formulas

Summation Formulas:
n

iz"lz n(n+1)(2n+1) 0 5 [(n(n+1)\?

Trapezoidal Rule:

b
/ f(x) dx ~ % [fx1) + 2f(x2) + 2f(x3) + ... + 2f(xn) + f(Xn11)]

B maxf0)]

with Error <

Simpson’s Rule:

b
/ f(x) dx =~ % [f(x1) + 4f(x2) + 2f(x3) + 4f(Xa) + ... + 2f(Xp—1) + 4f(Xn) + f(Xn11)]

(b—a)®

with Error < 8o [ max | (x)]]

Arc Length: Surface of Revolution:
b b
L:/ JIEF O dx 5:27r/ FOVITF O

(where f(x) > 0)

b
S:27r/ x/ 14+ f'(x)? dx

(wherea, b > 0)

Work Done by a Variable Force: Force Exerted by a Fluid:

b b
W:/ F(x) dx F:/ wd(y) ¢(y) dy

Taylor Series Expansion for f(x):

£(c)
2!

(x —¢)? +]¥(x—c)3+... +

pn(x) = flc) + f'(e)(x =€) +

Maclaurin Series Expansion for f(x), where ¢ = 0:

” n (n)
pn(x>=f<0)+f/(0)x+f2<?) , 1O 5 fP0),

] X +TX + ... n!



Summary of Tests for Series:

Test Series Condition(s) of Con'dltlon(s) of Comment
Convergence Divergence
o0
This test cannot be used to
h-Ti li
nth-Term Z; Gn i 9 70 show convergence.
n=
> 1
Geometric Series r rl<1 rl>1 Sum = ——
> i e o
oo a
Telescoping Series Z (bp — bnta) lim b, =1L Sum = <Z b,,) —L
n=1 e n=1
= 1
-Series —_— >1 <1
P Z (an +b)P P p=
n=1
50 (oo} oo
a(n)dn =
Integral Test Zan /1 a(n) dn /1 (n) a, = a(n) must be
. L continuous
n=0 is convergent is divergent
o0 o0
o > b > bn
Direct Comparison Z an n=0 n=0
=0 converges and diverges and
0<a, <bh, 0<b,<a,
o0 o0
b b
0 Z " Z " Also diverges if
Limit Comparison Z an n=0 n=0 .
converges and diverges and lim a,/b, = o0
n=0 n—o0
lim a,/b, >0 lim a,/b, >0
n— 00 n—oo
- {an} must be positive
a a . .
Ratio Test Z an lim L <1 lim = > 1 Also diverges if
n—oo  dp n—oo  dp, .
n=0 lim apy1/a, = 00
n—o0o
{an} must be positive
o0
Root Test Zan lim (an)l/n <1 lim (an)l/n >1 Also diverges if
n—o0 n—-00 . 1/’7
n=0 lim (a,)”" = o0
n—o0o
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